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We provide a very simple adaptation of our recently published quantum Monte Carlo algorithm in
full configuration-interaction �Slater determinant� spaces which dramatically reduces the number of
walkers required to achieve convergence. A survival criterion is imposed for newly spawned
walkers. We define a set of initiator determinants such that progeny of walkers spawned from such
determinants onto unoccupied determinants are able to survive, while the progeny of walkers not in
this set can survive only if they are spawned onto determinants which are already occupied. The set
of initiators is originally defined to be all determinants constructable from a subset of orbitals, in
analogy with complete-active spaces. This set is dynamically updated so that if a noninitiator
determinant reaches an occupation larger than a preset limit, it becomes an initiator. The new
algorithm allows sign-coherent sampling of the FCI space to be achieved with relatively few
walkers. Using the N2 molecule as an illustration, we show that rather small initiator spaces and
numbers of walkers can converge with submilliHartree accuracy to the known full
configuration-interaction �FCI� energy �in the cc-pVDZ basis�, in both the equilibrium geometry and
the multiconfigurational stretched case. We use the same method to compute the energy with
cc-pVTZ and cc-pVQZ basis sets, the latter having an FCI space of over 1015 with very modest
computational resources. © 2010 American Institute of Physics. �doi:10.1063/1.3302277�

We have recently published an exact algorithm for simu-
lation of Fermion systems in Slater determinant spaces based
on stochastic population dynamics of a set of annihilating
positive and negative walkers, which simulates the underly-
ing imaginary time Schrödinger equation of the interacting
Hamiltonian.1 We demonstrated that the algorithm converges
onto the full configuration-interaction �FCI� energy and wave
function, as long as the number of walkers in the simulation
exceeds a �system-dependent� critical number �Nc�. Nc was
generally found to scale with the size of the FCI space �Ndet�,
although for some systems the fraction fc=Nc /Ndet could be
as small as fc�10−5 whereas for other systems it was close
to 1, meaning that we needed almost as many walkers as
there are determinants to achieve convergence.

Discovering methods which reduce the number of walk-
ers required to achieve convergence has been the source of
much investigation in our group. In this communication we
will describe a very simple strategy which achieves this in a
dramatic way. For example, we have been able to reduce the
number of walkers needed to converge N2 cc-pVDZ �with an
FCI space of 5.4�108 determinants� from 2.7�108 to 105

while achieving a sub-mEh level of accuracy. Translated into
computer resources, this implies a gain of three orders of
magnitude. Furthermore, we show that similar numbers of
walkers can be used to converge the vastly larger problem of
N2 with a cc-pVQZ basis which has an FCI space exceeding
1015.

We briefly outline the original algorithm; more details
being provided in Ref. 1. We assume that we have at our

disposal a set of 2M orthonormal one-particle orbitals �usu-
ally, but not necessarily, restricted Hartree–Fock �HF� orbit-
als� and the associated one- and two-body molecular inte-
grals �which have been generated by the HF solver�. The
latter are used to compute matrix elements of the full Hamil-
tonian operator according to standard prescriptions. The ba-
sic entity in our simulation is a signed walker which perma-
nently lives on the Slater determinant it was born. At each
cycle of the algorithm, a walker on determinant Di attempts
to die with a probability given by pd=���Di�H−E0�Di�−S�
where S is an energy shift and � the timestep. In addition to
this death/cloning step, each walker attempts to spawn a new
walker at a connected determinant Dj with a probability ps

= ����Dj�H�Di��� / �pgen�j � i��, where pgen�j � i� is the generation
probability of j from i. The sign of the child spawned is
determined by the sign of the Hamiltonian matrix element
and the parent; it has the same sign as the parent if the matrix
element is negative and opposite to the parent if the matrix
element is positive. After each walker has attempted the two
steps above, there is a global annihilation step in which
walkers of the opposite sign on the same determinant are
removed from the simulation. The simulation can be run in
constant shift �S� mode or in constant of number of walkers
�Nw� mode. In the latter case, S is adjusted regularly in order
to keep Nw approximately fixed. As discussed in Ref. 1 in a
converged calculation, the time-averaged value of S equals
the correlation energy. The total energy can also be measured
directly from the long-time ensemble average of the walker
distribution, according to the projection formulaa�Electronic mail: asa10@cam.ac.uk.
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�E� = E0 + 	
j

�Dj�H�D0�
�Nj�
�N0�

, �1�

where j runs over the single and double excitations of a
reference determinant D0 �here taken to be the HF determi-
nant� and Nj being the population of walkers on determinant
j. E0= �D0�H�D0� is the energy of the reference determinant
D0.2

We now introduce an additional rule in the algorithm,
which defines a survival criterion for newly spawned walk-
ers: some determinants �dubbed initiator determinants by
analogy to chain-reactions� are endowed with the ability to
spawn progeny onto unoccupied determinants. However,
progeny of the remaining noninitiator determinants survive
only if they are spawned onto a determinant which is already
occupied. The exception to this rule is the special case
whereby two noninitiator determinants spawn walkers of the
same sign onto a third previously unoccupied determinant in
one iteration. This is deemed to be a sign-coherent event and
thus simultaneously spawned walkers such as these are al-
lowed to live. The set of initiator determinants is chosen in
two ways. First, a fixed set of initiator determinants are cho-
sen according to a complete-active-space �CAS� criterion;
i.e., a set �n ,m� of n electrons distributed in m spatial orbitals
about the Fermi energy, such that a determinant where all n
electrons reside within the m orbitals is an initiator, all other
determinants being noninitiators. During the simulation,
however, the set of initiator determinants can also be dy-
namically enlarged so that if a noninitiator determinant ac-
quires a population which exceeds a preset value �na�, then it
becomes an initiator determinant, i.e., acquires the ability to
spawn progeny onto unoccupied determinants, and stays so
as long as its population exceeds na. With this, the rigidity of
the fixed CAS space is avoided and the initiator space is free
to adopt any set of determinants, decided by the Hamiltonian
of the system. This is a significant advantage when compar-
ing to multireference �MR� methods.

Clearly, the above rules tend to the original, exact algo-
rithm in three limits: first, as the number of walkers becomes
very large, all determinants acquire a population and so all
progeny survive, regardless of the state of the parent. Sec-
ond, as we enlarge the fixed initiator space toward the full
space, again all progeny will survive since all parent walkers
are initiators. Finally, as na tends toward 0, all determinants
are included in the initiator space. On the other hand, as we
shall show below, the new rules effectively allow a dramatic
reduction in the number of walkers.

We have tested this idea on the N2 molecule in various
basis sets. The N2 molecule has been extensively studied as a
prototype of a strongly correlated system, particularly as it is
stretched to dissociation and has proven to be very challeng-
ing. N2 is thus a stringent test for this method and accurate
results indicate an ability to cope with many subsequent sys-
tems. This will be tested in studies yet to come in which a
wide range of molecules are to be investigated. The FCI
energy of N2 is known in the cc-pVDZ basis, but the larger
cc-pVTZ and cc-pVQZ basis sets are out of reach of conven-
tional FCI calculations. However, these larger basis sets are
needed for a proper description of the dynamical correlation.

As a first example, we consider the N2 molecule in the
cc-pVDZ basis. In Ref. 1, we showed that the FCI energy of
this system could be obtained with sub-mEh accuracy but
required 2.7�108 and 3.45�108 walkers at equilibrium and
stretched geometries, respectively. By contrast, consider the
evolution of the system with the additional rules starting with
a �10,8� initiator space—which includes only 396
determinants—and setting na=3. We started the simulation
with one walker on D0, and let the population grow until
100 000 walkers had been attained. After this, we changed to
constant Nw mode with the shift varying and allowed the
population dynamics to run for 5�105 time steps �of
0.001 a.u. imaginary time�. During this run, the dynamic
enlargement added a further �Nini�=2250 determinants to the
initiator space. Figure 1 shows the energy computed accord-
ing to Eq. �1�. Runs with different random number of seeds
are shown, all of which converge to within sub-mEh accuracy
of the known exact result.

We also show the pattern of growth in both the total
number of walkers and the number at D0 ��N0��. This behav-
ior is markedly different from the original algorithm which
in constant S mode would show an initial explosive �fast
exponential� growth until the “annihilation plateau” is
reached. This is followed by a period of time in this plateau,
then a slower exponential rise whose rate is determined by
the correlation energy. The population at D0 typically would
only begin to reach meaningful levels once in the second
exponential growth phase. With the additional rules, how-
ever, the initial fast exponential growth phase and the anni-
hilation plateau either disappears completely or is severely
reduced. Instead we obtain essentially from the very begin-
ning, a slow exponential growth in the number of walkers
which resembles the second growth phase of the original
algorithm. When the shift is allowed to vary, it quickly
settles down to fluctuate around the correlation energy. The
number of walkers at D0 also grows exponentially from the
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FIG. 1. The correlation energy �Ecorr=E−E0� from three simulations of N2

at the equilibrium geometry, starting with different random number seeds,
with a �10,8� initiator space. E was averaged after 23 a.u. of time had
elapsed. Convergence rapidly occurs to values close to the shown FCI en-
ergy �Ref. 3�: the lower inset is a fine-scale plot of Ecorr in mEh from the
three simulations. Also shown are the CASSCF �Ref. 4�, CASPT2 �Ref. 5�,
and MRCISD �Ref. 6� energies with the same �10,8� CAS space �Ref. 7� and
CCSD�T� energy �Ref. 8�. The upper inset shows Nw and N0 over the course
of the runs.
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outset. This is important because the population at D0 deter-
mines the accuracy to which the projected energy E of Eq.
�1� can be measured. As a general rule, a simulation which
achieves several thousand walkers on D0 will obtain the cor-
relation energy to within one part in 103 which is sub-mEh

accuracy for these systems. N0 thus provides a measure of
the total number of walkers required in the simulation.

We have looked at variations in both the fixed initiator
size and the value of na, as well as different numbers of
walkers, ranging from 104 to 107. The results are presented in
Table I. The following can be seen. First, as the initiator
spaces are enlarged, an annihilation plateau appears, and it is
necessary to go to larger numbers of walkers before conver-
gence can be achieved. However, the accuracy of the final
result does not depend on the choice of fixed �CAS� initiator
space. In fact, unnecessarily large spaces appear to be inef-
ficient, as they make the accumulation of walkers at D0 more
difficult. Smaller fixed initiator spaces are therefore preferred
and dynamic enlargement of the space, shown by �Nini�, be-
comes crucial to the accuracy. A very large na prevents any
dynamic enlargement at all and determinants beyond single
and double excitations of the initiator space may only be
accessed via the special case of simultaneous spawning from
two noninitiator determinants. The resulting energy is conse-
quently too high. �Note if this special case is disallowed and
na→�, then in the limit of large Nw, this method becomes

comparable to MRCISD in a basis of HF orbitals�. However,
by reducing na until we no longer lower the energy, the point
at which all significant determinants are being included in
the initiator space may be deduced. The optimal value for
this case appears to be na=3, with which sub-mEh accuracy
is obtained with only a few thousand initiator determinants.

Also in Table I are presented results for stretched N2,
using the same parameters as above. It can be seen that this
problem behaves similarly to the equilibrium geometry, ex-
cept that generally somewhat more walkers are necessary to
achieve convergence. Increasing numbers of walkers from
104 to 107, the error in the energy drops from 16mEh to
0.05mEh, essentially by an order of magnitude for each order
of magnitude increase in walker number. Two sources of
error can be identified: a systematic error due to insufficient
numbers of walkers and a stochastic error �as measured by
blocking analysis� which can be reduced by running the
simulations for longer. The results show that the systematic
error is strongly reduced as the number of walkers is in-
creased, and that one needs some 106 walkers to obtain
sub-mEh accuracy. Consistent with the discussion above, this
corresponds to a few thousand walkers on D0 and some 3
�104 initiator determinants. It should be emphasized that
although the computational demands of these calculations
are one order of magnitude greater than at equilibrium ge-
ometry, this nevertheless represents a very cheap calculation

TABLE I. Summary of the simulation results for N2 at equilibrium �2.068a0� and stretched �4.2a0� geometries
in the VDZ basis set. �Nini� is the equilibrium number of determinants added to the initiator spaces. The sizes
of the fixed initiator spaces are 61, 396, 27�103, and 502�103 determinants, for the �10,7�, �10,8�, �10,11�, and
�10,14� CAS, respectively. na=3 unless otherwise specified. The numbers in parentheses in the energies are the
errors in the preceding digit, obtained from a blocking analysis �Ref. 9�.

Initiator space Nw Nc /103 �N0� /103 �Nini� /103 �E−EFCI�/mEh

Equilibrium VDZ �2.068a0�
�10,7� 106 0 18 35 0.02�6�
�10,8� 104 0 0.330 0.22 2.2�8�
�10,8� 105 0 2.25 2.24 0.1�2�
�10,8�na=3 106 0 17.2 33 0.01�7�
�10,8�na=5 106 0 13.8 18.7 0.19�5�
�10,8�na→� 106 0 368 0 2.43�4�
�10,8� 107 0 154.0 349 0.02�3�
�10,11� 106 4.4 16.8 30.8 �0.07�9�
�10,14� 106 248 13.0 21 0.04�7�
CCSD 13.46
CCSD�T� 1.71
CASSCF �10,8� 174
CASPT2 �10,8� 18.7
MRCISD�CASSCF ref.� �10,8� 7.31

Stretched VDZ �4.2a0�
�10,7� 106 0 4 32 0.4�8�
�10,8� 104 0 0.08 0.14 16�5�
�10,8� 105 0 0.5 2.84 1�3�
�10,8� 106 0 4 29 �0.4�7�
�10,8� 107 0 40 403 0.05�60�
�10,11� 106 50 3.5 27 0.6�8�
�10,14� 106 630 1 12 1�1�
CASSCF �10,8� 185
CASPT2 �10,8� 12.4
MRCISD�CASSCF ref.� �10,8� 8.20
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�using about 25 Mbyte memory� to converge the FCI energy.
The experience developed above provides us with two

useful simulation protocols. First, runs with different num-
bers of walkers should be done, monitoring the total energy
for each. Convergence should be obtained in the sense that
increasing walker number should not lead to a statistically
significant lowering of the energy. Second, it is useful to
monitor the number of walkers on D0. In constant Nw mode,
this number should ideally remain well above 103 while the
projected energy is being averaged.

The results for the cc-pVTZ and cc-pVQZ basis sets are
shown in Table II. The FCI spaces have 2.62�1012 and
1.55�1015 determinants, respectively �which is reduced by
effectively a factor of two using time-reversal symmetry�.
For comparison we have also included CCSD, CCSD�T�,
CASSCF, CASPT2, and MRCISD results for equilibrium ge-
ometry, and CASSCF, CASPT2, and MRCISD at the
stretched geometry �the coupled cluster methods diverge at
this geometry�. For both basis sets, we used the �10,8� fixed
initiator spaces. At equilibrium geometry, simulations with
106 walkers result in an N0 which exceed 103, and the cor-
responding energy can be calculated to sub-mEh accuracy.
Our predicted energies are between 1mEh and 2mEh below
CCSD�T� which at equilibrium is a very good theory. At
stretched geometry, we need some 107 walkers before N0

substantially exceeds 103, but we still are able to obtain error
bars in the sub-mEh range. The CASSCF and CASPT2/
MRCISD energies are higher in both cases.

Why does this simple algorithm prove so effective? We
believe the reason is this: the new rule of “the survival of the
fittest” means that whenever we add a new determinant to
the system, it comes from a determinant whose sign has been
well-established, either by virtue of being in a select group of
CAS determinants, or by developing a sufficient population
that makes it probable that its progeny will be sign-coherent
as well. As a result the whole space can be sign-coherently
sampled much more easily than with the original algorithm
in which sign-coherence arose only when annihilation events

became probable. This generally required a large number of
walkers. It is remarkable that a very small number of deter-
minants is able to endow sign-coherence to the whole space,
even in the strongly multiconfigurational problem of
stretched N2. This is an extremely interesting feature of the
algorithm, as once sign-coherence is achieved, the correct
sampling of enormous FCI spaces becomes possible. It
means that the dynamical correlation which large basis sets
capture can be calculated with essentially FCI accuracy. This
is a significant advance over MR perturbation methods such
as CASPT2 which at present are the only viable way to treat
such difficult problems. The algorithmic simplicity of the
method is also an attractive feature. We will be examining
the scaling properties of the new algorithm in a forthcoming
paper, as well as applying it to other strongly correlated sys-
tems where both dynamic and static correlation are integral
to the system.

1 G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106
�2009�.

2 It should be noted that mixed energy-estimators such as Eq. �1� are non-
variational.

3 J. Olsen, O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys.
105, 5082 �1996�.

4 B. O. Roos and P. R. Taylor, Chem. Phys. 48, 157 �1980�.
5 K. Andersson, P.-A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolin-
ski, J. Phys. Chem. 94, 5483 �1990�.

6 H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 �1988�.
7 H.-J. Werner, Mol. Phys. 89, 645 �1996�.
8 Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown,
A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A.
DiStasio, Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M.
Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V.
A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J.
Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D.
Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S.
Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M.
Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P.
A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C.
Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell,
and A. K. Chakraborty, Phys. Chem. Chem. Phys. 8, 3172 �2006�.

9 H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 �1989�.

TABLE II. N2 in cc-pVXZ �X=3,4� basis sets. Timesteps are �=10−4 a.u. The fixed initiator space is �10,8�
with na=3. The numbers in parentheses in the total energies are the errors in the preceding digit �Ref. 9�.

Nw

VTZ VQZ

N0 /103 �Nini� /103 Etot/Eh N0 /103 �Nini� /103 Etot/Eh

Equilibrium
�2.068a0�

105 0.85 1.3 �109.373 9�2� 0.6 0.85 �109.400 1�2�
106 5.5 14 �109.375 2�2� 3.3 9.761 �109.404 8�2�
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�4.2a0�
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