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My Vdoctoral re‘search for the past three yéars is presented in this report. My
research mainly focuses on the communications and positioning for wireless networks
and is composed of three pafts. First, I explored /a new Turbo frequency equalization
technique for multiple-input multiple-output (MIMO) wireless communications
systems to improve the performance of wireless communications. In the second part
of my research, I studied the multiple antenna cooperative communications from the
perspective of information theories. The third part of my work is dedicated to
extensive research on pdsitioning technology for wireless networks using knowledge

of the estimation theory in signal processing.
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CHAPTER 1

INTRODUCTION

The research area of wireless networks contains tons of interesting topics to study. To
start with, we decided to study communications of wireless networks and investigate
some advanced technologies, such as the Single Carrier, Turbo Equalization, etc. This
gave birth to the idea of the chapter 2 “ Frequency-Domain Turbo Eqﬁalization for
Single—Carrier Mobile Broadband Systems”, whose abstract is presented below.
Mobile broadbaﬁd communications, which undergo time—varying radio channels
with large multipath delay spread, are ihvestigated in this cha.pter.‘ Considering that

single-carrier (SC) modems with frequency domain equalization have similar perfor-

- mance and complexity‘ as orthogonal frequency-division multiplexing (OFDM), yet

less sensitive to radio frequency (RF) impairments, we adopt single-carrier modula-

tion at the transmitter to combat inter-symbol-interference (ISI) resulted from the

multipath delay. Space-time block transmissioh is employed as the transmitting di-
"versity scheme. At the receiver, we propose the Turbo equalization consisting of

minimum mean-square error (MMSE) equalization in frequency domain and channel

decoding. Moreover, to cope with faster time-varying characteristics of the mobile

" channel, the data frame can be partitioned into smaller units; or blocks, for space-time
block transmission and the linear equalizer. All procéssed blocks are then combined
back to a frame as the input of the channel decoder. Simulation results show good
performance of the proposed scheme with feasible computational complexity.

After research on specific wireless communications technologies, we moved on to
systematically study the performance of wireless communications from the perspective

of information theories and analyze the capacity of cooperative communications where



multiple antennas are adopted at multiple cooperative usefs. The results are reborted
in the chapter 3 “Realization and Capacity AnalySié of Cooperative Communications
based on Multiplexing”, whose ébstract is presented below. ‘

Cooperative communication (CC) techniques, which form virtual multiple input

‘multiplle output (MIMO) systems through cooperation among users, have been pre-
vailing in current academic research. Two scenarios that have been mostly considered
are one source to one destination with help from a relay node and two sources to
one d_estination with cooperation among sources, ie. cooperatiori for multiple access
channels. In either case, single antehna is'employed at each node. In this chapter, 1
bropose to realize coop;arat’ion based on multiplexing for a broadcast channel where
~ there is one source equipped with multiple antennas and two destinations with single
antenna. One of the destinations experiencing better channels helps the otherv desti-
nation under worse channel conditidns by serving as a relay. Such a channel is referred
to as a multiple input single output (MISO) coqpérative broadcas/t channel (CBC).
Further, I consider the capacity analysis for the MISO CBC where additive white
Gaussian noise (AWGN) presents (MISO AWGN CBC), which is not easy because
MISO AWGN channel, as a vector Gaussian channel, is generally not degraded. I de-
_rive an outer bound on the capacity region of MISO AWGN CBC to provide insights
into its information transmission limit.

The purpose of research is to solve the problems raised in the real world. Research
in previous parts armed us with advanced technologies and theories, and we are
ready to apply them for solving some practical problems. We selected to investigate
the problems of positiohing in wireless networks. We proposed our own positioning
algorithms after extensive literature survey and study of existi.ng bositioning methods
and algorithms. Furthermore, we implemented our algorithm on ZigBee devices for
testing in real environments. Details can be found in the chapter 4 “Implementing
Indoor Positioning System via ZigBee Devices”, whose abstract is presented below.

A wireless indoor positioning system is implemented with the ZigBee technology

that has applications in smart office and home, and in industrial automation and



control. We propose ah effective cooperative localization algorithm that is tailored to
the ZigBee profiles. It combines multidimensional scaling with maximum likelihood
estilhation, and overcomes their inherent drawbacks. ZigBee devices with chipset ref-
erence designs or design-in modules are used for hardware implementation. An indoor
positioning testbed is developed to evaluaté the algorithm and check the pos_itibning
accuracy based on various channel measurements. |

The positioning algorithm proposed in the chapter 4 can be improved by using
Bayesian estimators instead of classical estimators. The new and bétter positioning
algorithm is proposed and compared with other existing algorithms in the chapter 5
“MMSE Cooperative Positioning in Wireless Networks”, whose abstract is presented
below. | v ‘

The Global Positioning System (GPS) is not always amlvaila,ble, accurate enough or
cost efficient for locating nodes in wireless networks, which motives extensive studies
on a variety of none-GPS positioning algorithms. All these algorithms can be 'clas.si-
fied as non-éooperative methods or cooperative methods. The cooperative methods,
though more complicated, achieve better performance since the position estimation
for any node is based on information concerning all nodes altogether. In this work,
we proposed and derived an minimum mean squared error (MMSE) cooperative po-
- sitioning method based on the power decays' between each pair of wireless nodes.
Log-normal power distribution is assumed and verified by the actual field measure-
ments by ZigBee equipments. MMSE positioning based on log-normal power distri-
bution involves cofnpiicated multiple integrals, which have no closed form solution.
We adopted Simpon quadrature or Monte Carlo numerical methods to obtain the
needed integrals. For improved performance, we proposed several variatiohé of our
basic MMSE cooperative positioning algorithm. The MMSE positioning_ algorithm in
‘this work can also be carried out in a non-cooperative way and provides better initial
position estimates for some existing iterative positioning approaches. The proposed
MMSE cooperative positioning algorithm is optimum in terms of the Root Mean

Square Error (RMSE). This is guaranteed by theoretical analysis and is also veri-



fied by 't’he numericai results in comparison with severai,popular existing cooperative
methods. _ ‘ .

An iterative and computationally efficient method based on the MMSE positioning
algorithm proposed in previous chapter is proposed and compared with other existing
algorit}ims in the chapter 6 “Iterative Cooperative Positioning in Wireless Network”,
whose abstract is presented below. |

The previoursly'proposed MMSE position estimator is a promisiné cooperative
positioning method among all of positioning algorithms due to its excellent accuracy
in terms of RMSE. However, direct fcaiculation of thevmultiple' integrals present in
MMSE formulas via numerical methods has high computation burden and thus ré-
strict its practical application to a small nilmbér 6f ‘unknown nodéé. ‘To overcome
this complexity obstacle, we propose an innovative MMSE Adaptive Iterative Coop-
erative (AIC) method, whose mechanism resembles a turbo engine. This MMSE-AIC
positioning method avoids direct calculation of the multiple integrals via aciaptive

-iterative estimatiori,- and its performance is approximately the same as the perfect
pe_rformarice of the exact original MMSE in terms of RMSE The proposed MMSE-
AIC is a practical soliition and extends the application of MMSE estimator to large

size wireless networks.



CHAPTER 2

FREQUENCY—DOMAIN TURBO EQUALIZATION FOR SINGLE-CARRIER
MOBILE BROADBAND SYSTEMS -~

_‘ 2.1 Intr‘odﬁction
Single carrier (SC) modulation and Orthogohal’freduency-division multiplefcing -
(OFDM) are two majdr techniques to combat the ‘ihter-bsymbol-intérference (ISI). char-
acterizing the dispersifle channels in wiréless broadband systems. Much work has beeh
done to compare these two approaches (1] [2] [3]. Although OFDM has already been
applied in rhany practical applications, SC has been gainihg greater popularity due to
| the disadvantages inhérent in OFDM and the fact that when combined with ffequency
domain equalization, the SC approach delivers performance’similar to OFDM, with
essential'lyrthe same overall complexity [4]. In addition, 'SC modulation uses a single
carrier, instead of the many sub-carriers typically used in OFDM, so the peak-to-
"averag‘e ratio (PAR) of transmitted power for SC-modulatedvsigna»ls is smaller. This
means that the power amplifier of an ‘S'C transmitter requires a smaller linear range
to support a given‘ average power, and thus SC can use cheaper power amplifiers than
a comparable OFDM system. | 7' |
.Diversity transmission using Alamouti’s sbace—time block-coding (STBC) scheme 5]
. has been proposed in several wireless standards due to its rriany attractive features.
It achieves fbullvspa‘tial diversity at full transmission rate for ‘t.wo transmit antennas,
withbut requiring channel state infofmation at the transmitter. And the maximum

- likelihood decoding for Alamouti’s STBC requires only simple linear processing.



‘ Therefére, in this chapter, we consider multi-antenna wireless broadband systems,
where STBC with cyclic-prefix (CP) is applied with SC at thetransmitter. Convolu-
tional encode is adopted aé the forward error control (FEC) scheme.

At the receiver, we prop"ose.:‘am freqﬁency domain Turbo equalization to detect the
transmitted information bit stream. The\’I‘urb'o equalization, first proposed in 6],
" borrowed the idea of Turbo code-decoding to detect iteratively the original informa-"
tion bits impaired by ISI. The outer code is usually a convolutional code and the ISI
channel, equivalent to the_iriner code, is considered as a rate one convolutional code

in real Galois field [7]. The extrinsic information transfer (EXIT) chart is used as a
| theoretical tool for performance analysis. ‘It is well demonstrated that such an iter-
ative scheme prdvides a significant pérformahce gain. In this chapter, our proposed
Turbo equalizer is composed of a linear minimum mean-square error (MMSE) in fre-
quency domain and a soft-input4soft-oufput (SISO) d‘ecoder. The récefved data are
converted to freqﬁenqy domain and partitioned info blocks before fed into the linear
- MMSE, and the original information bits are decoded in an iterative and feedb‘ack
way. ‘ |
MMSE space-frequency equalization for SC multiple-input multiple-output (MIMO)
systems over frequency-selective channels is proposed in [8], but it can not be im-
plemented iteratively to form Turbo equalization because it assumes fixed statistics
about the transmitted signals. Borrowing ideas from MMSE using A priori informa-
tion [9], we proposed'frequency-dom’a'in MMSE equalizer based on dynamic a prior:
information to cooperate with the SISO outer decoder to realize the Turbo‘equal—-
izer. a priori information is updated at each iteration by the SISO decoder. Perfect
channel state information (CSI) is assumed to be known to the receiver.

Bif—error—rate (BER) curves ar}d EXIT charts obtained through simulations show
excellent perforimance and validate our proposed approach.

The remaining of this ché,pter is organized as follows. In sectioﬁ 2.2, the systém
model is described mathematically. Then, the algorithms of frequency domain Turbo

equalizer at the receiver, which is the focus of this chapter is stated in details in the
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< {s(2k), s(2k+1)} | Space-Time
Channel Modulator Block Y
Transmission

Figure 2.1. Transmitter baseband block diagram: channel encoding
and space-time block transmission. » ’

section 2.3. Numerical results through simulations are presented in the section 2.4.

Conclusions are made in the section 2.5.

2.2 System Model
2.2.1 Space-Time Transmission

Figure 2.1 depicts the block diagram of a wireless transmitter with two Vantennas, '
The binary bit stream b is encoded using a convolutional code and becon;es code data
¢, which are then r‘émndomly interleaved in order that the influence of error bursts is
: breduced at the input of the channel decoder at the receiver. The interleaved code
~ bits are then modulated and mapped to symbols s to compose a frame of length M,
which is then partitioned into smaller units, termed blocks, of length N. A pair of two
" blocks are transmitted through the two antennas using Alamouti’s space-time block
transmission scheme. Suppose P; pairs (two blocks) are obtained from partition,
then we have N = M /(2P;). N can be set to be larger or smaller to be adaptive to
slower or faster time-varying mobile channels. The transmission uses a single carrier
frequency. In this chaptef, we assume. a coherent symbol-spacedv receiver frontend
with perfect symbol timing and describe the system with an equivalent discrete-time

baseband model.



- Let s(2k) and s(2k + 1) denote two consecutive symbol blocks as
s(2k) = [s(2kN),s(2kN +1),...,

s(2kN + N — n* , (2.1)
s(2k+1) = [s((zk +1)N), s((2k + l)N - 1)

s((2k + )N + N = 1)|T @2

These two symbol blocks are transmitted through the two antennas in the following

form analogous to the Alamouti space-time code,

s(2k) —Ps*(2k+1) —  time

, : (2.3)
s(2k+1) Ps*(2k) -] space

where P is a permutation matrix that is drawn from a set of permutetion matrices
{p }N-1 Each P™ performs a reverse cyclic shift, such that when it is applied to a

N x 1 vector § = [3(0), o s(N—l)]T, the p-th entry of P™s is s((N —p+n) mod N).

For example

POs = [s(N—1),s(N-2),...,s0) E (24)

PUs = [5(0),s(N=1),s(N-2),...,s(D  (25)

Suppose that the transmit ﬁlter the broadband channel with inter-symbol interfer-
© ence, and the receive ﬁlter can be represented by a discrete-time lmear filter with
ﬁmte—length impulse response (FIR) of length L. The FIR filter can be determlned
by the sequence h,, = (hu(0), - - ., Bu(L — 1)]T, where u = 1,2 indicates the trans-
mit antenna. For multir)ie trenSmitter—receiver antenna pairs with different channel
memory, L is the longest filter length. As shown in Figure 2.2, a cyclic preﬁx (CP) of
length L is added to each transmitted block Therefore the inter-block interference

can be eliminated by removing the CP at the receiver.

o
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Figure 2.2. Transmitted sequence through two antennas.

2.2.2 Channel Modeling

When the receiver synchronizes to the symbol blocks, the received data in two

consecutive blocks are given by

x(2k) = HMs(2k) + HPs(2k + 1)

[

+n(2k) : - (26)
x(2k+1) = —H®VPs (2% +1) |
+H*VPs* (2k) + n(2k + 1) (2.7)

where n is the zero-mean Gaussian noise vector with covariance matrix o2I. It is
assumed that the channel is block-invariant, which means the channel stays constant
within the transmission of a block. With the removal of CP at the receiver, the
channel Hff) ,where j = 2k, 2k + 1 denotes the j-th symbol block, can be represented

by an N x N circulant matrix as

w2 (0) o m
@ wPe - rPE)
r(L-2) pP@L-3) - BP(L-1)
) 0]
HO) = (L~ 1) hu. (L—-2) 0 2.8)
0 AL ~1) - 0
0 0 0
0 0 0
L0 0 o BP0




Hence, Hff ) has an eigen-decompaosition as
Y H A
HY = FAAOF (2.9)

where F is the orthonormal discrete Fourier transform (DFT) matrix whose (k,1)—th
entry is Fy; = \/Lﬁe‘j(z"/’v W (k1 =0,...,N—1). A is a diagonal matrix whose
(k, k-)éth entry is given by the k-th DFT coefficient of the first column of Hff). In
addition, the circulant matrix has the following property when operating with the

permutation matrix P (10].

PHO*P = HO¥ - (2.10)

As depicted in Figure 2.3, the receiver divides the symbol blocks to generate x(2k)

and Px*(2k + 1), which are then passed through FFT modules to be converted to the

frequency domain. The resulted outputs are given by

Fx(2k) A AP
FPx*(2k + 1) A AR
X(2%) AGR)

S@k) |, Fn(2%) 21D
S(2k+1) | | FPn'(2k+1)

W(2k)
whére S(j) = Fs(j), 7 = 2k,2k + 1. The filtered noise W(2k) remains white with
the same covariance matrix o21. | \ |
The output of the space-time combiner is further fed into a frequency-domain
minimum mean square error (MMSE) equalizer to obtdin the frequency domain es-
“timates S(2k) and S(2k + 1), which are broﬁght back to the time domain via IFFT
modules. Finally, the code bits are detected and decoded to the information bits.

The details will be explained in the next section.
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Figure 2.3. Receiver baseband block diagram: space-time combining
and Turbo equalization.

2.3 Frequency-Domain Turbo Equalization
2.3.1 Receiver Structure

As shown in Figure 2.3, the receiver consists of a space-time linear combiner,
followed by the Turbo equalizer. The Turbo equalizer has two stages: the frequency-
domain linear MMSE equalizer -and the SISO channel decoder. The two stages are
separated by a deinterleaver (a block labeled “r~1”) and an interleaver (a block
labeled “7”). The a priori log-likelihood ratio (LLR) of the symbol bit is fed
back to the MMSE equalizer, and the equalizer outputs the a posteriori LLR of
the symbol bit. For simplicity, the block index (2k) is dropped from now on, i.e.

(28) S(2k) |
X =X(2k),A = A¥" W = W(2k). Also, let S = , thus
S(2k+1)
| Fo || s(k) i
S= . =Fs (2.12)
OF s(2k+1)
Then, Eq. (2.11) can be rewritten as

X=AS+W (2.13)
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BPSK is considered in this chapter Therefore the a priori LLR is given by

L(s(3)) = F{,}%}i—ﬂ | (2.14)

The a poétem’om’ LLR is given by

1, P10 = +1X] ‘
L(s(®)|X) =1 pls() = —1X] (2.15)
Using Bayes’ rule, it can be written as
' ' . plX|s(i) = +1] P[s(i) = +1] '
HASOR) = e = 1] Pty = 1 (216)

: Le(3(5)) , L(s(i)
where L. (s(i)) is the extrinsic information. The extrinsic information of all blocks of

length N at the output of the MMSE equalizers is calculated and combined back into
a frame of length M before being deinterleaved to generate the a jm’orz’ LLR of the
code bit for the channel decoder. The decoder outputs an update of the LLR of the -
code bit and the information bit. The extrinsic information of the code bits based on
the code constreints is interleaved and fed back to the- corresponding' linear MMSE
equalizer as the priori information in the next iteration. ‘The a posteriori LLR of the
information bit is used to make hard decision at the last iteration. Note that the
extrinsic information from the MMSE equalizers and from the decoder are statisti-
cally independent at the first iteration, but become more and more correlated in the

subsequent iterations. Therefore, the improvement through iteration will diminish.

y

2.3.2 Frequency-Domain Linear MMSE Equalizer

It is assumed that perfect channel estimation is available at th‘e“receiver, or in
another word, the exact channel matrix is known to the receiver. Then, according to
the well-known MMSE formula, the frequency domain estimation S at the output of

MMSE equalizer can be obtained as

A

S = [CxxCxs)"(X - E(X)) +E(S)
= [(ACssA¥ +021)™ IACSS]H(X—‘AE(S)) ‘ |
+E(S) S \ (2.17)

12



where Cxx, Cxs and Cgg are covariance matrices, defined as Cy, = Cov(x,y) =
E(xy")— E(x)E(y*). According to Eq: (2.12), E(S) = FE(s) with the 4-th element
E(s(i)) depending on the a priori LLR L(s(%)) as

E(sG) = > k-Pls(i)=4k]

ke{+1,-1}
B 1. P[s(i) = +1]
- (=)
= tanh (@) . - (2.18)

Due to the the independence of the interleaved symbols {s(i)} and with the BPSK

assumption, the cové,riance matrix Cgs can be calculated as
Css = FCF"
= Fdiag (1 - |E(s)|?)) FH ' (2.19)
where the i-th element of |E(s)|? is | E(s(3))]?, calculated as shown in Eq. (2.18). The

a priori LLR L(s()) is updated in each iteration, so the MMSE estimator must be

recomputed for each iteration.

Once the symbol values in the frequency domain are estimated, thé time-domain

values can be obtained by performing the inverse DFT as
§ =FH§ (2.20)

At the first Turbo iteration, it is assumed that s(¢) is equally likely +1 or —1
which yields F(S) = E(s) = 0 and Cgg = I. The MMSE estimator as shown in Eq.

(2.17) can be simplified as
S = [(AA" + 21)TAJFX (2.21)

" Assume that the probability density function p[3(i)|s(¢) = k], k = 1 is Gaussian

with mean pig = E{3(i)|s(¢) = k} and variance o, = cov{3(:), 8(s)[s(¢) = k}. Thea
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posteriori LLR L(s(4)]3(2)), which is an approximation of L(s(i)|X), can be expressed

©as

 Lis(a(i)) = 1g PEOIs@) = +1]  Pls(i) = +1]
L(s(1)5(3)) i P[§(i)|8(i)=,—1]4+i P = 1]
 Le(e(@) L(s())

The extrinsic information L.(s(i)) can be calculated as

exp(—13(1) — wir1]°/02 41)

L ) -
o) =m0 = maaPlo?)
_ 138G — i 13G) — paal®
Ui2,—1 _ Ui2,+1

Let A = [(ACssA” + 02I)~'ACss]". From (2.17) and (2.20), we have

3() = uF" (A(AS — AE(S) + W) + E(S))

where u; = [0,...,0,_1 ,0,...,0]. Therefore, it can be derived that

ith

pin = w(F"AAFA™ + B(9))

J?,k =4 (FHA (Aﬁbss|s(ii=kFHAH + O'nzl) AHF) ul-H

where
d@® =[0,...,0,k — E(s(i)),0,...,0)
and

Css|s(i)=k = CO’U(S’ SlS(Z) = k) )
= Cuu+ diag(0, .., 0, 25(s()))(B(s(5)) ~ k)

o

~~
© qth

,0,...,0).

s

At the first Turbo iteration, Eq. (2.25) and (2.26) are simplified as
Bik = ku,F¥ AAf‘uiH

o2 = w; (F7A (AAT +0,°T) AHF)
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2.3.3 SISO Channel Decoder

The SISO channel decoder takes the a priori LLRs of the code bits as inpﬁt and
outputs the updated LLRs of the code bits L(c(¢)|decoding), as well as the LLRs of
the information bits L(b(i)|decoding) based upon the code constraints.

We use the log maximum a posteriori probability (Log-MAP) decoding algorithm
to calculate the a posteriori LLRs of the code bits and the information bits. The a
posteriori LLRs of the code bits can be written as [11]

o P[c(2) = +1]|decoding]
Plc(i) = —1]|decoding]

Z(sl,s)egf p[sl =5, 5111 = 3]

L(c(z)|decoding) = 1

= In

D (s s)es Pt =8, 8141 = 5]
' (2.29)
while the a posteriori LLRs of the information bits can be written as
, ) P[b(i) = +1]|decoding]
d =1
L{b(é)ldecoding) = In o1 oding]
Z:(s’,s)eU’r plsi =5, 5141 = 5]
= In L -
E(s',»s)GUl— p[sl =8,81+1 = 3]
' (2.30)

where Zl"'l and Zl“l are the sets of all state pairs s; = s’ and s;;1 = s that correspond
to the code bit c(i) = +1 and c(i) = —1, respectively. U;*! and U; ! are the sets of
all state pairs s; = s’ and s;4; = s that correspond to the information bit b(s) = +1

and b(i) = —1, respectively.

2.4 Numerical Results and Analysis

The performance of our proposed approach is evaluated through simulations. As
mentioned in sections 2.2 and 2.3,bin order to cope better with the time;varying
characteristics of the mobile channel, we partition a frame of encoded date of length M

into multiple blocks of length N for the linear equalization and then combine all blocks'
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to form a frame for the chénnel decoder. This can also improve the computationa,l
efficiency. Specifically in our simulations, M = 26 BPSK modulated symbols- are
partitioned into P; = 256 pairs of blocks of leﬁgth N = 128. Each of these blocks
‘is processed through the linear MMSE frequency—domé,in equalizer and the outputs
are combined back into a 2!¢ bit fra;ne to be fed into the deinterleaver apd the .
convolutional decoder. ‘ _ |

EXIT chart at E,/Ny = —5.2dB, where E; is the energy of the transmitted sym-
bol, is plotted in Figure 2.4. Tt illustrates the mutual information transfer characteris-
tics for the SISO decoder. Figure 2.5 presents the BER berformance of each iteration
versus Fp/Ny, where Ej is defined as the energy of the information bit. As shown
. in these figures, the output transfer information increases with each iteration, which
indicates more accurate decoding. Correspondingly, BER becomes smaller with more
iterations. | | »

Our proposed scheme is designed to deal with ISI caused by frequency selective
broadband multi-antenna channel. As for the Alamouti’s STBC adopted in this chap-
ter, it’s a system of two transmit antennas and one receive, which is lzibeled as 2 x 1.
To make comparison, the case of frequency-flat or ISI free 2 X 1 channel and the case
of frequency-selective broadband single antenna channel, labeled as 1 x 1, are also
considered. The comparison of BER performance at the fourth iteration is shown
in Figure 2.6. It is shown that our proposed algorithm can achieve comparable per-
formance to flat channel, which indicate that the proposed frequency domain Turbo
equalization with STBC over single carrier is an effective way to combat ISI. Better
performance obtained in 2 X 1 multi-antenna channel than 1 x 1 single antenna chan-

nel is resulted from the diversity gain brought by STBC.
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Figure 2.5. BER performance at different iterations.

2.5 Conclusions

A frequency-domain Turbo equalization approach is proposed for space-time block

transmission over single-carrier broadband channels. The Turbo equalization is im-
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Figure 2.6. BER comparison at the 4t iteration.

plemented through a priori information based linear MMSE 'detect(_)r, whose trans-
formation matrix is updated in each iteration acéording to the updated a priori
infbrmati’on fedback from the SISO convolutional decoder. Comparison with non-ISI
channels through simulations well demonstrates that the proposed frequency domain
turbo equalizatioﬁfor single carrier mobile systems is a promising way to combat the
distortion caused by ISI channels. Better performance with two transmit antennas
than single antenna case is achieved due to the diversity gain resulted _from STBC
transmission. Furthermore, by partitioning the frame of modulated symbols stream
into blocks, the proposed approach is able .to deal with faster time-varying mobile
channels, because it is only required that the channel should remain constant over

the period of a block.
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CHAPTER 3

REALIZATION AND CAPACITY ANALYSIS OF COOPERATIVE
COMMUNICATIONS BASED ON MULTIPLEXING
' CHARACTERISTICS

3.1 Introduction

Cooperative communication (CC) receives lots of".a,ttentions and efforts in aca-
demic research nowadays. While we are working on profound theories bf CC, we rhay
not realize that we have already been enjoying this téchnique in real life. For exam-
ple, P2P, which provides us with high speed download over Internet, is a typical CC.
technique, where a user downloads the message from source with the help of other
users who send the sourcé message to that user while they are downloading their own
messages from the source. The situation gets complicated for wireless CC (WCC),
Where cﬁannel environment is adverse. Over 30 years ago, the relay channel model,
which built the foundation for CC, came to people’s view through the papers [12,13].
Another'b milestone paper [14] was written by Thomas M. Cover et al who proved four
capacity theorems for the relay channel. The paper [15] provides a compréhensive
analysis for relay channel capacity as well as cbding schemes which consists of decode-
and-forward (DF) and compress-and-forward (CF) coding. The papers [16,17) trigger
B ‘intensive interests in user cooperation based on relay channel. Among lots of works
on user cooperation, the paper [18] presents an overview of CC, a more popular term
to réfer to user cooperatioh. An extended Work focusing on turbo code to implement
CC is studied in the paper [19]. The essence of CC is to form virtual MIMO via -

cooperation among users with single antenna and exploit the diversity provided by‘ .
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MIMO to combat the fading channel and increase reliability over communications.
Several protocols have been‘p‘roposed in papers [20,21] to realize a hfgh spatial diver-
sity gain.;A complete protocol set is presented in the paper [22], where the authors
further propose a new protocol Whibh is best among the existing protocols for the
' single-relay fading channe:‘l. At thé same time, some 'spécial cases are studied in other
papers [23,24]. In the paper [23], a.cluster model is studied to achieve highér spatial
diversity and the paper [24] investigates asynchronous space-time cooperative com- .
v muniCations for sensor émd_ robotic networks. Most models mentioned above can be
classified into oné of the four types Villusfrated in Figpre 3.1, where v(a)' is the classical
rélay model, (b) is the multiple access relay (MAR) system, (c) is the classical CC’
system and (d) is extended &ersion of CC. “S”v ,“R” and “D” stand for the source
node, the relay node and the destinatidn node, respectively. Please note that the v
relay node simply helps the 'éommunicati‘on between the source and the deStination,r
and does not have its own messages to receive. v
As revealed in Figure 3.1, the focus of typicél CC systems is on cooperation

among multiple sources, or multiple access. cooperation. Cooperation can also be

"implemented in a broadcast channel, where one source communicates with multiple

cooperating destinations. Pioneer works on capacity analysis for broadcast channels
without user cooperation can be found in works by Thomas M. Cover et al [25—
28], which build the foundation for broadcast channel analysis and introduce the
degraded Gaussian channel, a concept particular to the broadcast channél. As for
broadcast channels with cooperafion, intensive study has been done in papers [29, 30]
by Liang et al, where the authors derive the capacity region of the degraded Gaussian
relay broadcast channel and inner/outer bound of the non-degraded Gaussian relay
broadcast channel. .

All types of existing CC systems diScuSsed before hdve one thing in common, that
is, single antenna is used at all nodes, inCludihg Source, relay and destination hbdes.

We can also employ antenna array at some or all of nodes to further improve the
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. Figure 3.1. Cooperativé/ relay communication system.

system performance. A relay system with antenna arrays at the source, relay and
destination nodes, as shown in Figure 3.2, is proposed and studied in the paper [31].

In this chapter, I consider a broadcast channel with one source and two desti-

nations. The destination under better channel conditions, called the stronger desti-

| nation, serves as a relay for the othér destination, called the weaker destination. 1
propose to adopt multiple antennas at the source node. Single antenna ié still em-
ployed at both destination nodes. Thus multiple input single output (MISO) channel
exist§ between the source and each of the destination. Such a channel is referred to as
MISO cooperativefbroadcas‘g channel (CBC). I further consider MISO CBC corrupted
by the additive white Gaussian noise (AWGN), called MISO AWGN CBC, and derive
an outer bound on its capacity region.

The capacity analysis of broadcast channels is more complicated than that of the
multiple access channel, even without cooperation taken into consideration. Using
multiple antennas at the source adds to the difficulty, since MISO AWGN channel,
which corresponds to a vector Gaussian channél, is generally non-degraded. A corner
stone work for MIMO broadcast capacity analysis is done by Caire-Shamai [32] who

3 investigdte the achievable region of MIMO broadcast channel by using the “dirty-
vpaper” precoding technique [33]. An innovative way which considers the duality

~ between uplink and downlink is studied in the papers [34,35]. As for MISO CBC
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Figure 3.2. MIMO relay system.

P

: studied in thisi chapter, which is a multi-antenna broadcast chatmrlel with cooperation,
- the capacity analysis has not been done yet. In my work, the outer bound derivation
is based on the work on general single antenna relay broadcast channel given in the
paper [30]: | | |
The remaining of this chapter is organized as follows. . In section 3.2, the model
for general MISO broadcast cooperative channel is introduced and the mathematical
representation of the re‘beived signals over AWGN channels is given. The outer bound
on the capacity region of MISO AWGN CBC is addressed in section 3.3. The conclu-
sion is ‘made’ in section 3.4. The proof for the outer bound is outlined in the appendix.
Last bﬁt not least, my thanks to my wife are preseﬁted in acknowledgments section..
T hroughout this chapter, for a matrix A, diag(A) denotes the vector composed of
all diagonal elements of A. For a vector a, diag(a) denotes a diagonal matrix with a
as its diagonal elements. All vectors are column vectors except for the channel fading

vectors, which are the row vectors for simpler notations.

3.2 _ System Model

The model for general MISO CBC, where cooperation is realized between two

destinations, is illustrated in Figure 3.3. Without the loss of generality, T assume
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Figure 3.3. MISO CBC.

that the first destination is the stronger destination and thus serves as a relay for the
second destination. - |

For MISO AWGN CBC, the channel coefficients are considefed to obtain general
results. Suppose there are M antennas at the source. The received signals at two

destinations can be presented as

}/1 =h1X+W1

(3.1)
Y, =hX+hs Xy + Ws
where X = [ X, X® ... XMIT j5 the transmitted signal vector from the source,

X, is the relay signal, h; = [hi, hiz,* - , hin] (3 = 1,2) is the channel vector from
‘the source to the i-th destination, and hs is the channel from the relay to the second
destination. W; (i = 1,2) is AWGN with i.i.d.v CN (0, Ny). ‘

For Rayleigh fading, the entries in h;, hy and hz are CN/(0, &1), CN(0,&2) and
. CN(0, &;), respectively. As mentioned before, Y; is assumed to experience better
channels than Y, which indicates that £ > £&. AWGN channels with fixed channel
coefficient are equivalent to AWGN channels with fading conditioned on a realization
of channel fadings.

The power constraints are imposed and can be presented as E (|| X|?) < P for
the total transmission power from all antennas at the source, and E (| X;]?) < P, for

the relay. Let Qx be the auto correlation matrix for X and qxy, be the correlation
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vector between the source X and the relay X;. The power constraint for the source

can also be represented as trace(Qx) < P.

3.3 An Outer Bound on the Capacity Region of MISO AWGN CBC »

The information rate of the private messages from the source to the first destina-
tion and the second destination aré R, and R,, respectively. If common messages are
transmitted from the source to both destinations, the ratevié Ry. In our work, I do
notv consider common messages, and thus Ry = 0.

If the channel side information (CSI) is known both to the transmitter and the
receiver, the following théorem gii}es the corresponding (SUter bound on the capacity
region. o o ' |
Theorem 1. An outer bound on the capacity region of the MISO AWGN CBC,

denoted as C(D), conditioned on channel realization h;, hy and hg, is given by

Ri< C(momt )

ah; Qx h{’ +No
C(o) - U e . . s s
: 0<apsl Ry < min fmex C (—27%‘2—) ,log (det (I + I—IV?HQXHH))
trace(Qx)<P “ lax x, *<@aridiag(Qx) '
| | (3:2)
where diag(Qx) is the vector composed of all diagonal elements of Qx. And h, =
N b i | .
[hy h3 ], H = ! , and Q = Q- axx, (the correlation matrix of
g h, ' Q§x1 Py

XT, X,]7). Also, @ = 1—a, = 1 — ¢ and C(z) = log(1l + z) (for complex -
signals). | - ‘ |

Proof: See Appendix A for the outline of the proof. | - ]
~ Remark 1: The outer bound for general MISO CBC given in the proof is obtained
by a straightforward extension of the outer bound for general single antenna partially -
cooperative relay broadcast channel (RBC) given in the paper [30] and thus there is
no need to prove it again. \) '

Remark 2: While it is straightforward to extend the outer bound for general sin-

gle antenna partially cooperative RBC to general MISO CBC, the results for single
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antenna AWGN partially cooperative RBC in the paper [30] CAN NOT be extended
to the MISO. AWGN CBC due to the non-degradedness nature of the multi-ﬁantenna
broadcast channel. Indeed, in the paper [30], the derivation of the results for single
antenna AWGN partially coope'rative RBC is based on the equivalent degraded rep-
resentation of Y as the degraded version of a newly defined output; but there is no
way for such manipulations to work for the MISO system, which is neither degraded
nor equivalent to be degraded.

Remark 3: In the proof, I extend considerations to the C(.)mplex‘ﬁeld. _

When CSI is known oniy at the receiver (CSIR), I allocate power equally over all |
~ transmit antennas. If independénce ié required among all transmitted substreams, I
have Qx = £1 and the region given in (3.2) is reduced to:
Corollary 1. An outer bound on the capacity region of the MISO AWGN CBC with
CSIR (Qx = 41I), denoted as Ccsm’ COIldlthIled on channel reahzatlon h;, h; and
hs, is. given by

o H
oup—“hlhl
R<C (aﬂhlhffﬂvg‘

C‘c‘%m ~ | b ‘ P
OSE;JPSI R2 < min qlgi.i( - C (BTOL) log (det ( + u;;;:;o!PHHH))
laxx, il?<paPi 7
(3.3)
P
o~ <1
where Q = TR
Q£X1 P

3.4 Conclusions

An outer bound is derived in this chapter for the capacity region of MISO AWGN
cooperative broadcast channels, where the source employs an antenna array to com-
municate with two single antenna destinations and the stronger destination serves
as relay to the weaker destination. With the derived outer bound, we can analyze
the lower bound for the outage probability, based on which the diversity-multiplexing
tradeoff, defined and studied in the seminal paper [36,37], can be obtained. This has

been left to my future work. Also, I am going to consider half—duplex cooperative
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communication, which is more practical than full-duplex cooperative communication

assumed in this chapter.

26



CHAPTER,4 |

IMPLEMENTING INDOOR POSITIONING ALGORITHM VIA ZIGBEE
DEVICES

4.1 - Introduction

Indoor positioning has mahy appliéations in Smaft offices and homes, and in indus— :
trial automation and control Although it is very common to use GPS for posmomng
in the open ﬁeld wherever you are hlkmg in the mountain or driving on the highway,
it is very difficult to apply GPS inside the buildings, because the GPS signals cannot
penetrate most roofs covefing the b‘uildings.'. When wireless networks are present,
cooperative positioning, which is tovéstimate th’é location via the relative distance -

‘between two nodes, is emefging I;as _é, promisiné quickly-deployed indoor positioning‘
technology that exploits the ad-hoc network structure. Theréfofe, the relati.ve dis-
ténce between nodes plays a crucial role in cooperati\}e‘ positioning. In [38], it claims

| ‘that there are four physical variables, vi.e.‘.the received signal strength indicator (RSSI),
the ahg‘le_ of arrival (AOA), the time of arrival (TOA) and the time-distance of ar-
rival (TDOA), to determine the reIatIve distance or range measurements. In most
rapp:licv,ations of inddor positioning, RSSI '6btained by me’asuring the received wireless
signal and TOA obtained by detecting the ultra—sound waves are quite often used to
obtain the locatlons of nodes. , »

RSSI rather than TOA is studied in this chapter to obtain the relative distance
sincé it does not alway>s>be guaranteed' that the line-of-sight path ex_is.tsv between
nodes in ri‘ndoor environments. There are three algorithms to computer 'the. cOofdi¥
nates with the help of these relative distance data. One algorithni is _calle(I classical

Multidimensional Scaling (MDS), a technique that captures the intercorrelation of
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high dimensional data at low dimension. MDS has been found in a variety of appli-
cations, not limited to computer science or electrical engineering areas [39]. However,
for both non-iterative and iterative methods, the classical MDS is sub-optimal be-
vca_use it does not consider the channel statistics and usually measurements of longer
distance have larger errors [40]. Another algorithm is called Maximum Likelihood
Estimation(MLE) wh{ch can achieve the optimum estimation for indoor positioning
based on the received signal power, whose distribution is assumed to be known [41].
Due to its computational complexity fo obtain closed-form solutions, gradient meth-
ods are usually used to iteratively find the global maximum. However, these methods
are sensitive to the initial values. We combine MDS and MLE methods by applying
MDS to obtain coarse initial values for the MLE iterations. - The initial values ob-
tained by MDS are expected with certain confidence to be able to converge to the
global maximumn. | A -

After introducing the technology of indoor positioning algorithms, we shbuld find
a protocol to implement them. As a popular and standafd wireless protocol, ZigBee
[42,43] is designed as a low-cost, low-power and low-data rate networking technology
for Industrial-Scientific-Medical(ISM)-band radio that welcomes even the simplest
home and industrial end devices into wireless“ connectivity. In this work, we set up
an indoor positioning system using ZigBee devices. The related work has been done
in [44], where the authors claimed to have built a model for monitoring the positions of
mobile nodes in an indoor environment according to IEEE 802.15.4 (ZigBee) by using
RSSI. But the authors did not point out how to coinbatlthe in-building signal féding.
A practical ZigBee model for indoor positioning system is provided in [45], which
emplbyed both the RSSI and TOA to compensate each other to get the accurate
distance for indoor positioning. However, it did not solve how to determine the _
location if there is no line-of-sight path.

Furthermore, ZigBee technology can determine crucial parameters, such as path
loss exponent (e.g.,n,v,étc.) in a classical statistical log-normal’indoor channel model

" [46] which is adopted in our simulations. In order to provide convincing simulation
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results, our channel model used in the simulation is‘ based on real measurements
obtained by our lab’s ZigBee system evaluation devices, ':and we also ’developved our
own ZigBee codes for real-time indoor channel RSSI measurements.

The whole project goes like this: The first step is to find an effective and effi-.
cient algbrithm via simulations. Then, some crucial parameters in chanhel model to
support simulations are obtained from thé real measurerhents reported by ZigBee de-

“vices. Finally, a hardware ZigBee testbed is bui.lt to evaluate the indoor positioning
~ algorithms, softwareéénd hardwares. To respond to this procedure, the remaining of
this chapter is organized as follows; In the section 4.2, three positioning algofithms
vin‘cluding the prOpoéed algorithm in this chapter are-d'escribed and compared . How
to evaluate the goodness of an algorithm is presented in the section 4.3. - After a
classmal statistical log-normal indoor channel model is mtroduced some real mea-
surements from ZigBee devices for indoor channel model is shown in the sectlon 4.4,
In the section 4.6, a testbed is described iﬁ detail. Simulation results are provided in
the section 4.5. Last but not least, fﬁturé work and conclusion are addressed in the

- section 4.7.

4.2 Positioning Algorithms

The cooperative positioning problem is to estimate the coordinates z;Y, i=1 of
the N network nodes, given imperfect knowledge of pair-wise range measurements

and the coordinates of the reference nodes.

4.2.1 Classical-MDS

This algorithm is derived from the classical multidimensional scaling algorithm

in [40]. First of all, we need the true Euclidean distances between N nodes:

vd,-j‘= d(z;,z;) = \/(acz - xj)T(x{ —z;),4,j=1...N (4.1)

29



The squared distance matrix can be defined as D = [d]. In order to get the solution
from this matrix by singular value decomposition (SVD), we need to define H as
H =T —ee”/N, where € is an N-dimensional all-ones vector. Next, a matrix B’ is

introduced for solving the equation:
B'=—-HDH =2HXTXH = (V2XH)T(V2XH).
Then, the floating coordinates can be obtained as solutions to the following problem:
mjn 18~ Y7} o @)

where ||.||r is the Frobenius norm. The solution of (4.2) is given by

X = diag(\?, ..., A\gHUT V2 (4.3)
where /\i/ 2. ,)\gz and U are from SVD decomposition of B’ as:

B = Udiag(\}?, ..., \HUT

Although this classical MDS would involve much computation mainly due to SVD
operation in a large dimension network where there many nodes for position estima-
tion, its performance is not bad for small scale estimation. As a rule of thumb, sméll
scale refers to the number of nodes to be estimated being less than 6. It enlightens
us that the classical MDS is a good initial estimation because it is a linear estimation
and it does not need the initial value on its own. Figure 4.1 shows the positioning
results using the classical MDS. In this figure, the red dots are the real nodes loca-
tions, black diamonds are the mean value of the estimated nodes locations, red dash
circles are the Cramér-Rao bound and black ellipses are the variance of the estimated
nodes locations. The blue squares denote the locations of khown nodes. The number
marked on the figure is the average of all estimation variances. Cramér-Rao bound is
the most famous lower bound for, unbiased variance [47]. It can be used a benchmark
to help us evaluate the potential of an estimator.

As well known, CR bound is by far prevailing boundary for MVUE compared

with other variance bounds [48]. In [49], there is a perfect derivation of CR bound
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for 1ndoor posmonlng Here, a very brief denvatlon is provided accordlng to [48,49].

A Flsher Matrlx can be obtained by:

1 Lx Iy . ) L o
10)=| ~ v S (49
Ixy ' Iyy
We can find the varia;ice of x and y by: var(f;) > [I_l(ﬁ)]” and apply the equation

-for inverse of matrix as follow:

-1

AU (A= UD-V)"' —(V — DU~14)~!
vV D (U - AV-ID)' (D -VAU)
[50] Therefore, from (4.4)(4.5), we can get: |

(4.5)

var(f;) > [[(O)) |
= [(Ixx - Ixnyy_IIicyT)_l]ii . ‘ (4.6)
Ty — Lo Lo y) s k‘

 CR-bound provide a frontier of most estimation for indoor positioning as well
as some interesting conclusions, among which one of thé ‘most important is that
ever/1 more unknown nodes can still improve the accuracy of indoor estimation by

cooperative way. |
The classical MDS solution is floating and can not point out the location of nodes
directly. We proposé an approach which contains three steps to convert the floating

solution to fix solution. Details are described in the section 4.3.

4.2.2 Iterative-MDS

Besides the classical MDS, we can use the iterative approach to solve the. MDS
problem as well as Eq. (4.2). Firstly, a cost function defined in [39] is as follows:
§= S ¥ -dyr, 47)
1<ign 1<j< <'n
where d;; is the actual Euclidean distance as defined in (4.1) and the rg-) ‘is measured

distance at ¢-th iteration.
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Figure 4.1. Estimated by classical-MDS.

S can be rewritten as

S=zn:5'l+c
i=1

(4.8)

where S; is the local cost function and c is a constant which has nothing to do with

cost function. According to [51], S; can be expressed as

Sifw) = e +17°(X) = 2p(X).

Define T;(z,y) as:

/

Ti(zi, 4:) = 7 + n°(X) — 2p(X,Y)

where p(X,Y) is
N Ty o
pX,Y)=) —dJ (s — 25)" (% — y5)
—1 g
G

According to Cuachy-Schwarz inequality, it is obtained that

dij(X)dis (V) (@i — 2,)" (% — ;)
di(Y) T dij(X)

di‘(X) =
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I Set the lccation as Random Number I

l Calculate b, IG——

Reach' the Set Number

Figure 4.2. Procedure of iterative-MDS algorithm. -

Obviously, in order to find Ti(z,y), the S; needs to be minimized by a majorizing

algorithm:
0T (i, )
8.’.61'

We can derive a location of node i through (4.13)

-0 /j (4.13)

e = a(dii + X*0F), (4.14)
where, a is N ~ 1 and b; is obtained iteratively.
The detailed procedure is shown in Figure 4.2.
4.2.3 Maximum Likelihood Estimation

In this section, we reintroduce the main pbint of the paper [41] about the Maxi-
mum Likelihood formulation for indoor positioning without considering the threshold.

Here, we have a likelihood function L.

L= HH{exp[ (p”’dBp’*’ﬂ}, (4.15)

=1 j#i
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Figure 4.3. Estimated by MLE.

where p; ; represents the power received by device ¢ that was transmitted from device

j and p; ; is the poétulated received power. The ML coordinates are given by

X,Y =arg r)x;u}g [f (zk, v )] (4.16)
' a2 & In? d?
f (@r,e) = ggl; S | (4.17)

where,

a= 10ﬁ/(ln(10)0d3)

We can use the iterativepmet.hods, say conjugate gradient or Newtoh—Raphson it-
eration [48], to solve (4.17). MLE is a very powerful estimator which provides near
CR-bound estimation for indoor positioning using the proper initial estimation. How-
- ever, like everything has two sides, MLE has its own drawback. For instance, it is
sensitive to initial estimated values. Figure 4.3 shows the localization results using
the MLE with random initial guess. You may see that MDS alone or MLE with ran-
dom initial bvalue alone works not very well. We should figure out a new and better

algorithm for indoor positioning.
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Figure 4.4. Estimated by combination algorithm.

4.2.4  Combination Algorithm

- We combine the above algorithms for better performance, i.e. the MDS is used to
obtain the initial values for the MLE. In the implementation; we divide the unknown
nodes into groups. With the reference nodes, each group is applied the classical MDS,
which does not need any initial values. This approach can ease the cbmputation of
performing SVD on large B’. The coordinates estimated using MDS are fed to the
MLE as the initial guess. |

4.3 Evaluations . ‘

Almost every paper on indoor positionihg needs to find a standard to evaluate
their algorithm in order to claim their results. Most of them prefer to select or design
some fix points to be reference points [52-54]. However, which points are selected or
how those points are selected can affect the final conclusions very much. Actually, in
a real indoor radio propagation environment, it is very difficult to define a standard -

statistics fix point distribution to be accepted by other researchers. So the theories
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Figure 4.5. Position error.

or ‘algorithms are not very convincing if they are based on the particular fix point
model. In some caseé, we just care the structure of the nodes. It is a task for us to
find an easy, fast, and objective approach to evaluate indoor positioning algorithms.

We proposed a quick way to carry out the evaluation by obtaining the Root
Mean Square Error (RMSE) of estimated distance. The procedure of that RMSE
evaluation is that we calculate the floating solution by SVD again to get the distance
distribution matrix. Compared with direct position error, RMSE of distance provides
a quick evaluation without losing the key information although it is not a direct way.
Figure 4.6 shows the RMSE of distance and Figure 4.5 shows the direct position
error. We observe that they look very similar in shape though the values at y-axis
are different. However, some people do not like this indirect evaluation because they
want t(; get some accurate benchmark.

The challenge of comparing the floating solution lies in the issue of topology. In
most of existing works, the authors use some fix or knownvpoiynts as their evaluation’s
anchor or reference points. In this proposal, we proposed another innovative evalua-

tion method without using the fix or known points so that we can improve efficiency.
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Figure 4.7. Original nodes location.

This evaluation includes three steps. Firstly, we obtain the floating solution by SVD
or by iteration and find the mass centric point of original location and calculated
location by caléulating the mean value of x and y coordinator. After we adjust their

mass centric point to original point, we get the Figure 4.7 and Figure 4.8.
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Figure 4.9. After rotating.

In the second step, we connect each point with the original point and find their
angle and calculate the average angle.’ By comparing the two average angles, we get

the angle difference to be a rotation angle. See Figure 4.9.
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Figure 4.10. After rotating and flipping.

Finally, in the third step, we check whether it needs the mirror ﬂipping. In some
cases, we do not need to flip the floating solution but in other cases, we must flip
them. See Figure 4.10. |

Comparing the Figure 4.10 and Figure 4.7, we find that they look almost the same,
which indicates the the floating solution is extremely accurate and this is because the

floating solution is obtained without any noise and interference. We also know that
| this innovative evaluation can provide us a quick answer for the similarity between

the original location and solved location.

4.4 Channel Model

This section is focusing on the impleméntation of indoor positioning by ZigBee
devices. There are a lot of statistical channel models, such as Okumura Model [55] and
Hata Model [56}, etc. Here are two famous channel. The one is the TOA channel:Let
T;; be the measured TOA between nodes i and j in seconds. Assume that/ T,; is

Gaussian distributed, i.e. ‘ |
T;5 ~ N(dij/c,0%), (4.18)
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where c is the speed of light and o2 is a constant which does nbt:vary with d, ;, the

distanée between nodes ¢ and j. Then, the MLE based on TOA is given by
' ' N-1 N - -
f = arg min Z Z (cT;; — dij)? ‘ (4.19)

. i=1 j=it+1 .

The other is LOG-NORMAL channel: We adopt a log-normal distribution channel

model [57], by assuming that there are plenty of objects between two nodes and

considering central limit argument. Among all cases, the log-nomal channel is the

hardest. - So, the log-normal is foc‘used‘, in this thesis. A very classical statistical

channel model in [46] was presented as follows :

P;(dBm) ~ N(P,;(dBm),0}g)

.P”(dBm) = Pg(dBm) - lOnploglg(d,-j/do) (420)

where P, is the mean value of received decibel power corresponding to a specific
distance d;; and o? is the variance of degradation. Py and dy are the reference power
and distance respectively. n,, called pass loss exponent, is a crucial parameter which
will be discussed in detail later. It is not very hard to get the estimation d\ij of real‘

distance dij by the maximum likelihood estimator:
dij = do10(Po=P)/(10my) (4.21)

Define X, = P;; — P, then X, ~ N(0, 5?). Rewrite the (4.21), and we can get:

~

%

X,[dB] = 10nlog(@) — 10nlog(—=) C (4.22)
. d() ’ dO
di; = d;;10%/(10m) (4.23)

Equation (4.23) is a basic mathematic descripﬁon for model used in this work. Al-
though the range of n,, can be found in many textbooks [58], we need a specific value
of n, to support convincing simulations. |

ZigBee devices provide a good platform to obtain the indoor wireless channel

measurements and thus we use the ZigBee devices as fundamental hardware devices
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- for indoor positioning to estimate distance between the tranémittér and the receiver
based on the received signal power, since the received.signal strength indicator (RSSI)
can be linearly related to a ZigBee parameter, the link quality indioator (LQI). For
example, using the Jennic JN5139 module, - - ’

i16RSST = ((u8LQI * (880000000/255))/10000000) — 98 (4.24)

where, 116 and u8 denote 16-bit integer and 8—bit' unsigned integer respectively, in
the C programming language. According to (4 24) power levels below about -101
dBm and above -14 dBm are not dlfferentlated The accurate range is checked from ,
-98 dBm to -10 dBm. In reahty, the LQI is a coarse and quantized 1nd1cator, and
the localization accuracy is greatly deteriorated by the harsh indoor channel condi-
tions due to walls, irregular room shapes, and other obstacles. Sophisticated ZigBee
codes are required for LQI with unreliable range measurements, 'yet its complexity
is restricted in ofder to fit the éimple ZigBee 'proﬁle;. For indoor wireless chonnel '
measurement, we have tested a 20m x 20m hall many times. The results are listed as
“a table in Figure 4.11, where LQI_A to LQID are LQI Values measured at the same
specified distance. The variation in the values are due tovthe indoor shadowing. The |
probablhtles of LQI_A to LQI.D are 0.35,0.35,0.2 and 0.1. So the average LQI (in

the same row) is calculated as:

LQI =0.35%LQI4+0.35% LQIg + 0.2 % LQIo + 0.1 % LQIp - (4.25)

According to (4.23),(4.24) and (4.25), n,=3.5767 is obtamed by selectlng distance

Im and 2m to calculate the n, as follows:

- ((159.3 + (830000000,/255))/10000000) — 98
— ((128.1 * (880000000/255)) /16000000) — 98
np = (pl — p2)./10./logio(2/1)
As shown in Figure 4. 12 the red curvelbased on (4.23), (4.24) and (4.25) is a good

match w1th the black curve of actually measured indoor LQI.
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LOT Distance LOI_A LQI_B LI C LQI_D
165.9 0.5 168 182 174 156
159.3 1 162 156 162 156
141.5 1.5 144 144 138 132
128.1 2 126 ) 132 120 138
111.9 3 108 114 120 162
105.9 3.5 102 188 114 . 96
90.6 4 i 90 30 35 84
83.4 5 84 54 78 90
3.5 5 72 78 72 66
72.6 7 72 72 78 56
65.7 8 (13 72 &0 54
65.4 9 66 72 60 72
61.5 10 56 6 [34) 54
56.1 11 80 80 48 66
51.3 12 54 54 54 48
47,4 13 48 48 42 54
44 .7 14 42 48 42 48
38.7 15 35 42 36 42
Figure 4.11. LQI measurements.
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Figure 4.12. Distance vs LQI.

4.5 Numerical Results and Analysis

Now, we have built a convincing channel model based on real measurements. With
that channel model and an innovative evaluation approach proposed by us, we can

conduct some research to get some significant conclusions to direct our future work.

v
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Figure 4.13. Distance error versus channel variance.

In Simulation One (Figurev4.13), the z-axis is channel variance and y-axis is the
distance error. We may see that it is very steep in the first part and quite flat in
the second part. This means the distance error is very sensitive to channel variance.
Whatever channel measurement you use, such as UWB [59], Ultra-sonic [60] and radio
signal, if you can not guarantee the accuracy of the measurement, you can not obtain
the accurate position whatever advanced algorithms yoil employ. 7

The definition of z-axis and y-axis for Figure 4.14 are the same as in Svimulation
One Figure 4.13. The red curve is the performance of Iterative-MDS algorithm, and-
blue curve is the performance of the classical-MDS algorithm. We may see that
the classical-MDS algorithm is a little be.tter than the iterative-MDS in the steep
part and fhey are very close in the flat part. Therefore, although the classical-
MDS performs better than the iterative-MDS, considering the algorithm complexity,

we choose Iterative-MDS in practice to avoid large dimension matrix decomposition
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Figure 4.14. Comparison of classical-MDS and iterative-MDS.

needed in the classical-MDS. Besides, the iterative-MDS can be applied in many
real-time systems. _ v '4

The estimation performance of all algorithms is compared in Figure 4.15. It
shéws that as the number of unknown nodes increases, on average, the MDS outper-
forms the MLE with random initial values. The proposed combination algorithm, i.e.
- MDSMLE, works well for the indoor environments, as its estimation performance is

close to the CR bpund.

4.6 Testbed

We developed a ZigBee testbed for indoor positioﬁing experiment. See Figure 4.16.
The program running in laptop computer is coded by Visual C++- to verify positioning
algorithms. The red square marks the running window and details are shown in
Figure 4.17. The window that displays the LQI data sent from ZigBee coordinator
is highlighted by a black oval. Green square denotes the ZigBee coordinator and
ZibBee end nodes are marked vby blue circles. All LQI data from ZigBee coordinator go
through the serial cable and reach the laptop computer. See vthe yellow circle. Laptop
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Figure 4.15. Comparison of positioning algorithms.

computer plays a role as a central processor and monitor. The ZigBee teétbed is
running in the lab as shown in Figure 4_.18.‘ The testbed consisté of an ad-hoc network
of the ZigBee coordinator and end nodes marked by the réd circles. The co‘érdinator is
connected with a laptop corhputer which can display the calculated relative positions
in real-time (Figure 4.17). In its first phase, the cooperative algorithm is centrdlized
and installed in the laptop. The ZigBee coordinator collects the LQIs among _network
nodes and sends them to the laptorp.r In later phases, the cooperative algorithm will
be 'Jimplemented in thé coordinator equipped with ZigBee design-in modules and be
distributed to mesh nodes with ZigBee chipset reference designs. 7

In addition to evaluating the algorithms mentioned in this chabter, this testbed
can provide an ideal platform to verify and cdmpare other indoor positioning algo-
rithms. Moreover, it has paved the road-to create a real industrial product fhr indoor

positioning via ZigBee devices.
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Figure 4.17. Screen of testbed.

4.7 Conclusions and Future Work

We developed an indoor positioning system that uses wireless ZigBee devices. It
implements the cooperative localization algorithm and uses the RSSI as node pair-

wise range measurement.
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- Figure 4.18. Testbed is running.:

Using the testbed, the LQIs of the network were measured in several indoor -en-
vironments. The measurement data were used to examine the lognormal channel
model, and calculate model parameters for each particular indoor environment. We
proposed a cooperative localization algorithm that combines MDS with MLE for op-
timal performance. In our future work, we will develop the reai—time aspect of the
sysfem to estimate node positions based on measurement data, and more accurate

positiohing algorithm to the network.
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CHAPTER 5

MMSE COOPERATIVE POSITIONING ALGORITHM IN WIRELESS
- NETWORKS

5.1 Introduction

‘ Positibning via GPS is also quite challenging in some hostile environments where
the GPS signais could be jammed. So, ciuite extensive work has been done to study
non-GPS positioning methods to locate a node in a wireless network. There are two
classes of non-GPS positioning methods: non-cooperative methods or cooperative
methods. In nbn—cooperati_ve methods, the position of an individual node is esti-
mated without taking into rcorilsideration the informa_ﬁion related to other nodes. A
traditional non—cooperative‘method that can be traced back to ancient times is to
locate an unknown node using its distance with three anchor nodes. The obtained
estimated positions can be poliéhed using fuzzy mathematics as proposed in [61]. In
cooperative methods, the position of any node is estimated_ based on the complete in-
formation concefning all nodes. Obviously, the cooperative position estimator makes
the best use of all available information and thus is superior to the non-cooperative
estimator. Svo, we focus our study on cooperative positioning approaches..

Estimating positions baséd on Multi-Dimension-Scaling (MDS) techniques [39)] is
a well known cooperative positioning method. MDS captures the intercorrelation of
- high dimensional data at low dimension. It has many applicationsf‘not only in the
areas of ‘computer science .and electrical ehgineeriﬁg but also in a variety of other
areas, such as chemical modeling, politiéal science, etc. In MDS positioning method, .
the coordinates of all ixnkndwn positions are solved as the least square solutioné

to an overdetermined equation set formed using all distances between each pair of
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nodes. The singular value decomposition (SVD) is commonly used to obtain the MDS
solutions. Details of solving MDS via SVD can be found in our previous work [62].
Another very popular cooperative positioning method is the Maximum Likelihood
" Estimation (MLE) estimator which has been studied extensively in [41,49,63,64]. An
ohline program can be found in [65] as a supplement to these works. It has been shown _
- in these works that MLE is an asymptotic unblased estimation that is asymptotically
efficient since its variance is close to the Cramer—Rao bound (CRB). Due to the
complicated likelihood expression, no analytical formulas can be established for the ~
maximizer of the likelihood funcf,ion, so the MLE position estimator has to be solved
iteratively via numerical methods, such as tfie conjugate gradient or the Newton-
Raphson technique [66]. However, since this is hot a convex optimization problem,
it is not guaranteed that global maximizer can be achieVed-starting,With any initial
estimation [67]. Details are described in our previous work [62].

-One thing common to MDS and MLE is that they are claséical estimators and
do not take into consideration the a priori distribution bof the true positions. Better |
estimators can be obtained via Bayesian estimation by treating the true positiohs
\, as random unknownAparameters distributed according to a priori Probability Den-
sity Function (PDF)‘. This motivates our search for Bayesian cooperative" positioning
algorithmsk. In this' work, we proposed a_cooperative position estimator that mini-
mizes the Bayesian mean squared error (MSE). The proposed estimator is thus called
MMSE cooperative position estimator. | '

The positioning algorithm based on the Extended Kalman Filter (EKF) [48] also
belong to Bayesian estimators. Some variations of the extended Kalman method can
" be found in [68]. While the EKF estimators are applied to track the position of a
single moving node using the updated state information, our MMSE estimator is used
to locate multlple nodes in a cooperative way. |

Detailed derivation for the proposed MMSE estlmator is prov1ded in thls work.
Its performance is thoroughly studied in terms of the bias, variance and MSE, and is

compared with the performance of MLE and MDS, two most popular existing position
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estimators introduced previously. The CRB is also computed and used to evaluate
the MMSE estimatvor’s performance. We also proposed several variations of the basic
MMSE estimator to improve performance. For wireless networks of a large number
of nodes, the proposed MMSE cooperative estimator can be integrated with other
estimators, such as MLE, to achieve excellent performance at low computation cost.
This chapter is organized as follows. The system model, especially the channel
model, is described in the segtion 5.2.‘ A very classical channel model is adopted and
its important parameters are obtained based on real measurements. In the section
5.4, the proposed MMSE cooperative positioning algorithm is derived and studied.
Based on study in the section 5.4, several variations of the original MMSE estimator
are proposed in the section 5.5. The superior performance of the proposed MMSE
estimator and its variations is further verified by the simulation results presented
in the section 5.6. Future work and conclusion of this chapter are addressed in the

‘section 5.7.

5.2 System Model

‘Consider a wireless network of N unknown nodes and M anchor nodes. The posi-
tion for any unknown node 4, 1 <i < N, is described by its coordinates (z;,y;). The
power degradation between any pair of nodes is observed to estimate the coordinates
of unknown nddes. v

Let P;; denote the power loss between the node i and the node j, whose distance
is denoted as d;;. P;; usually varies for the same value of d;;, therefore it is treated
as random. As in [57], we adopt the classical log-normal distribution [46], which is
based on the aséumption that there are ’plenty of objécts between two nodes and is

thus justified by the central limit theorem. Thus, we have
P;j(dB) ~ N (P;(dB),03p) (5.1)

where P;;(dB) is the expectation corresponding to the specific d;; and the variance 025

keeps the same for any distance. Suppose the average power degradation at distance
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dy is PO(dB). P, and dy are called the reference power and distance respectively.
According to [46]; we have ' |

0

where n,, is the path loss exponent.
After suffering laborious field tests, n,=3.5767 is acQuired eventually. Details can
be found in our previous work [62]. It is also noted that the model (5.2) matches the

field measurements very well.

5.3 MAP Cooperative Positioning

Depéhding on different cost functions, the Bayesian estimators consist of two
- major estimators, one of ‘which is MAP, the other is MMSE, discussed by following
next section. |

It is not very hard to prove that famous MLE is equivalent to MAP. The prbof is

given as follows:

Proof -‘
MAP = max(PosteriorPDF)

= max(f(6/P)]

d2;

N 7
1L, H]<z exP<§ln2 d; )
ij

= max a2,
[ f TN, Hj<iexP(%l"2#>d0
ij

— Cipap max [Hﬁi Tjiexp <§ln2§i)]
= max (Hﬁ_—l H;-«-éxp (31”2%)]

= max(-LikelihoodPDF )

= MLE

(5.3)

) -1
. . 2
where, Cy,qp is a constant value and equals to [ S ST Tl s exp (—g—hﬂ%) de]
. . ij
u
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Since the MLE is intensively studied by others nbw, we may jump over the MAP

- in this thesis.

5.4 MMSE Cooperatiye Positioning
5.4.1 Basics
In general, for Bayesian estimators, the mean square error (MSE) between un-
known random parameter X and its vestimation‘ X is defined as
MSE = E[(X — X)?, (5.4)

where the expectation is taken with respect to both X and X. MSE defined above
is also referred to as Bayesian MSE in [48] to distinguish from the MSE of classical
estimatdrs, denoted as MSE(X) and defined as | '
MSE(X) = E[(X - X)?|Xx], - ~ (55)
where the expectation is taken with respect to X Itis easy to see that MSE =
E[MSE(X)].
It is well established that, given the a priori distribution for X, the conditional
mean of X conditioned on the given observation sample Y minimizes the MSE among -
all estimators, including linear and nonlinear estimators [48]. That is, the minimum

MSE (MMSE) estimator for X, denoted as XMMSE? is
XMMSE = E[XIY]- (5-6)

Obviously, the MMSE estimator is a Bayesian estimator.

5.4.2 MMSE Cooperative Position Estimator

Let 6; = (z;,1;) and its estimate is @; = (Z;, ). Then the MSE for the unknown

vector parameter 8 = (6,,--- ,8y) is defined as
MSE = = El(z — )° + (v — %)’} (57)
i=1
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We need to find (&1,491, -, &n, Jn) to minimize the total MSE. Since Z; is inde-
pendent from gj; for ahy 1 and estimator,s' for different node ¢ are independent erm
éach other, it is obvious that minimizing the tdtal MSE is equivalent to minimize
E[(z — 2;)%] and E[(y — :)? respectively for any i. The observation is'all power
degradation measurements. According to the previous pait, it is straightforward to
~ conclude that by particularizing the general formula (5.6) to our poSitioning problem,

we can obtain the MMSE coordinates estimator (£; mmse, Ji, MMSE) expressed as

e

Zimmse = E[z:|P] i=1,--- N - (58)

ﬁi,MMSE = E[y;|P] ’
where P represents the collection of power degradations between each pair of N |
unknown nodes and between each unknown node and the M a,nchor nodes, which can
be mathematicaﬂy expressed as ‘ 7
P=(Pl<i<Ni+1<j<N+M), (5.9)
with the node j with j = N+ 1,.-- M referring to one of the anchor nodeé. ’

The MMSE position estimation in (5.8) is a cooperative method, since the esti-
mated position for any individual unkﬁgwn'nod'e is obtained based on information’
concerning other unknown nodes. In contrast, a non-cooperative version of (5.8)4

~would be only conditioned on power degré,dations between the current node and the
anchor nodes, i.e. P with j = N +1,--¢, N + M and thus would have nothing to
do with any other unknown nodes. | ' '

As in [69] and.[70], it is assumed that a hOde appears randomly with equal prob-
ability at any position within a given area and the possible posjtion Of any node is
independent from that of other nodes. This means that the a priori distribution for @
is assumed ’to be independent uniforr_n distribution. Suppose the node ¢ may a’vppear

within a rectangular box centered at (O;,, Ozy) of 24; long along x-axis and 2B; long
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along y—axis. Then, for x; € (Ow — Ai, O’i:c +Ai), Y; € (Oiy - Bi; Oiy + Bi), 1< < N,
the a priori PDF f(8) is expressed as ‘

f(8) = f(z,y, -, 2N,uN)
= f(z)f(w) - f@n)f(yn) - (310)
= H’fil ﬁ; Hf—-l 2%3;
As derived in Appendix B.1, with the_ independent uniform a priori distribution
(5.10) and the log-normal distribution for power .degradation (5.1), the MMSE coop-
“erative position estimator for node i, 1 < i < N, is given as »
f...fziﬁNﬁMexp< ln2—l> df---dfy

. Sy S i=1j=i+l
Ti,MMSE = N N+M

ST II exp (—gln”—?i) d0,---dfy
Sy 8, =1 j=i+1 ij .
N N+M s (5.11)
f fyl exp (—% In —'l) d@,---dOy
” Sn i=1 ]—Z+] N ij
Yi, MMSE = N NiM s
S o (100%) a0
N 1 =1 j=i i

where In is the natural logarithm and

/ . d6; = / / « dridys. | (5.12)

S; is the integral region for 8; = (z;,y;), expressed as

Z; € (Oig — Ai, Oz + Aj)

Si = (xi,yi) ‘ . (5-13)
Y € (Oiy - Bi, Oz‘y + Bz)
10n, 2
_ (UdB 1n10> . (5.14)
and - y
R P\ Ve 3

Obviously, d7; = (z; — z;)% + (y: — ;)% The notation d;; is used for the expression in
(5.15) because (5.15) can be interpreted as the maximum likelihood estimation for d;;

which maximizes the likelihood distribution f(P;;|d;;). When (5.11) is implemented
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in actual wireless networks, P;; is reported by the wireless_nodes and (5.15) is used to
compute dij. For computer simulations, since P” contributes to MMSE cooperative
position estimation (5.11) only through d;;, once (zi,4), i = 1,--- , N are randomly

generated, Ciij can be obtained according to

qu;j = dijloﬁd'%c. ‘ | o ‘ (516)
where G ~ N(0,1) is a standard Gaussian random variable. See Appendix B.2 for
derivation. l

The expression (5.11) looks intimidatiﬁg since it involves complicated multiple |
definite integrals which have no closed-form solutions. We are able to compute these

integrals via numerical methods. One of the popular numerical methods for comput-

ing cemplicated definite integrals is the Simpon quadrature method [66]. However,

.- Simpon quadrature function in Matlab can only deal with up to three fold multiple

integral. Since each node has two parameters to be estimate, Simpon quadrature
method is limited to the special case with N = 1, that is, single node positioning,.
For multiple nodes positioning (N > 1), Monte Carlo method [66] is adopted.

A nen—cooperative version of the proposed MMSE estimator can be obtained by
- forcing N = 1 and applying the estimator (5.11) with N = 1to each of vthe unknown
nodes respectively while ignoring all other un‘known nodesT That is, (i,, ;) is simply
based on P;; with j = N +1,--- , N+ M (M anchor nodes). In this way, though the
advantages of cooperative methods are lost, the estimator is still optimum in MSE
sense among all non-coope’rative estimators. Thus, the performance of some existing
- iterative positioniﬁg approaches, such as MLE, can be improved if the estimates
achieved via non-cooperative version of the proposed algorithm are used as initial
positions. An example is the MMSE-MLE mentioned abo%re and to be presented

later.
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Table 5.1

Symbol Explanation for Figures 5.1~5.3

- Symbol

Meaning

blue square

anchor nodes

.red dot

the true position

blue asterisk

estimated position

black diamond

the mean of the estimated

positions for a true position

black ellipse‘

uncertainty ellipse '

red ellipse

CRB ellipse

5.4.3 Performance and Properties

Without loss of generality, from now on, we focus on the simplest special case of

the a priori PDF (5.10) where all unknown nodes take position independently and

uniformly within the same square area of unit length centered at (1/2,1/2), that is,

(Oiz, Oiy) = (1/2,1/2) and A; = B; = 1/2 for any ¢. There is one anchor node at each

of the four corners. This model is also employed in [40, 63]. Actually, many practical

situations, such as storage rooms, play grounds and offices, fit in this square model.

Please note that all coordinates share the same unit, therefore it is unnecessary to

assign a specific unit to the coordinates. Now, the MMSE estimator (5.11) is reduced *

to

ij

N+M o Zd?j
exp | —3In = d@y---dOy

{"'!%H [1 exp( 1112’—1>(1491 -d0y

L TUT e (—g1 ) doy-aoy

56

N N+M
S 11 11 eXP(—sl ? ”)del A0y
3 ol joi |
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(a) Center Position (z,7) = (0.5,0.5) (b) Corner Position (,4) = (0.2,0.9)
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(c) Side Position (%, §) = (0.1,0.5)

Figure 5.1. MMSE estimator for different true positions. See Table
5.1 for symbol explanations. :

for any i from 1 to N, where o a,nd.tfz-j are expressed in (5.14) and (5.15) respectively,
and

S={(z;,4:)|0<2; <1,0< y; < 1}.

Since MSE has the meaning of average Asquared distance error, to indicate the
average distance error instead, the root mean squared error (RMSE), defined as
RMSE v—,—— VMSE, is often used in practice as a measure for goodness of the esti-
mator. To gain more insights into the behavior of the proposed MMSE estimator,

we also study how different true positions contribute differently to the average MSE.
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. RMSE(0.2,0.9)20.13

1

(b) MLE (with random initial estima-

tion)

i mﬁss(a,z,oio;:o.zr

(c) MDS

Figure 5.2. Comparison of MMSE, MLE and MDS position estimators
for the side position (Z,7) = (0.2,0.9). See Table 5.1 for symbol

explanations.
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Fxgure 5.3. MMSE cooperatlve pos1t10n estimator. See Table 5.1 for ‘
symbol explanations.

This property can be characterized by RMSE( 7), the RMSE for a particular true

position (%, %), which is expressed as

RMSE(Z, ) = \E[Z - 52 + (7 - 91@.9)], (5.18)

where the expectation is taken only with respect to (a:c, 7).

While RMSE measures the overall pqrformance of an estimat'or,' the standard
deViation, the square root of the variance; is also of interest since it tells the “stability”
“of an estimator. In practical positioning applications, the wireless channel usually
does :not change fast énough for one to obtain different observations, thus taking
the mean of different estimated positions as the final estimate is not quite practical.
Under such circumstances, among estimators that achieve approximately the samé
\RMSE, an estimator with a smaller standard deviation is more desirable. For unbiased
estimators, the RMSE equals the standard deviation. And the well known Cramér-
Rao ‘bound‘ (CRB) expresses a lower bound on the standard deviation or the RMSE of |
unbiased estimators. Detailed derivation for CRB expression for positién estimatoré

can be found in‘[49].
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Figureé 5.1, 5.2 and 5.3 to be presentéd in the following illustrate the properties
of the proposed MMSE estimator. The symbols used in these figures are summarized
in Table 5.1. ‘ |

In Figure5.1, the performance of the MMSE estimator for different true positions
is illustrated. A \‘posit‘ion close to the a priori center, near a corner and besides a side -
are called a center position, a corner position and a side position, respectively. We
study 'RMSE(JE, ) for these ‘thre‘e different types of positions via simulations. As an
example, in Figure5.1, three position)s are i)iéked at the a priori center (0.5,0.5), near
~ the corner‘(0.2,0.9) and near a side (0.1, 0.5).

Firstly,. as shoi&n in Figure5.1, RMSE of the MMSE. estimator is smaller than the
CRB, the lower bound on the RMSE of all unbiased estimator. This is generally true

for any N as verified by the simulation results shown later. Since the existing popular
position estimators, such as MLE and MDS, can only achievé near-CRB performance,
the CRB is virtually considered as a lifnit for the performance of a positioning esti-
mator. With the proposed MMSE estimator, CRB is not an unreachable limit any
longer. It is also seen that the uncertainty ellipsé (black dashed ellipse) is quite small,
even smaller than CRB ellipse (red dashed ellipse). This indicates that MMSE esti-
mator is quite stable, which makes the MMSE positioning algorithm fnore attractive.
It is obvious that MMSE is a biased estimator, but it achieves a delicate trade-off
between the bias and the variance and obtain position estimates even better than the
CRB. ‘

It is also shown in Figure5.1 that the RMSE for the center positions is smaller than
that for those positions further away from the a priori center. This is expected since
MMSE generally works better when true value gets closer to the expectation [48].
Furthermore, among the positions far away from the a priori center, the RMSE for
corner positions is smaller than that for side positions. Intuitive explanations are the
MMSE estimator for a corner position is inherently restricted into a smaller area than

that for a side position and is thus subjeét to smaller possible errors.



The MMSE estimator is compared with MLE and MDS for the same corner posi-
tion (£,7) = (0.2, 0.9) in Figuré 5.2,‘ where Figure 5.1(b) is the same as Figure 5.1(b)
and copied here for convenience. An obvious ahd significant difference of MMSE es-
timator from MLE and MDS is that MMSE estimated positions always fall within
the possible range fqr the unknown position, however MLE or MDS estimated posi-
tions are very likely to violate the‘po,ssiblbe Iposition Arange.. In other words, MMSE
estimated positions_aré always valid for the given restriéﬁions oﬁ the positions, while
MLE or MDS estimated positions are not guaranteed to be valid and thus sometimes
are apparently ridiculous. Actually, the fact that MMSE estimated value.can never
be out of range can be easily prdved using the general formula (5.6); and such a prop-
erty of MMSE estimator pdrtia,lly explains Why MSE of MMSE estimator 1s smaller
than other éstimators. Please note that though for the example (i, 7) = ,(0‘2’ 0.9),
RMSE(Z, §) of MMSE is smaller than that of MLE and MDS, we are not trying to say
that RMSE(Z, ) of MMSE is the smallest for any (Z,9). Actually, for true positions
near the center, RMSE of ‘MMSE is smaller than that of MLE, but for true positions
_away frorh_the center, RMSE of MMSE is bigger than.that of MLE. MMSE achieves |

the minimum MSE in an average sense. In terms of the standard deviation, the MLE
and MDS are obviously worse than CRB and much worse than MMSE.

To have a complete picture about how the MMSE estimator performs, 500 po-
sitions are randomly picked as the true positions for N = 1 case and the result is
shown in Figure 5.3, where as before’, each true position is represented by a red dot
and different estimated posiﬁions for each true position are shown as blue asterisk and
their means are shown as black diamonds. It is noticed thaﬁ though the true positions
are uniformly distributed among the whole square, the estimatéd positions tend to
fall within a squeezed-box shape area as covered by the blue or the black diamonds.
This means that the bias of MMSE estimator is much larger for those side positions.
This observation motivates two variations of the MMSE estimator, MMSE-MAP and

' MMSE-Double, which will be presented in the next section (Section 5.5.2). -
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5.5 Variations of MMSE Cooperative Positioning Algorithms

Based on studies on the proposed MMSE cooperative pbsitioning algorithm in the

previous section, we proposed in this section three variations of the driginal MMSE

 estimator.

5.5.1 MMSE-Big

According to the section 5.4.3, better RMSE is achieved by the original MMSE
estimator for nodes that are closer to the a priori center. This enlightened the thought
that if we could “push” all nodes closer to the center then the overall performance
may be improved. Since the a priori PDF for the true positions (named actual a priori
PDF) is fixed, we can not actually push the nodes for them to be closer to the center.
HoWever, we can consider a larger square for the a priori PDF used for computing the
conditional mean (named virtual a priori PDF). This equivalently brings all nodes
appear relatively closer to the center. Speciﬁcally, as sketched in Figure 5.4., though
the true position (z,y) is distributed according to uniform distribution within an 1
by 1 square (solid line), thé uniform distribution within a larger 1 + 2d by 1 + 2d
square (dashed line) is used instead for computing integrals for the conditional mean.
The resulting MMSE estimator is named MMSE-Big estimator, wh_ich is obtained
according to (5.11) with

Si={(ziy) —d <z <1+d,—d <y < 1+d},Vi.

An empirical value for d is one quarter of the side léngth. In our case, d = 0.1.
MMSE-Big improves the RMSE performance (as shown by the simulation results
later) without any extra computation burden. It is noted that in the original MMSE

estimator, the actual a priori PDF is the same as the virtual a priori PDF.
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0.1) (1.1)

0,0) (103 -

Figure 5.4. MMSE-Big estimator uses the larger sciuare (dashed line)
for the virtual a priori PDF, while the smaller square (solid line) is
for the actual a priori PDF.

5.5.2 MMSE-Mapping and MMSE-Double

Figureb.3 in the section 5.4.3 revealed that though the true positions are scattered
all over the whole square area, the positions estimated by the original MMSE esti-
mator fall within a squeezed-box shape area. Based on this observation, we proposed
to map the MMSE estimated position fo a new position so that the area covered
by the estimated positions after mapping can overlap with the area covered by the
true positions as much as possible. Intuitively, this would bring the mean estimated
positions closer to the true position and thus reduce the bias and the RMSE. The
obtained estimator is named MMSE-Mapping.

The mapping is illustrated in Figure 5.5, where the square, the original area where
all nodes appear, is divided into four regions marked by 1 to 4, and the circumcircle is
introduced for mapping. P at (Z, §) is the original MMSE estimated position and P*

- at (£*,7*) is the new estimated position after mapping. An auxiliary line, connecting
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Figure 5.5. Proposed mapping.

the center point @ at (1/2,1/2) and P, intersects the square at P; and the circumcircle

at P,. We choose P* so that~
d(P*,Q) _ d(P27 Q) )
APQ) AP, Q) (519)

where d(A, B) stands for the distance between the point A and the point B. Ob-

viously, d(P,, @) = v/2/2, the radius of the circumcircle. Let k be the slope of the

51
auxiliary line, thus k = ‘Z—_% The coordinates of Py, (zp,,yp, ), which are needed to

2
compute d( Py, @), are

( (3+ %,1) if P, is in the region 1
(0,1 - &) i P, is in the region 2
(zp,yp) = 2o o (5.20)
| (1,3+5) if P isin the region 3
| (53— 2,0) if Py is in the region 4

According to the inapping rule in (5.19), it is easy to derive that

| 2 d(PQ)
=5+ %:d(PI,Q) cos b ’ (5.21)
g =1+ 289 sing

2 d(P,Q)

where, d(P, Q) = /(& = 1212 + (§ = 1/2)%, d(P1, Q) = \/zr, — 1/ + (yr, — 122

with (2p,, yp,) obtained according to (5.20), and # = argtan gz—:%, which is the angle
2

of the auxiliary line.
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Performance can be furthér improved if we apply the MMSE estimation"method
again, assuming that each true position is.unifdrmly distributed within a new smaller
"square whose center is the corresponding MMSE-Mapping estimator, i.e. the esti-
matéd position after mvapping.‘ Empirically, the length of the smaller squaré can
be chose as one fifth of the length of the original squéfe. The .obtained new esti-
mator is named MMSEDouble, since. we apply MMSE twicé. To put it ptecisely,
the MMSE-Double estimator is obtained using (5.11), where A; = B; = 0.2 and
(Oiz, Ogy) = (£7,97) with (&}, ;) being obtained according to (5.21) (the mapping
step) from the origiﬁal MMSE estimatorr(ﬁ:i, 9:). The MMSE-Double works like a
turbo engine. After t/llle first time MMSE is implemented, mapping is cafried out to
tune up the estimated positions. These new estimated positions are used to determine
the centers of smaller square areés so that MMSE can be implemented again with the

- new virtual a priori PDF.

5.5.3 MMSE-MLE

The well known MLE positioning estimator, which is solved iteratively, is quite
sensitive to the initial estimation. Oh one hand, it is a disaster if the initial estimation
is randomly generatéd as shown in Figufe 5.6(a) ; on the other hand, if the perfect
initial estimation, i.e. the true. position, is used, MLE works extremely well as shown
in Figure 5.6(b). True pdsitions are unknown and to be estimated, so MLE with

_perfect initial estimation is an ideal and impractical situation. Fortunately, a very
good initial estimation can be obtained quickly by ‘applying the proposed. MMSE
algorithm to each of the nodes respec_tivély in a non-cooperative fashion, as mentioned .
in the section 5:4.2. The obtained MMSE initial estimation is then fed into the
iterative algorithm for MLE. The resulting estimator is then named MMSE-MLE.
To improve the accuracy of ihitial eStimator, we caﬁ implement certain variation
of MMSE, such as MMSE-Big (Section 5.5.1), instead of the original MMSE. The
performance of MMSE-MLE using MMSE-Big is shown in Figure 5.6(c). It can
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(a) MLE with Random Initial Estima- (b) MLE with Perfect Initial Estimation

tion

! RMSE=0.08

(c) MLE with MMSE-Big Initial Estima-
tion (MMSE-MLE)

Figure 5.6. MMSE-MLE performs as well as MLE with perfect initial
estimation (IV = 20). Same symbols as given in Table 5.1 are used.

be seen that MMSE-MLE performs as well as MLE with perfect initial estimation.
In [62], we also proposed to use MDS estimator as the initial estimation for MLE
(MDS-MLE). Since MDS is inferior to MMSE, it can be expected that MDS-MLE

works worse than MMSE-MLE as verified by the simulation results shown in the next

Compared with MMSE, MMSE-MLE requires less computation at the cost of

worse MSE performance. It is observed that the performance advantage of MMSE
over other estimators diminishes fast as the size of the network NV increases. Therefore,

MMSE-MLE is preferable for large size nefworks, considering that the benefits of
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MMSE are not worth its huge computation burd(_én:, and MMSE—MLE is able tor
achieve near CRB “performance. Fdr small size hetworké, -the computation speed
| difference between MMSE and MMSE-MLE is not too inuéh, thus MMSE is chosen
for purpose 6f better performance. - |

As a summary, we compare all MMSE and its variations with existing popular
algorithms MLE, MDS in terms of the standard déviation (STD) and the RMSE.
The results for N =1 are listed in Tab. 5.2 where “MLE” refers to the regular MLE
with random initial estimation and “MLE-Ideal” refers to 'i;he MLE algorithm with
the true “position‘s as the peiféct initial estimation, which is the ideal case for MLE.
The CRB is also provided for cofnpafison. For unbiased estimators, RMSE é‘mdr STD
are equal and thus sometimes are not discriminated in some works. However, RMSE
and STD represent different meanings and are different for biased estimators. For T\
poéitio‘ning problems, whﬂe RMSE reflects f,he average distance error between the
true and the estimated positions, STD shows how stable an estimator can be. For
overall eva.l’uation of estimator performance, RMSE is more significant thaﬁ STD. The
: STD‘of MLE-Ideal is clbse to CRB, the lower bqund for STD of unbiased estimators.
In the sense of RMSE, since MMSE is better than CRB, MMSE are better than any

unbiased estimator.

5.6 Numerical Results and Analysis

In Figure5.7 and Figure 5.8, the RMSE and the standard deviation for N = 5 ~ 7
are respectively shown for the proposed MMSE cooperative estimator (MMSE), its
variation MMSE-Big, MDS, MLE with random initial estimation (MLE), MLE with
MDS used as the initial estimation (MDS—MLE) CRB is also provided. -It can be
seen that MMSE-Big brings obvious performance improvement over MMSE for any
N and they both are better than fhe CRB. |

Roughly speaking, the power dégradation between two nodes are inversely pro--

portional to the distance between them. While the MMSE and MLE are based on
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Table 5.2
Comparison of Different Estimators

Estimator RMSE | STD
MDS 0.2571 | 0.2505
MLE 0.2031 | 0.1989

MDS-MLE 0.1959 | 0.192

MLE-Ideal 0.1928 | 0.188

~ CRB=0.1811
MMSE 0.1515 | 0.0832
MMSE-Mapping | 0.142 | 0.1271
MMSE-Big 0.1344 | 0.0965
MMSE-Double | 0.1329 | 0.1115

MLE : MLE with random initial estimation

MLE-Ideal : MLE with true positions as initial estimation

0.3 ,
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Figure 5.7. RMSE of different algorithns.
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Figure 5.9. RMSE of different algorithms for large size networks.

the power degradation and thus incur small errors for small distance,i MDS is based

on the distance and brings larger error to small distance. This reveals the underlying

reason for the bad performance of MDS.
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For wireless networks of large size‘, we can partition the whole group of nodes
into smaller group and apply our MMSE estimator without losing much pefformance
compared to applying MMSE to the whole large size network. Another solution
for large size network is MMSE-MLE, which sacrifices perwformance for ¢omputation
complexity. As showﬁ in Figure 5.9, MMSE-MLE achieves near CRB performance,

which is.the best performance MLE can achieve for any possible initial estimation.

5.7 Conclusions and Future Work

For the sake of application of Bayesian estimation in wireless networks in coop-
erative way, it is obligated to find a simple way to calculate the multidimensional
integration of Bayes1an MMSE This is a our future work for MMSE.

To the best of our knowledge, this chapter is the first to present an outline of
MMSE estimation for nodes cooperative positioning in wireless network . Startmg
from a channel veriﬁed by real measurement, this chapter addresses a complete deriva-
tion for MMSE estlmatlon and other variation versions. Armed with those theoretical
analysis and equatlons we find some numerical solutions to realize MMSE. Further-
more, from this chapter, we may acquire a thorough point of view for MDS,MLE,
MAP, MMSE and CR-bound for node cooperative positioning in wireless network.
Considering the preeminent performance of MMSE, VMMSE must have been taking
ﬁp more and more share for nodes coopératfve positioning in wireless network appli-

cations.
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CHAPTER 6

ITERATIVE COOPERATIVE POSITION_ING ALGORITHM IN WIRELESS
NETWORKS

6.1 Introduction

From the previous chapter, it is known that MMSE cooperative positioning algo-
rithm has distinct advantages over the classical positioning algorithms such as MDS or
MLE. Howéver, it is not practical to apply MMSE cooperative positioning to networks
of a large number of unknown nodes due to high computation burden of calculating
the multiple integrals present in its formulas Eq. (5.11). In this chapter, we propose.
an adaptive iterative cooperative (AIC) positioning algorithm, which enables us to
efficiently get an approximate solution to the exact MMSE position estimator. The
accuracy is almost the same as that of the results obtained be directly calculating
the multiple integrals via numerical methbds, while the computation cost is highly
‘decreased so that the proposed method is practical for applications in réal world.

After the detailed scheme of MMSE-AIC is presented, the ‘perfo‘rman'ce analysis
and numerical results are also provided in this chapter. Finally, all of the positioning
algorithms studied in previbus three chapters are put together and compared side-
by-side. | ' |

This chapter is organized as follows. The system model is described in the section
6.2. In the section 6.3, the proposed MMSE-AIC cooperative positioning algorithm is
described in detail. The superior ‘perforrnance of the pro'poséd MMSE-AIC estimatof
is further verified by the numerical results with Some analysis presented in the section
6.4. Overall comparisbn of all positioning_algorithms is presented in the section 6.5.

_ Conclusion of this chapter is addressed in the section 6.6.
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Figure 6.1. Uniform fixed distribution for N = 36 unknown nodes.

6.2 System Model

The system model given in previous two chapters is also adopted in this chapter
with only one difference, which is the distribution of unknown nodes. In previous
chapters, a random diStributioﬁ of unknown nodes are consided. In this chapter, given
the number of unknown nodes, they take posjtioné uniformly within the considered
area. Unlike in chapter 5 where the numbér of unknown nodes is small, in this
chapter we are dealing with large size wireless networks, where it is not practical
and not necessary to evaluate the performance using random distribution. Therefore
as in most 0f current ‘works, we evaluate our estimator using uniformly distributed
unknown nodes. _ | » |

The uniform distribution for 36 unknown nodes, as well as the anchor nodes, is
- illustrated in Figure 6.1, where the unknown nodes are red diamonds. The complete
explanation for different symbols has been given in Tab. 5.1. ;

Last but not least, we would like to point out that we do not have to acquire

all pair-wise measurements for our system model. In other words, our cooperative
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positioning algorithm can work well with partial .pair-wise' measurements hardly at -
any cost of accuracy.

v

6.3 Adaptive Iterative MMSE Cooperative Positioning

The proposed MMSE-AIC algbrithm’ is carried out as follow. Firstly, the unknown
nbde,position is estimated solely based on the anchor“nodes. Secondly, for each of the
unknown nodes, we re-estimate its position assuming that all other unknown nodes
are anchor nodes. This step should be carried out er all unknowri nodes. This secohd |
step, which applies from the first to the last unknpwh nodes, is repeated iteratiyely"
until c',oxrlver'gence when RMSE stops decreasing. o

One of our important findings is that the number of needed iteration can be
determined as a function of £he»number of unknowh nodes. Suppose the nurhber of
unknown nodes is V. Empirically, the iteration number is 3v/N. For example, when
N =25, 3v/25 ~ 15 iterations need to be run before convergence.

As defined previously, for MMSE estimation, a virtual a priori PDF is assumed
for the possible area within which an unknown node may appear. And we‘ assume
uniform random distribution within a square as this virtual a priori PDF. During
the iteration, the size of this square, or the edge length of the square, is not fixed
but adaptively changed as‘ the iterations proceed. This is why our algorithm is an
adaptive method. The edge length of the square is referfed to as step size for our
iterative algorithm. How to select iterative step size for different iterations is crucial
~ toour algorithm. And it is a very delicate job. If choosing a big area for next iteration
of estimation, we speed up the iteration but lose the accuracy. And if small area is
used, the convergence speed is slowed down and higher accuracy is not guaranteed
to be achieved either. The empirical step size is the reciprocal of iteration numbers
for the first several iterations and keeps the reciprocal of root square of number of

unknown nodes, i.e. 1/v' N, for the remaining iterations. Take the previous example
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Figure 6.2. The bound of MMSE-AIC positioning.

of N = 25. The step sizes from the first iteration are 1/1,1/2,1/3,1/4,1/5,1/5... of

- one unit.

6.4 Numerical Results and 'Analysis

We propose two standards to evaluate the performance of MMSE-AIC: MMSE
upper bound obtained using random distribution (MMSE-Random) and MMSE lower
bound obtained using center unknown nodes (MMSE-Center). The bounds are shown
in Figure6.2. For the case of single unl;nown node, the starting point of the MMSE-
Random is obtained as the worst case for MMSE (random distribution) and the
starting point of the MMSE-Center is obtained as the best case (center position).
Then each of the two curves is extended to the case of more nodes by multiplying the
CRB curve by the MMSE-over-CRB ratio corresponding to single unknown node.

In Figure6.3, we can see that RMSE is decreasing with more iterations. At each
iteration, the RMSE does not keep decreasing as the number of nodes increases. This
is because MMSE based algorithm is sensitive to the position of unknown nodes,

which is the essential characteristics of MMSE estimators.
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Figure 6.3. RMSE of MMSE-AIC positioning algorithm at different iterations.

6.5 ~Overall Corhpai'ison of Different Positioning Algorithms

As mentloned in the sectlon 6.2, for large size networks, the uniform fixed distri-
. bution should be used if we want to make a fair comparison among all algorithms.
Ilustration of estimated positions for the same group of uniform distributed unknown
nodes using different algorit;hms is- shown in Fig 6.4. Thelr RMSE performance is pre-
sented in Figure6.5. '

Based on Figure6.5, we can reach the conclusions about hovs} well different algo-

rithms work in terms of complexity and RMSE, as listed in the following Tab. 6.1.

6.6 Conclusions

~ In this chaptei_r, we provide a pratical solution for MMSE cooperative positioning.
The numerical results verifies that, according to RMSE criterion, MMSE-AIC outper-
forrris any other cooperative positioning algorithms, such as MDS and MLE, and-it
beats the original solution to MMSE, which directly calculates multiple integrals, in

terms of complexity. LMoreover, it is a good éxample to enlighten us how to solve the
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bols as given in Table 5.1 are used.
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Table 6.1
Overall Comparison of Different Positioning Algorithlns
Algorithm Compl_exity RMSE
MDS 7 low acceptable
MLE medium | vefy poor
‘MDS-MLE low medium good
MMSE-MLE medium better
MLE-Ideal low medium better
"MMSE-AIC | upper medium best

intimidating mathematical multiple integrals and obtain perfect engineering results

in practice.

77



CHAPTER 7

SUMMARY
7.1 Primary Contributions

The contributions accomplished by our work presented in this dissertation can be
éummarized as follows:

1. Turbo equalization with Alamounti codes working in frequency domain: We
are the first research team to propose and study this schéme that applies turbo
equalization in frequency domain and integrates it with Alamounti codes based on
multiple (usually tWo) antennas. Most other similar research works focus on the time
.domain and single antenna. On one “h'a'nd, frequency domain turbo equalization we
-proposed can be used for single carrier and combat intef—symbol—interferencé (ISI)
better than the time domain equalization. On the other hand, adoption of antenna
érray for Alamounti code brings further performance enhancement over single antenna
rs'ystém.

2. A new channel cdpacity bound for MISO cooperative communications: The
channel capacity bound for MIMO cooperative communications is a well recognized .
world—wide_difﬁcult problem. So far, no one, including some fafnous professors, can
provide a complete solution for this problem. We start with a simpler but crucial
problem, that is, the capacity bound for MISO cooperative communications. To ex-
plore this problem is one of the unavoidable steps on the way to solve the final problem
of MIMO co‘ope»ra.tive communications. We derive our own vca;.)acity outer bound for
MISO cooperative communications. We are very glad to make some conrtribution’ to
‘solve that world-wide difficult problem even though we can not obtain the corripléte |

solutions. 5
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3. An improved classical positioning algorithm MDS-MLE to be implemented on
a Zig-bee hardware platform: MLE is an existing classical positioning method pro-
posed by a prestigious research team, hbwever we find that there is a problem with
initialization of the original algorithm. Through the independent research and hard
work, we propose to combine another classical positioning algorithm MDS with MLE
to fix the problem. Furthermore, we built a real wireless system using Zig-bee devices
and implement the proposed MDS-MLE positioning algorithm on this platform. We
chose Zig-bee devices because it is suitable for our positioning algorithm due to many
of its own features, such as low-cost, flexible applications. No one else has ever used
Zig-bee system for indoor positioning.

4. An MMSE positioning algorithm that can break through the CR bound : The
CR bound is the final frontier for classical positioning algorithm. There are a large
number of published papers where new i'deasv, schemes or algorithms are proposed
simply to get close to the CR bound. In 6ur work, we propose and derive an MMSE
algorithm, which is a new positioning algorithm based on the Bayesian theory. The
proposed MMSE positioning algorithm breaks through the CR bound, which can be
proved theoretically and verified by simulation results. An issue with the proposed
MMSE algorithm is that the computation burden for calculating multiple integrals
via numerical methods gets unaffordable when the number of unknown nodes is very
large. This motivates our next step which is to find the a practical solution for MMSE-
algorithm.

5. A practical solution for MMSE algorithm: As mentioned in the item 4, we
need to a practical solution for MMSE algorithm, that is, to find a computation
efficient method to obtain MMSE estimated positions. With this motivation, we
make further study on MMSE and propose the innovative MMSE Adaptive Iterative
Cooperative (AIC) method, which works iteratively as a turbo engine without losing
much accuracy. Without any exaggeration, this MMSE-AIC is the best positioning

algorithm among existing positioning algorithm in term of RMSE.
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7.2 Future Work

For each of the topics mentioned above, there is still some work left to be done in
the future:

1. Turbo‘ equalization with Alamounti codes working in frequency domain: Al-
though simulations have proved this scheme is better than others, there is a small
gap betWeen the simulation results and theory. Our future work on this topic is to
do more researéh work to prove the gap is caused by the simulation system error.

‘ 2. A new channel capacity bound for MISO cooperative communications: We have

just obtained the outer capacity bound for MISO cooperative communications. It is
still a long way to fulfill our final target that is to derive the channel capacity bound
for MIMO cooperative communications. ‘

3. An improved classical positioning algorithm MDS-MLE to be implemented on a
Zig-bee hardware platform: We should try to use other wireless system platforms than
Zig-bee system or explore some new features of Zig-bee wireless system platform to
be exploited by the positioning algorithm. Wé should keep an eye on the development
of wireless hardware maturefacured by various factories to seek suitable platforms for
positioning algorithm .

4. An MMSE positioning algorithm that can break through the CR bound : Though
closed-form expression for MMSE position estimator is an impossible mission today,
we never give up the hope that, using more advanced mathematics , it is possible
to obtain the close-form expression, or at least, to obtain certain approximate close-
form expressions, for MMSE positioning algorithm. Our future work is to explore
newly developed mathematics theory and tools to solve the multiple integrals problem
existing in MMSE positioning algorithm. '

5. A practical solution for MMSE algorithm: Through simulation and logic anal-
ysis, we provide the upper and lower bound for this practical solution. In the future,

we should do more mathematic Work to derive stricter upper and lower bounds.
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Appendix A

Outline of Proof for Theorem 1

The paper [30] gives an outer bound on the capacity regionkof general single antenna
partially cooperative RBC in terms of Ry, R, Rs. Examination of its proof reveals
that it is stralghtforward to extend this theorem to the general MISO CBC. As
mentioned before I am only interested in the private messages, that is Ry =
Hence, I can conclude that the capacity region of a general MISO CBC is outer
bounded by the region with (R, Rs) that satisfies

Ry < min{I(U;Y1|X1), I(X; Y, Ya|U, X1)}
RZ < mln{I(U,Xl,)@),I(U,K,EIXl),I(X,le,}/g,U,,Xl)}

(A1)

for some joint distribution p(u, v, z1, x)p(y1, Y2, |X, 1) that satisfies two Markov chain
conditions: X; — U — X and X; — U’ — X. The auxiliary random variables U
and U’ are bounded in cardinality by || < |X|-|X|+ 2 and |U'| < |X] - |X] + 2,
respectively.

In the ‘following, I present the derivation of (3.2) (Theorem 1) by specializing
(A.1) to AWGN channel for any given channel realization. |

I derive the expression for the capacity outer bound region for any fixed Qx and
qxx,. The union of the obtained regions over all valid Qx and axx, gives us the

entire outer bound as given in Theorem 1 (3.2).
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'A.1 Proof of outer bound for Ry in‘Theorem 1

Let us start with 1(X; Y], Y2|U, X;), where

. I(Xa}/hYZ‘UyXl) =h (Y17Y2|U7 Xl) —h (Y'layélxv U7X1)
“h (%, BIU, X)) — h (Y, VI, X))

(A2)

= I(X; Y3, Y2l Xy),

* where (1a) follows from the fact that conditioned on (X1, X), (Yl, Ya) is independent |
of U. Thus, the bound for R; in (A.1) becomes | |

Ry <min{I(U; 1] X), I(X; Y1, Yal X1)}. (A3)

Although the specific expression for the maximal I(X; Y}, Y| X)) can be obtained as

shown later, it is not necessary here. In fact,

I(X; Y, Yol X0) = I(U YAlX0) = b (V1,YalXa) = h (¥, YalX, X0) — (h (V3]X0) = h (M[U", X))
| = h(Y1]X1) + h (Ya|Yy, X)) — h (W), Wa) — h (Y1l X)) + h (V3 |U’
— h(YalYi, X) +h (VU X) — h (W3, W)
) 2 h (Y2|YI,X1’ X) + h (YllUI, XI,X) —h (Wl’ W2)
= h(W2) +h (W) — h (W, W) '
= 0,
. , (A4)
which means that I(X; Y7, Y2|X;) > I(U’; 1| X1). So, (A.3) becomes
Ry < I(U'; Vi) Xy). o (A.5)
Next, I consider I(U’; Y;|X;) where
I(U; YilX) = h(YilX2) — h (U, X)) (A.6)

The techniques used in the following are quite similar to the ones to deal with
I(U;Y1]|X31) in the paper [30}, but it gets a little more .complicated due to the vector

nature of the transmitted sighal and the involvement of the channel coefficients.
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For the second item in (A.6), there is *

h(|U', X1) <h (1)
~ =h (h1 X + W) (A7)
<log (7reh1 Qxhf + 7reN0)
and . o
h (VU7 Xy) > h (KU, X0, X)
= h (W) » (A-8)
= log (meNy)

Combining (A.7) and (A.8), it is established that there exists a € [0, 1] such that
h(Vi|U’, X1) = log (meah; Qxhi! + meNg) (A.9)

For the first item in (A.6), there is

h(Vi|X,) >hMWU’, X)) (A.10)

= log (reah; Qxhf + meNp)
Also,

h(Vi|X:) =h(mX+WilX)
< log (meVar (1 X + W1]X1))
= log (meVar (h; X|X;) + meNg)
— log (e [E (| X[?) — E (JE (,X]X1) )] + 7eNp)
= log (7re [thxh{’ — yEx, (E (X|X1) E (X|X1)H) h{f] + ﬂeNg)

= log (me [hQxh¥ — h; Qexx,)h¥] + meNy) ,
| (A.11)

where E (E (X]X1)E (leXl)H) is the auto correlation matrix of the random vector

E (X]X;) and thus, according to the notation definition given before, can be notated

as Qe(x|x,)-

From (A.10) and (A.11), I have

h1Qxhf’ — hiQexxhi > ahQxhy, (A.12)
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and thus
&h; Qxh# > h; Qg x,)hf’ (g) 0, (A.13)
where (d) is obvious since h;Qgxx;)hf’ = Ex, (|[E(h1X|X;)[*). So, there exists
@ € [0,1] such that ‘ '
hi Qexpxybhy = pahiQxhy, (A.14)

which leads to
h; [Qexix;) — $3Qx] by’ = 0. (A.15)

Since (A.15) is true for any given hy, it follows that
Qex(x;) = PaQx. (A.16)

Plugging (A.16) (or (A.14)) into (A.11), I obtain
h(Y1]X1) < log (me(a + a)h Qxhyf’ + meN) . (A.17)

Then plugging (A.17) and (A.9) into (A.6), I obtain

I{U Y1) X1) < log (me(a + ap)h;Qxh# + meNy) — log (meah; Qxhf + meN)

_ dph1 Qx hi

= log (1 * ahQxhf+N;
_ aph1 Qxh¥

- ah1 Qxh¥ + Ny :
(A.18)

From (A.5) and (A.18), I obtained

Gy Qxchi’ ) . (A.19)

R, <C
! (aththI + No

A.2 Proof of outer bound for R; in Theorem 1
Let us start with I(U, X;;Ys), where

I(U7 X1;;Y3)=h (Yz) ~h (Y2|U, Xl) _ (A.20)
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For the first item in (A.20), there is

h(Yz) = h(heX +hsX; + Wa)
- < log (me [Var (hyX + h3X1) + No])

| n# _ A2l
<log [ me[ hy hs | ?IX b 2* + meNy ( — )
axx; 5 h3

= log (ﬂeﬂzéﬁf + 7reN0)

Qx gxx,

o . It is obvious that Q is the corre-
axx; P 1 ‘

whereﬁ2=[h2 h3]and6=[

lation matrix of [X7, X;]7.

For the second item in (A.20), there is

h (}/2|U7 Xl) > h (}/2|U, Xlax)

| (A.22)
=h (Wg) = log (’H'CN()) .

Remark: During my derivation, I found that I could introduce § € [0,1] and give a -
tighter expression h (Y2|U, X1) > log (mef(1 — @a)h,Qxh¥ + 7reN0). However, since |
¢ is not used by any other items in the bounds, to obtain the union of the complete
bound over £ is the same to minimize h (Y3|U, X;) over £, and I have £ = 0 and
h (Y2|U, X1) > log (meNy), which can actually be obtained via a simpler argument as
shown in (A.22).

Plugging (A.21) and (A.22) into (A.20), I obtain

I{U,X;Y2) <log (reﬁgéﬁf + 7reN0> — log (reNp)

Ze(per)

(A.23)

Since gxx1 has nothing to do with R;, the expression above for Ry can be maxi-

mized over valid qxx;. Let gxx, ; be the ¢-th element of gxx; . Then

laxx,4? = |E (XOX7) 2 = |E (X{E (XO)X7)) |2
<E(IX1]) E (IE (XD1X3) 1?) - (A
< P Qex xu)lisi ‘
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where [Qg(x|x,)]i; is the i-th diagonal element of QE(X| X1)- Plugging (A.16) into the -
~ expression above, I have

laxx, 3% < ¢@P1[Qx]i,£, : (A.25)

or in the vector form

jaxx,? < paPidisg (Qx), (A.26)

where diag (Qx) is the vector composed of all diagonal elements of Qx.

Using (A.26), I can maximize the expression in {A.23) and obtain

IU, Xy Ya) < o c[DQbf (A.27)
) ) > m .
b ax.x,:lax x, [2<@aPidiag(Qx) No . '

" Next, I'consider I(U; i, Y| X1) and I(X; Y3, Ya|U”, X1). I obtain

< h(%, ¥3]X,) — h (Y1, Y3|U, X3, X)

(A.28)
=h (Yl,Y2|X1) —h (Yl,Ylel,X)
= I(X; Y3, Yal X1),
.and A
IX; Y, YolU', X)) < I(X; Y3, Yal X)) - (A29)

where the same arguments as those for I(X;Y1,Y2|U, X;) in (A.2) are used, since it
is obvious that U and U’ are reciprocal.
Since

I(X; Y7, Ya|Xy) = I(X; by X + Wi, hyX + b X, + Wa | X;)

=I(X; X + W, h,X + WhlX;) - (A.30)-.
= I(X; Y| X1) |
> h; 441 S . .
where Y = X+ and I(X; Y|X;) stands for the mutual information,
h2 h2
conditioned on Xj, of a 2 x 2 MIMO system with channel matrix H= ' | Ican
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obtain /(X; Y], Y2|X1) in similar ways to ca_lculaté unconditional MIMO capacity by
applying singular value decomposition (SVD) to‘IA-’I.

Let H = UﬁEfJVg be the SVD of H where Y5 is a diagonal matrix with o;
being the i-th diagonal element, then transmission from X to ? is equivalent to

transmission over a number of parallel channels (2 parallel channels in my case) as
(Ug?)i = 0, (VEX), +w, (i=1,2), (A31)

where (-)i'is the i-th entry of the specified vector. It is easy to obtain that w;

(i = 1,2) is still i.i.d, CN(0, Ny). For maximal mutual information, VgX needs to

have independent entries, which means its correlation matrix Qyrx = Vg QxVgis
H

diagonal. Let E be its i-th diagonal element, then
Quax = VEQx Vg = diag(P,, P). ‘ (A.32)

Also, let QE(Vgx[ 1) be the correlation matrix of E (VgX|X1), then

H
Qe(vrxyx) =E (E (vEx|x,) E(VEXIX)) )
= VIE (E (X|X,) E (X|X1)”) Vg
= VEQexix) Vi
@ pavEQxVy
@) Gadiag(Py, By)

(A.33)

where (2b) is obtained by plugging (A.16) and (2¢) is obtained by plugging (A.32).
So,
1%:¥1%) =55, 1((VEX) 5 (UEY) 1x0)

. ;;2 H 2\ _ H 2
<32 log (1 L P E(vE),P)-E(E((VEX), 1x) )))
_ Z?=1 log (1 n [0'1-[2(13;-\,;@&15,;)) (A.34)

No
= log (T1Z, 1 + L=23eR)

=4 log (det (I + I%V“?ITIQXIEH ))

where (2d) follows from the fact that 1+M1\%’—"|2—p" is the eigenvalue of I+1—7V“‘f—aﬁQxﬁH .
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Appendix B

MMSE Cooperative Positioning
B.1 Derivation for MMSE Cooperative Position Estimator (5.11)

Recalling form the section 5.4.2 that 8 = (zy,7, - ,x}N,yN). s'tands‘ for all un-
known coordinates to be estimated, and P = (P;;|1 < i < N,i+1 < j < N+ M) repre-
sents the collection of power degradations between each pair of N unknown nodes and
between each unknown node and the M anchor nodes. Anode j, j = N+1,--- ,N+M
refers to one of the M anchor nodes.

Let f(@|P) be the posterior PDF of gfven the observation P. Then, according
to (5.8), there is ‘ | '

ZiMMsE = / z:f(6|P)do
| % , (B.1)
Ui MMSE = /Sa y.f (6|P)d0 "
where [ -d is a short hand for multiple integrals with respect to z1,y1,...,zn,yn and |
S is the integral region for 6. '
S’ivnce IO (6 .
16P) = 50 o (®2
and the a priori PDF has been given in (5.10), we only need the likelihood function
f(P]0) to compute the posterior PDF f(6|P).

The coordinates of the anchor nodes (j = N+1,--- , N+ M) are known and fixed.

Then, given the coordinates of all unknown nodes 8, entries in P are independent

from each other. Thus, we have
f(P18) =TILL, IS £(Py16)
' (@)
= Hﬁl——l H;Y:-:—Ii\-/[l f (Pij‘(xiv yi)a (xja y]))
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where (a) follows from the fact that P;; is only dependent on the distance between
the node ¢ and node j, which can be determined once their coordinates (z;,%;) and
(z;,y;) are given and thus P,; is independent from the coordinates of other nodes.

From the log-normal distribution for P;; ((5.1) and (5 2)) and therelation P” (dB) =
101log;q P;j, we have

I (Pil(zi, 90), (x5, 95))

= [44) £ (P (B (w10, 5 )

P di; 2
_aymo 1 oo (10108, ﬁ-}+120n,, logio 3£) | - (B4
Pij \/2molg 205,

10/1n10 @12 %

- Pi]‘\/ 27035 &P |: d?J:|

where In is the natural logarithm, and o and (iij are expressed in (5.14) and (5.15)

respectively. For completeness, they are repeated here

10n, 2
& = — —_— y
04B In10

. P 1/n,
%_%<;) .
if

(zi,y:) and (z;,y;) contribute to the likelihood function via d2; = (z;—z;)%+ (1:—;)*.
Plugging (B.4) into (B.3), we obtain

VN N+M
10/In1 &,
ey =T J] ==L, 1%]. (B.5)
i PvEnol, | 8 & '

Now, we are ready to compute the posterior PDF. Plugging the given a priori
PDF (5.10) and the derived likelihood function (B.5) in (B.2), the final expression
for f(O|P) is

| a0

N+M
Hz I —t+1 exp [ 2 In?

N N+M a 1,42
fs,, =111 j=i+1 SXP [_5 In

for @ € Sy where Sg can be easily obtained as

:%’l::%

F(6|P) = , . (BS)

i

o
<

z; € (Oip — Ai, Oy + Aj) )
Sp=(80 ) , 1<i<N . (B.7)
Yi € (O — B;, Oy + B;)
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Plugging (B.6) in (B.1), we obtain the MMSE cooperative position estimator as

s, i Iy, Hl\ﬁ;ﬁ exp [——8— In? % ] de

Zi,MMSE = ¥ _ =
+ 2
fSo i=111 j=i+1 €XP —%lnzdvf de
) d2 - (B.8)
N+M o _
fs,, Yi IL_ H —t+1 exp [ In? 8.21} 4o
Yi MMSE = - _ 7
+
fSa i= 1H—z+1exp —sln # de

To emphasize that the definite integrals in (B. 8) are multiple integrals, we intro-
duce [ - d@; as a shorthand for [ [ - dz;dy; as given in (5.12) and the integral region
for 8; = (x;,y;) is denoted as S; as expressed in (5.13), which is repeated here
z; € (O — Ai, O + Ay)

Yi € (Oiy — B;, Oy + B;)
Then, the final MMSE cooperative position estimator as expressed in (5.11) is ob-

S’i = (x'nyz)

tained.

B.2 Derivation for d;; expression (5.16)

From (5.15), we obtain
5 F
10logq d;; = ——1—1010g10 .1;0- + 10 log;q do
1 .
= —(Po(dB) ,](dB)) + 10 10g10 d[)
Np
According to (5.1) and (5.2), there is
PL](dB) (Po(dB) b 10nploglo (%) O'2B> .
Then,
3 o35
10 logm d,,] ~ N 10l0910dij, F .
P

Let G be a standard Gaussian random variable, ie. G~ N(0,1), then

log;o d,,] logiodij + —— 10 G

which leads to di; = d;;105% ¢ (5.16).
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