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Communities as cliques
Yael Fried, David A. Kessler & Nadav M. Shnerb

High-diversity species assemblages are very common in nature, and yet the factors allowing for the 

maintenance of biodiversity remain obscure. The competitive exclusion principle and May’s complexity-

diversity puzzle both suggest that a community can support only a small number of species, turning 

the spotlight on the dynamics of local patches or islands, where stable and uninvadable (SU) subsets 

of species play a crucial role. Here we map the question of the number of different possible SUs a 
community can support to the geometric problem of finding maximal cliques of the corresponding 
graph. This enables us to solve for the number of SUs as a function of the species richness in the regional 

pool, N, showing that the growth of this number is subexponential in N, contrary to long-standing 

wisdom. To understand the dynamics under noise we examine the relaxation time to an SU. Symmetric 

systems relax rapidly, whereas in asymmetric systems the relaxation time grows much faster with N, 

suggesting an excitable dynamics under noise.

Competition is ubiquitous in nature. Almost any aspect of living systems, from the molecular level to ecological 
scales, involves the competition of di�erent species for a �nite set of resources. As di�erent populations grow, 
resource levels decline, putting stress on other individuals and leading to extinction of some forms of life and to 
saturation of others, generating the observed patterns of life on all timescales. Accordingly, the interplay between 
competitive exclusion1,2, ecosystem’s complexity3,4 and the biodiversity plays a central role in the theory of com-
munity dynamics.

Still, many fundamental aspects of the theory of competition and its applicability to empirically observed 
patterns are far from being understood. �e competitive exclusion principle5,6 predicts that the maximum 
number of species allowed in a local community is smaller or equal to the number of limiting resources, in 
apparent contrast with the dozens and hundreds of species of freshwater plankton1,2, trees in tropical forests7 
and coral reef8. May’s complexity-diversity analysis3,4 presents another level of di�culty; it states that, even 
when the number of resources is large enough, a substantial niche-overlap between species makes the chance 
of stable coexistence exponentially small in N, the species richness of the community. �ese long standing 
puzzles have received a lot of attention over the last decades, with many mechanisms suggested to circumvent 
the mathematical constraints and many works that have tried to provide empirical support to these theories9. 
Nevertheless, there seems to be no general, well established and con�rmed theory that explains the persistence 
of high-diversity assemblages.

While some communities that support biodiversity may be considered as well-mixed, generically these com-
munities have a spatial structure. �e dynamics takes place in local habitat patches, connected to each other by 
migration. Di�erent realizations of this scenario, ranging from the McArthur-Wilson mainland-island model 
(a single and relatively small patch is coupled to a well-mixed large system)10,11 to the conceptual framework 
of metapopulations and metacommunities (a system of many, di�usively coupled, local patches)12,13 have been 
considered in the literature.

Whichever version of these spatially structured dynamics one adopts, one immediately encounters a funda-
mental problem: to identify the assembly rules of local communities14,15 and the factors that govern their stabil-
ity16–18. In the presence of strong environmental �ltering one expects a one-to-one match between environment 
and community, rendering the e�ect of interspeci�c competition insigni�cant. Here we focus on the opposite 
scenario, where species composition is determined predominately by competition, hence the system may support 
multiple steady states, and di�erent historical sequences of species entering the local community may lead to 
di�erent long-term compositions. �eory, experiments and �eld studies focusing on the possibility of alternative 
steady states (and the theory of catastrophic shi�s associated with this scenario) play a central role in contempo-
rary community dynamics literature19,20.

To endure over intermediate/long timescales, a subset of size S <  N species should be intrinsically stable and 
uninvadable. If this subset is by itself unstable the local dynamics will drive some of the S species to extinc-
tion. Even an intrinsically stable subset may still be invaded by one of the N −  S species from the regional pool, 
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rendering it (for reasonable values of invasion rate) a short-lived transient. A stable and uninvadable (SU) local 
community, on the other hand, will persist until one species goes extinct due to demographic noise or environ-
mental variations. One then expects that the dynamics of a spatial system is dominated, on intermediate/long 
timescales, by SU con�gurations.

�is insight points to a crucial question: how many SU con�gurations are possible, and in particular, how 
does this number scale with N? �is problem has a long history. Gilpin and Case21 analyzed it numerically using a 
simple and generic description of such a community, the generalized Lotka-Volterra equations:
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here xi is the local density of the i-th species population and ci,j is a zero-diagonal matrix of positive numbers, 
indicating the level of competition between the i-th and j-th species. �e larger ci,j is, the stronger is the stress that 
individuals of species j put on individuals of species i. �e SU problem, formulated for this model, is then how 
many size S-subsets of the N species satisfy the following two conditions:

1. Stability and feasibility: Eq. 1, when limited to a size S subset, S, yields a time independent solution for which 

>x 0
i

 for all of the species in S, where x
i
 is the equilibrium density of the i-th species in the subcommunity.

2. Uninvadability: Eq. 1, when applied to all absent N −  S species and linearized around the �xed point =x x
i i

 
for ∈ Si  and xi =  0 for ∉ Si , yields negative growth rates x x/

i i
 for all ∉ Si .

Based on their (quite limited, by today’s standards) numerical simulations, Gilpin and Case concluded that the 
number of SU states grows exponentially with the richness of the regional community N.

Fisher and Mehta22, in a new work, touched on the same problem from another perspective, the niche-neutral 
debate and the intermediate models suggested to bridge between these opposing approaches23,24. �ey have heu-
ristically mapped a variant of the competing species model to a known physical model for glassy behavior, the 
random energy model25. Armed with this mapping, Fisher and Mehta interpreted the freezing transition, asso-
ciated with the temperature below which a liquid shows glassy features, as the transition between niche-like and 
neutral-like ecological dynamics. �e weak noise regime of the Lotka-Volterra dynamics was argued to corre-
spond to the glassy phase, where local energy minima (in physical glasses) or SU states (in ecosystems) govern the 
dynamics, and the system spends most of its time close to one of these attractive states until it is kicked, stochas-
tically, to another domain of attraction. Under strong noise, on the other hand, the SU/local minima structure 
would be washed away by the noise, rendering a neutral-like behavior.

The geometry of Competition
Both the Gilpin-Case and Fisher-Mehta works faced a major technical obstacle: given the interaction matrix ci,j, 
it is quite di�cult to �nd all its SU states. To do that for a system with N species, one should scan through all the 
2N possible con�gurations, checking for stability/feasability and uninvadablity for each of these combinations. 
�erefore, Gilpin and Case considered only limited regional pools with N ≤  14, while Fisher and Mehta extracted 
analytic results only for their simpli�ed, presence-absence model, that was mapped to the random energy model 
using strong (and not necessarily realistic) assumptions regarding the connection between invasion rates and the 
strength of stochasticity. To proceed, we suggest a geometric reduction of the problem.

We consider �rst the symmetric version of the model. In this version, studied by both21,22 of the above, ci,j =  cj,i. 
�is symmetric scenario provides more transparent results, and we will use this case to clarify the general method.

As explained in Refs 22 and 26, the interaction matrix ci,j may be characterized by two parameters: the average 
value of an element c (overline denotes an average over all the N(N −  1) nondiagonal entries), re�ecting the aver-

age pressure one species extracts on the other, and the variance, σ = −c c2 2 2.
�e main insight in this work is the realization that the problem of �nding the SUs simpli�es tremendously in 

the extreme case where the competition matrix elements are either zero or very large. In a symmetric model this 
condition implies that every pair of species, i and j, are either

1. non-interfering, meaning that i and j do not compete at all and so are mutually invasible, like the di�erent 
species in the McArthur-Wilson model10,11.

2. mutually exclusive, i.e., they cannot live together in the same local community, and none of them can invade 
a subcommunity that includes its opponent14.

For a non-interfering pair we assume ci,j =  cj,i =  0. For a mutually exclusive pair we take ci,j =  cj,i to be a suf-
�ciently large number. At this point we cannot specify this large number so we use the notation ci,j =  cj,i =  ∞ , 
meaning that the interaction is strong enough to make these species mutually exclusive. Below we will provide a 
lower limit for the interaction strength.

In Fig. 1 we show how to represent such a scenario by a network. First, every species is represented by a vertex, 
and the i and j vertices are linked (adjacent) i� the corresponding species are non-interfering. Accordingly, the  
i, j element of the adjacency matrix of this undirected graph is unity if ci,j =  0 and zero if ci,j =  ∞ .

Given this representation, the one to one correspondence between SU subcommunities and maximal cliques 
of the corresponding graph is easily recognized. A clique is a collection of vertices that are all connected, every 
one to each of the others, here representing a group of species that can all coexist. To be uninvadable this clique 
should be maximal, i.e., a clique that cannot be extended by including any other adjacent vertex. Although the 
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problem of �nding all maximal cliques of a graph is known to be NP-complete27, in practice there are e�cient 
algorithms28 that allow one to �nd cliques quite easily for N up to 500, way above the numbers that have been 
previously considered in the SU context.

More importantly, this simple geometric interpretation of the problem allows us to also obtain analytic results. 
�e expected number of maximal cliques with exactly S species, SU(N, S), may be determined by multiplying 
the number of subsets of size S (binomial factor) by the chance that a single, randomly chosen subset is indeed 
a maximal clique. For random symmetric interactions the adjacency graph is an Erdös-Renyi network of size N, 
and the result is given by29,

= −

−

−( )SU N S N
S

p p( , ) (1 ) ,
(2)

S S
S N S

( 1)

2

where p is the probability that two randomly chosen vertices are connected. In section I of the Supplementary 
Information (SI) we show how to �nd an asymptotic expression for this sum using Laplace’s method,

∼ =SU N N e( ) (3)
a p N a p N( ) ln( ) ( ) ln ( )

2

where a(p) =  1/[2 ln(1/p)].
Figure 2 shows the increase of SU with N, with perfect agreement with Eq.  (3). This by itself is a 

counter-example to the central conclusion of Ref. 21 and to the main outcome of Ref. 22: the number of SU states 
does not increase exponentially with N. �erefore, the analogy suggested22 between the random energy model, 
and the problem at hand turns out to be problematic. Even if there is a direct thermodynamical analog to the 

Figure 1. �e geometric interpretation of competition networks. In (a) an example of a network for the 
symmetric model is presented. Every pair of non-interacting species is connected by a full line; for example, species 
1, 2, 3 and 4 are all non-interacting, meaning that c1,2 =  c1,3 =  c1,4 =  c2,4 =  0. A clique, like {1, 2} or {5, 6, 7}, is a 
noninteracting subset of the species. A clique is stable only if another species cannot invade it, so {1, 2} is unstable, 
since it may be invaded by 3 and 4. �e stable and uninvadable subsets are the maximal cliques {1, 2, 3, 4}, {5, 6, 7}, 
{4, 9}, {2, 7} and {8}. (b) Provides an example of an asymmetric system, where a dashed line represent dominance 
relationships. Here species 1 dominates 2 (c1,2 =  0, c2,1 =  ∞ ) and species 2 dominates 3. In (c) we present this 
system as a network, where full lines indicate, as before, no interaction and dashed lines with arrows indicate 
dominance, the arrow pointing towards the inferior species. Although {1, 3, 4} and {2, 4} are both maximal cliques, 
only {1, 3, 4} is SU (2 cannot invade since 1 dominates it) while {2, 4} is invadable by 1.

Figure 2. Number of maximal cliques as a function of N for the symmetric zero-in�nity model, plotted on 
semilog-y scale. Results were obtained from a symmetric model with p =  0.1, N running from 5 to 500 in 
intervals of 5. Points correspond to the number of maximal cliques in a single realization, full line is N0.221 log(N). 
In the inset we plot SUln( )  on semilog-x scale, emphasizing that this is a straight line, in agreement with Eq. 3.
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community dynamics problem, where SUs are mapped to local minima and the e�ect of noise is equivalent to 
temperature, one would have to be a variant of the random energy model with Naln(N) number of states, as opposed 
to 2N in its standard spin version. In such a case the temperature of the glass transition (as before, this is analogous 
to the level of noise below which the system is niche-dominated, and above which the dynamics appears to be 
neutral) diverges like N/ln2(N) at large N, meaning that there is no true neutral phase, and the system is niche 
dominated even if the noise is relatively large (see discussion section).

Now let us consider the more general case, where the interaction matrix has no symmetry properties but the 
ci,js are still either in�nite or zero. Any pair of species may be in one out of three relationships: mutually exclu-
sive (ci,j =  cj,i =  ∞ ), non-interfering (ci,j =  cj,i =  0) or dominance (ci,j =  ∞ , cj,i =  0, meaning that j is superior to i). 
Figure 1b provides a demonstration of these possibilities.

To interpret this scenario geometrically, one needs two types of links. First, every two non-interfering nodes 
are connected with undirected links (full lines in Fig. 1c), as in the symmetric case. Second, any pair of nodes that 
admit dominance relationships are connected by a di�erent type of directed link (a dashed line, with an arrow 
pointing towards the inferior species, in 1c). A stable subcommunity in this case is a clique of non-interacting 
species as before, but the condition for uninvadablity is di�erent. It is not enough for a clique to be maximal; to be 
an SU it should ful�ll another requirement, namely, that every node not in the clique should be dominated by at 
least one species in the clique. �e expected number of such cliques is then,

= − .

−

− ( )SU N S N
S

p p( , ) (1 )
(4)

S S
S N S2

( 1)

2

Here p is the chance that a randomly chosen ci,j =  0, which leads to a factor of 2 in the exponent as compared to 
the symmetric case where p is the chance that both ci,j =  0 and cj,i =  0. �e last factor, −

−p(1 )
s N S, re�ects the 

condition that none of the other N −  S nodes has a directed dominance links to all the clique member, meaning 
that all other nodes are inferior with respect to at least one species in the clique. �is seemingly minor modi�ca-
tion changes the asymptotic growth mode from superpolynomial to sublinear:

∼SU N
N

N
( )

ln ( )
,

(5)
3/2

so the conclusion drawn in the symmetric case is relevant, a fortiori, for asymmetric communities: there is no 
exponential growth in the number of SUs with N, and consequently no niche-neutral transition at large N. �e 
derivation of Eq. (5) from (4) is explained in section II of the SI and the agreement between the results and 
numerical simulations is demonstrated in Fig. 3.

Another important result derived in the SI is an expression for S*, the typical number of species in a single SU 
state, i.e., the maximum of SU(N, S). For both the symmetric model and the asymmetric model we obtain,

≈ .
⁎S

N

p

ln( )

ln (1/ ) (6)

Accordingly, for N a few hundreds and p values that are not vanishingly small, the typical number of species in 
a single SU is 5–8. �is estimate agrees with the results of our simulations of the network model and with simula-
tions of the Lotka-Volterra dynamics, Eq. (1), to which we turn in the next paragraph. It implies that in the regime 

Figure 3. �e number of SU states as a function of N for the asymmetric zero-in�nity model (note the 
linear scale, in contrast to Fig. 2. Results were obtained from an average over simulations of random networks 
with = .p 0 5, N running from 5 to 300. Points correspond to the number of SU states in a single realization, full 
line is the exact sum over S of (4). �e asymptotic relationship (5) converges to this sum very slowly, see SI 
section II.
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of strong enough competition, such that the system supports alternating steady states (see Ref. 26), it is hard to 
�nd such a state with more than, say, 8 species for reasonable values of N.

�e model considered here is an extreme case of a generic competition system, where the interaction matrix 
may be replaced by a zero-one adjacency matrix. We see no reason to believe that the generic system with �nite 
ci,js falls into a di�erent equivalence class. Actually our numerics for the case where the ci,js are picked from a 
Gamma distribution indicates a sub-exponential growth in the number of SUs even for symmetric Lotka-Volterra 
matrices with continuously distributed ci,js (see Fig. 4), and suggest that the number of SU’s obtained in Eqs (3) 
and (5) is an upper bound for the number of SU’s of generic interaction matrices (unless the ci,js are vanishingly 
small, see discussion).

To underscore these statements and to bridge the gap between the zero/in�nity limit and the standard gen-
eralized Lotka-Volterra system with continuous ci,j, an intermediate model is presented in the methods section 
and analyzed in section III of the SI. In this intermediate model ci,js are either zero or take a �nite value A, so the 
competition matrix elements have �nite mean and variance, allowing for a fair comparison with the continuous 
case. �is “binary” model is shown analytically to reproduce exactly the results of the zero/in�nity model for suf-
�ciently strong interactions for �nite N. Numerical simulations show that indeed the number of SU’s is an upper 
bound to the continuous Lotka-Volterra system considered in Refs 21, 22 and 26.

Community Dynamics
Until now we have focused on the identi�cation, and counting, of the number of SU’s in di�erent situations. �is, 
however, is not enough to specify the behavior of a local community coupled to a regional pool. An SU is stable 
under the deterministic dynamics (1), but when noise and disturbances (which are almost always quite strong in 
ecosystems) are added to the model, local populations may go extinct and new species may invade30, leading to a 
modi�cation of the overall strength of the local competition with respect to the regional interaction. Moreover, an 
asymmetric system may support, beyond SU states, other attractive manifolds like limit cycles and chaotic attrac-
tors. A simple example is that of a three species system with “rock-paper-scissors” circular dynamics, species 1 
invades 2 but is dominated by 3 and so on26. To understand better the dynamical aspects of community assembly 
we have simulated the system deterministic dynamics starting from random initial conditions. �is allows us to 
�nd out the duration of the transient until the system reaches an SU, and to see if the system enters a periodic/
chaotic orbit.

Our simulations indicate that the periodic/chaotic orbits associated with the asymmetric dynamics are rare in 
the large N limit, and almost all initial conditions eventually arrive at an SU state. However, the symmetric and the 
asymmetric systems di�er dramatically in the convergence time, as demonstrated in Fig. 5. In symmetric systems 
the convergence time grows like N , while it grows faster than N3/2 in the asymmetric case. �is feature re�ects 
the presence of many “almost attractive” orbits and long excursions in the asymmetric system. Accordingly, for a 
symmetric system one may expect that the dynamics is dominated by long periods in which the system is trapped 
in a single SU, with ecological regime shi�s that drive it from one state to another as suggested in Ref. 19. In the 

Figure 4. SULV is the average number of SU states for a Lotka-Volterra system (Eq. 1) with continuous ci,j 
drawn from a Gamma distribution with =c 1 and σ2 = 1. For N ≤  20 the number of states has been obtained 
from a comprehensive survey of all 2N possible combinations, while for N >  20 SU’s were identi�ed by 
integrating Eq. 1, from random initial conditions, until it reaches a SU state, and iterating this scheme 200000 
times. In the main panel the results are presented for the asymmetric case, while the inset shows the results for 
the symmetric case. In both cases the subexponential growth of the number of SULV with N is manifested, and 
the theoretical predictions for the zero-in�nity limit [Eqs (3) and (5)] are way above the numbers obtained here 
(see supplementary). While up to N =  20 the symmetric case appears to grow exponentially as seen in Ref. 21, 
above this value the graph turns over.
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asymmetric system, on the other hand, one expects that under the e�ect of disturbances (that kick the system out 
of an SU and send it on a long excursion) the relevance of the SUs becomes negligible and the system is in the 
intermittent phase (or, in terms of Ref. 31, alternative transient states) that was demonstrated in Ref. 26.

Discussion
Community dynamics is the arena on which the evolutionary process unfolds. Darwin’s theory of natural selec-
tion and the survival of the �ttest suggest a mechanism that governs the evolutionary dynamics and the origin of 
species, but at the same time it makes di�cult the task of explaining the spectacular species richness observed in 
natural communities. Are there so many “�ttest” species around?

Some researchers believe that the answer for this question is indeed positive: that each of the millions of spe-
cies observed in nature is superior to its competitors with respect to a certain niche. Others consider this hypoth-
esis as implausible, in particular when the number of di�erent resources appear to be small. Moreover, May’s 
complexity-diversity puzzle implies that a community with substantial niche overlap will collapse, meaning that 
an almost complete niche-separation is needed to explain the coexistence of any species.

Given that, a lot of attention has been given in the last decades to the patterns observed in local communities, 
recognized as the elementary building blocks of the system. �e dynamics in these communities is a�ected by 
local processes such as competition, predation and symbiosis, by migration of species from the regional pool and 
by stochastic and random e�ects.

In a recent work26 we have tried to classify the dynamics of a stochastic local community of competing species 
(in the asymmetric case) along two di�erent axes: the overall strength of competition (average niche overlap, c) 
and the �tness di�erences σ2. When =c 0 all species are non-interacting, as suggested in McArthur-Wilson 
model, while if =c 1 and σ =  0 all individuals are equal and the system is described by Hubbell’s neutral theory32. 
Between these two extremes we have found regimes of full and partial coexistence (when c is relatively small), 
regimes of alternate stable states when c is large, and in between we observed a region of parameters where the 
system fails to relax to an SU. Instead, in this regime the dynamics is intermittent, where the community structure 
changes dramatically over time and the instantaneous assembly is usually invadable. As noted above, this inter-
mittent phase appears to be related to the long convergence times demonstrated in Fig. 5, combined with the 
e�ect of constant perturbations, like the demographic noise in Ref. 26.

A priori, we cannot see a reason to prefer an explicit dynamical model, like the Lotka-Volterra equations (1), 
over the zero-in�nity dynamics considered in this paper or its counterpart, the binomial model, presented in the 
SI. �e actual dynamics of interspeci�c competition is very complex, a�ected by many factors, and there appears 
to be no way to map it into a realistic model with a reasonable number of parameters, not to mention the infer-
ence of the values of these parameters from empirical datasets. Both the LV system and the network model con-
sidered here aim at providing a qualitative picture, explaining the generic characteristics of systems in which 
species compete, proliferate, migrate and go extinct. We believe that the network analogy is appropriate as long as 
σ is large and c is not too small, which is the most interesting regime. As explained in the supplementary, the 
network analogy fails when →c 0 (where all the N species may occupy every local patch, the full/partial coexist-
ence phase in the language of26) or when σ →  0 (the limit corresponding to the neutral or neutral-like behavior, 
where the system is governed by noise, see Ref. 33). Experimental studies (see, e.g., Refs 34 and 35) also suggest 
that the ci,js are O(1) (i.e., interspeci�c competition does not di�er substantially in magnitude from intraspeci�c 
competition) and that the variance is quite large. We believe that the glass transition results of Ref. 22 mentioned 
above, with the assumption that the number of SUs grow exponentially with N, are valid in the opposite limit 
where both the mean and the variance of the ci,js scale like 1/N (see Ref. 36).

Figure 5. ln (Convergence time) vs. In N, the species richness of the regional community. �e dynamics of 
Eq. 1 was simulated, with ci,js that were picked at random from a Gamma distribution with mean 0.9 and 
variance 5/N (variance should scale with 1/N to keep the overall competition stress independent of N). Points 
represent the time it take this system to converge to an SU from random initial conditions. For the asymmetric 
case (main panel, each point re�ects an average over 65 runs each with di�erent random competition matrix) 
the time to convergence grows like N1.56 (thick black line) while for the symmetric case (each point is the 
average over 2000 runs) the same numerical experiment yields a N  dependence.
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Finally, we believe that the geometric approach presented here may be extended to include more complicated 
networks. In particular, a foodweb system, like the one considered in Ref. 37 has a few levels (primary producers, 
predators, top predators etc.), within each of which di�erent species compete, but the top levels depend on con-
suming individuals from lower levels. Similarly, in a plant-pollinator and other mutualistic network like those 
considered in Ref. 38, the two networks are interdependent. In both cases the theory of dependent networks39 
may be relevant. �e e�ect of di�erent architectures, like the modular structure found in food webs40 and the 
nested structure associated with mutualistic networks41,42 is also an interesting factor, and one would like to study 
this is the context of network dynamics. We hope to address these topics in subsequent publications.

Methods
Our aim is to �nd the number of SU states for a community of competing species described by the generalized 
Lotka-Volterra equation1. Commonly the ci,js are drawn independently from a uniform, positive semi-de�nite, 
distribution with a given mean and variance22,26. A ci,j matrix (for simplicity the examples are given for the sym-
metric case) may look like,







. . .
. . .
. . .
. . .







.

0 0 95 1 63 0 96

0 95 0 0 48 0 97

1 63 0 48 0 1 12

0 96 0 97 1 12 0

Since we used a Gamma distribution in our simulations, we denote this as the Gamma model.
�e mapping of this model to the maximum clique problem (which is clearly exact in the limit where all 

matrix elements are either zero or in�nite) involves two steps of simpli�cation. First we assume that all the ele-
ments of the ci,j matrix either are strictly zero or are equal to a �nite constant C · A, so the interaction matrix takes 
a form, say,













C

A A

A A

A A

0 0

0 0

0 0 0 0

0 0

,

where we introduced two constants, C and A, to distinguish between the overall strength of the competition and 
the matrix structure. In the SI (section III) we show how these constants should scale such that this “binary” 
model and the continuum Gamma model matrix elements will have the same mean and variance.

In the binary model every maximal clique is (trivially) stable, since the strength of competition between all 
species in such a clique is zero. However, if A is too small such a maximal clique may be invadable by one of the 
species outside the clique. In section III of the SI we show that this cannot happen if C is large enough (the condi-
tion is C >  1 −  p, where p is the fraction of zeros in the competition matrix). Above this critical C our maximum 
cliques are both stable and uninvadable, and one may replace the zero-A interaction matrix by the corresponding 
zero/in�nity matrix,







∞ ∞
∞ ∞

∞ ∞







.

0 0
0 0

0 0 0 0
0 0

Moreover, we provide in SI III numerical evidence to show that the number of cliques of this binomial model 
is an upper bound for the continuum competition (Gamma) model with the same mean and variance.
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