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Background. Invasive bacterial diseases cause significant disease and death in sub-Saharan Africa. Several are vaccine prevent-

able, although the impact of new vaccines and vaccine policies on disease patterns in these communities is poorly understood owing 

to limited surveillance data.

Methods. We conducted a hospital-based surveillance of invasive bacterial diseases in The Gambia where blood and cerebrospinal 

fluid (CSF) samples of hospitalized participants were processed. Three surveillance periods were defined in relation to the introduc-

tion of pneumococcal conjugate vaccines (PCVs), before (2005- 2009), during (2010–2011) and after (2012–2015) PCV introduc-

tion. We determined the prevalences of commonly isolated bacteria and compared them between the different surveillance periods.

Results. A total of 14 715 blood and 1103 CSF samples were collected over 11 years; overall, 1045 clinically significant organisms 

were isolated from 957 patients (972 organisms [6.6%] from blood and 73 [6.6%] from CSF). The most common blood culture isolates 

were Streptococcus pneumoniae (24.9%), Staphylococcus aureus (22.0%), Escherichia coli (10.9%), and nontyphoidal Salmonella 

(10.0%). Between the pre-PCV and post-PCV eras, the prevalence of S.  pneumoniae bacteremia dropped across all age groups 

(from 32.4% to 16.5%; odds ratio, 0.41; 95% confidence interval, .29–.58) while S. aureus increased in prevalence, becoming the 

most prevalent bacteria (from 16.9% to 27.2%; 1.75; 1.26–2.44). Overall, S. pneumoniae (53.4%), Neisseria meningitidis (13.7%), and 

Haemophilus influenzae (12.3%) were the predominant isolates from CSF. Antimicrobial resistance to common antibiotics was low.

Conclusions. Our findings demonstrate that surveillance data on the predominant pathogens associated with invasive disease is 

necessary to inform vaccine priorities and appropriate management of patients.

Keywords. invasive bacterial disease; bacteremia; meningitis; community-acquired infection; vaccine preventable disease.

Invasive bacterial diseases (IBDs) are a leading cause of disease 

and death, especially among children <5 years of age [1, 2]. Sub-

Saharan Africa (SSA) carries a disproportionate burden of these 

diseases and associated deaths [3]. In addition, microbiolog-

ical facilities and expertise are scarcely available in many SSA 

settings [4]. Limited etiological data, necessary to inform pre-

vention strategies, show that several pathogens are associated 

with IBDs in SSA with diverse distribution profiles across dif-

ferent age groups [2, 5]. The routine use of childhood vaccines, 

such as Haemophilus influenzae type b (Hib) conjugate vaccine 

and pneumococcal conjugate vaccines (PCVs) [6, 7], has sub-

stantially modified the epidemiological profile of owing due to 

the steep reduction in the prevalence of these 2 bacteria in dif-

ferent age groups [7, 8].

In The Gambia, with the introduction of routine infant immu-

nization with the Hib vaccine in 1997 [9], invasive Hib disease 

was reduced to negligible levels [10], although a small resurgence 

was described more than a decade later [11–13]. Subsequently, 

Streptococcus pneumoniae, Staphylococcus aureus, E.  coli, and 

nontyphoidal Salmonella (NTS) became the leading causes 

of bacteremia in the country [14]. In August 2009, a 7-valent 

PCV was introduced as part of the Expanded Programme on 

Immunisation (EPI); it was replaced by the 13-valent PCV 

(PCV13) in 2011. The introduction of PCV13 reduced the in-

cidence of invasive pneumococcal disease by 55% among young 

children in The Gambia [15]. The impact of PCV introduction 

in The Gambia on bacterial diseases in older children and adults, 

owing to the vaccine’s herd effect, has not yet been described.

The increasing threat from antimicrobial resistance remains 

a global challenge, resulting in longer durations of illness, mor-

tality, and prophylaxis failure [16]. This is particularly so in 

SSA, where the burden is substantial, the choice of effective 

antimicrobials is limited, and surveillance data for invasive 
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infections are lacking [17–19]. In addition to data on the prev-

alent bacterial pathogens associated with community and 

hospital-acquired invasive disease, hospital-based surveillance 

in resource limited settings should therefore include resistance 

patterns to commonly used antibiotics.

This study provides data on the main causes of postneonatal 

IBD in The Gambia and antibiotic susceptibility patterns over 

an 11-year period, between 2005 and 2015, during which PCV 

was introduced in the country. The data presented here are part 

of ongoing facility-based IBD surveillance.

METHODS AND MATERIALS

Study Setting and Population

The Gambia is a subtropical country in West Africa with a 

single wet season from June to October. Malaria is endemic, 

and peak transmission occurs from July to November during 

the rains; however, because of scaling up of malaria control 

interventions, a substantial decline has been observed in recent 

years [20]. Malnutrition remains a problem, with the prevalence 

of underweight, stunting, and wasting among children <5 years 

old estimated at 16.4%, 25.0%, and 4.3%, respectively [21]. The 

prevalence of human immunodeficiency virus (HIV) among 

adults aged 15–49 years remains low and was estimated at 2.1% 

in 2015 [22].Vertical transmission is low among mothers with 

HIV receiving prophylaxis and treatment [23]. Infant EPI vac-

cine coverage is high, above 95% for the BCG vaccine and above 

90% and 80%, respectively, for a single dose and 3 doses of the 

diphtheria-pertussis-tetanus vaccine in all regions [24]. The 

Hib vaccine is given at birth and at 2, 3, 4, and 16 months of age, 

and the PCV at 2, 3, and 4 months of age. The vaccine against 

Neisseria meningitidis group A (MenAfriVac) has been used in 

mass campaigns during outbreaks but has not been rolled out as 

part of the EPI schedule [10, 25, 26].

This hospital-based surveillance was conducted at the 

Clinical Services Department (CSD) of the Medical Research 

Council (MRC) Unit The Gambia (MRCG) at the London 

School of Hygiene and Tropical Medicine, situated 12 km 

from the capital, Banjul. The CSD has provided primary- and 

secondary-level care to sick individuals from the surrounding 

population, MRCG research study participants, ad a small 

number of patients referred from other clinics since the late 

1950s. Approximately 50 000 patients of all ages are seen each 

year in the outpatient department, and 1400 are hospitalized in 

the 42-bed ward. It is the only health facility in The Gambia 

where microbiological cultures are routinely obtained in 

patients with suspected IBD. Blood and cerebrospinal fluid 

(CSF) samples are routinely collected for bacterial culture from 

patients with suspected sepsis and meningitis. 

Patients with suspected sepsis are treated empirically with 

ampicillin and gentamicin, and those with suspected men-

ingitis are treated empirically with ceftriaxone. Treatment is 

subsequently modified by clinical response and laboratory 

results. MRCG research study participants are recruited from 

other surrounding health facilities, with clinical samples sent 

to the MRCG clinical laboratories for processing using similar 

methods to those used for non–research study patients. Blood 

and CSF samples are collected only from referred patients who 

require admission on the MRC ward.

Microbiological Procedures

As part of this surveillance, bacterial isolates were obtained 

from blood using an automated blood-culture system (BACTEC 

9050; Becton Dickinson), following the manufacturer’s 

instructions for quality control and blood volume requirements. 

Commercially produced BD BACTEC PEDS/Plus/F culture 

bottles were used for specimens obtained from children (aged 

1 month to 15 years) and BD BACTEC Plus Aerobic/F* and Plus 

Anaerobic/F* culture bottles for specimens from adults (aged 

>15 years), as described elsewhere [14, 27]. CSF samples were 

processed according to World Health Organization protocol 

[28]. Standard microbiological procedures were performed, 

as described elsewhere for all pathogens [10]. In summary, 

pneumococcal isolates were identified using optochin disk sus-

ceptibility tests on blood agar in 5% carbon dioxide and bile 

solubility tests to confirm resistant isolates [27]. H. influenzae 

were serotyped by latex agglutination [10], and S. aureus were 

identified using coagulase and mannitol. For other isolates, 

further identification was done as appropriate for the path-

ogen. All normal skin flora isolates (coagulase-negative 

staphylococci, Bacillus species, Micrococcus spp., diphtheroids, 

Propionibacterium spp., and Bacillus spp. other than Bacillus 

anthracis) were regarded as clinically nonsignificant. 

Antimicrobial sensitivity patterns were determined by 

means of Kirby-Bauer disk diffusion on Mueller-Hinton agar 

and interpreted according to the relevant Clinical Laboratory 

Standard Institute guidelines on antimicrobial agents [29]. 

Antibiotics tested as relevant to each pathogen included ampi-

cillin, gentamicin, tetracycline, cotrimoxazole, chloramphenicol, 

ciprofloxacin, cefoxitin (to infer susceptibility to methicillin), 

and cefotaxime (BD Oxoid). Appropriate American Type 

Culture Collection controls were consistently used for the anti-

biotic susceptibility testing. Invasive bacteria isolates (blood and 

CSF) were stored at −70°C as part of routine microbiological sur-

veillance. Samples were processed at the clinical microbiology 

laboratory, which is Good Clinical Laboratory Practice (2010) 

and ISO (International Organization for Standardization) 15189 

(2015) accredited and submits to the external quality control as-

sessment of the Kenya Accreditation Service in accordance with 

international quality systems for laboratories.

Statistical Analysis

Data were extracted from clinic and laboratory databases for re-

search study participants and non–research study patients. All 
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relevant invasive bacterial isolates within the study period were 

included in the analysis. We assumed each presentation of a pa-

tient as independent but considered patients with multiple pos-

itive cultures with the same pathogen, obtained within 4 weeks 

of each other, as the same episode, which was therefore only re-

ported once. We also considered an observation to be repeated 

if the same patient was associated with different specimen types 

(blood and CSF sample). 

Bacterial etiology patterns and trends were compared be-

tween surveillance periods defined by the introduction of PCVs, 

as follows: before PCV introduction (January 2005 to December 

2009), PCV introduction and rollout (January 2010 to December 

2011), and after PCV introduction (January 2012 to December 

2015). Crude odds ratios for IBD, comparing post-PCV and pre-

PCV periods, were obtained using logistic regression. To address 

confounding by age, we stratified the analyses by age. Missing 

values were excluded likewise, and because <1% of variables had 

missing values, imputation methods were not considered, and 

a complete case analysis was deemed adequate. The descriptive 

analysis for this study were carried out using Stata 13.1 software 

and the R Version 3.4.4 Plotly package for the graphs.

Ethical Review and Approval

Clinical samples were collected for standard clinical manage-

ment, and the results were anonymized for analytical purpose. 

The surveillance received ethical approval from the joint MRC/

Gambia government ethics committee.

RESULTS

Between January 2005 and December 2015, a total of 14 715 

blood and 1103 CSF samples were processed for bacterial cul-

ture (Figure 1). The median age of patients with IBD was 4 years 

(interquartile range, 1–31 years).

Bacteremia

The number of blood culture samples processed was higher 

during the pre-PCV period (2005–2009) than during the post-

PCV period, peaking in 2008 (Figure 2A). Of the samples cul-

tured, 1876 (12.7%) were positive for any pathogen, of which 

972 (51.8%) were considered clinically significant and 904 

(48.2%) clinically nonsignificant or contaminants. The overall 

prevalence of clinically significant bacteremia was 6.6% (972 of 

14 715) and ranged from 5.9% in the pre-PCV to 8.5% in the 

post-PCV period. The predominant clinically significant bac-

terial isolates in blood cultures were S. pneumoniae (25% [242 

of 972]), S. aureus (22% [214 of 972]), E. coli (11% [106 of 972]), 

and NTS (10% [97 of 972]) (Figure 1). We also observed a sea-

sonal pattern of infections, with S. pneumoniae more common 

during the dry season and S. aureus infections more common 

during the wet season (Supplementary Figure 1). However, 

exceptions were observed in 2010 and 2011 for S. aureus, where 

the overlap started, and in 2014 for S. pneumoniae, which saw a 

steep surge in prevalence (Figure 2A). No distinct seasonal pat-

tern was observed with other organisms.

Overall and age-specific prevalences of all blood cul-

ture isolates by vaccine surveillance period re summarized 

in Table 1. In addition to the significantly decreased odds of 

S.  pneumoniae bacteremia (odds ratio, 0.41; 95% confidence 

interval, .29–.58) and increased odds of S. aureus bacteremia 

(1.75; 1.26–2.44) among all age groups in the post-PCV surveil-

lance period, we observed a 9-fold increase in the odds of bac-

teremia due to N. meningitidis. We observed no change in the 

E. coli but did note a decrease in NTS. When results were strat-

ified by age, the most significant reduction in S. pneumoniae 

bacteremia was noted among children aged 2–23 months and 

adults ≥15  years. Likewise, the increases in S. aureus bacte-

remia was among children aged 2–23 months. No differences 

were observed between study periods for other common bac-

teria. The prevalence of the predominant pathogens by year is 

summarized in Figure 2A and shows a sustained increase on 

S. aureus bacteremia over the study periods along with a de-

cline in S. pneumoniae.

Meningitis

Eighty-three (7.5%) of CSF samples cultured were positive, the 

majority (87.9% [73 of 83]) of which were considered clinically 

significant, representing 6.6% of the overall samples. Overall, the 

most common clinically significant isolates were S. pneumoniae 

(53% [39 of  73]), N.  meningitidis (14% [10 of  73]), and 

H. influenzae (12% [9 of 73]) (Table 2). We observed a consid-

erably higher number of CSF samples processed in the pre-PCV 

period, during which there was a corresponding increase in the 

isolation of S. pneumoniae (Figure 2B). S. pneumoniae was the 

predominant cause of meningitis in the pre-PCV period (67% 

[33 of 49] compared with 26% [5 of 19] after PCV introduction; 

P  =  .002). However, the prevalence of S.  pneumoniae menin-

gitis gradually declined from 2008, before the introduction of 

PCV. N. meningitidis increased in the post-PCV compared with 

the pre-PCV period (from 6.1% to 31.6%; odds ratio, 7.08; 95% 

confidence interval, 1.55–32.24), becoming the most prevalent 

bacteria in this latter period.

Dual Infections and Coinfections

The same pathogen was isolated from concomitant blood and 

CSF samples of 36 patients (17 S. pneumoniae, 6 N. meningitidis, 

5 H.  influenzae, and 4 S.  aureus). Twenty-three patients had 

coinfections with >1 pathogen; S. aureus was the most common 

(n = 12), coinfected with group A or group B streptococci (each 

n  =  3), S.  pneumoniae (n  =  3), and NTS, H.  influenzae, and 

N. meningitides (each n = 1).

Antimicrobial Resistance

Antimicrobial resistance was low for the clinically rele-

vant antimicrobial. as recommended by the World Health 
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Organization [30]. S. pneumoniae was highly sensitive to peni-

cillin, ampicillin, and gentamicin (Figure 3A). Similarly, S. au-

reus was sensitive to cefoxitin, the surrogate for methicillin and 

gentamicin (Figure 3B). Only 4 cases of invasive methicillin-

resistant S. aureus (1.9%) were found. In addition, resistance to 

gentamicin and cephalosporins was low for NTS (Figure 3C) 

and E. coli (Figure 3D). There was no increase in resistance over 

the study periods.

DISCUSSION

This study provides 11  years of data on the trends of the 

major clinically significant pathogens responsible for IBD 

among inpatients in urban Gambia. For the first time we have 

shown how these major bacteria have changed in relation to 

the introduction of PCV, with S.  aureus and N.  meningitidis 

replacing S.  pneumoniae as the major causes of bacteremia 

and meningitis, respectively. The findings of the current study 

underscore the need for routine hospital microbiological 

surveillance.

The decline of S. pneumoniae as the main cause of bacteremia 

mirrors the corresponding rise in the predominance of S. au-

reus. Population-based surveillance in rural Gambia has shown 

a 55% decrease in the incidence of invasive pneumococcal di-

sease among infants aged 2–23 months after the introduction 

of PCV [15]. Our hospital-based surveillance data support 

Samples received

Positive cultures

Clinically nonsignificant

pathogens

Blood isolates

972

CSF isolates

73

14715 Blood

1103 CSF

1876 Blood

904 Blood

10 CSF

242 Streptococcus pneumoniae 39 Streptococcus pneumoniae

10 Neisseria meningitidis

6 Haemophilus influenzae

5 Staphylococcus aureus

4 Escherichia coli

214 Staphylococcus aureus

106 Escherichia coli

46 Klebsiella species

33 Pseudomonas species

32 Haemophilus influenzae

16 Neisseria meningitidis

16 Salmonella Typhi

12 H. influenzae type b

3 H. influenzae type b

1 Klebsiella species

1 Pseudomonas species

3 Other gram-negative bacteria

1 Nontyphoidal Salmonella

97 Nontyphoidal Salmonella

73 Other gram-negative bacteria

58 Other gram-positive bacteria

20 Group A streptococci

7 Group B streptococci

Clinically significant

pathogens

972 Blood

73 CSF

83 CSF

Negative cultures

12839 Blood

1103 CSF

Figure 1. Sampling profile and pathogen outcome from blood and cerebrospinal fluid (CSF).
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the previous denominator-based findings and, in addition, 

show a decrease in the prevalence of invasive disease among 

nonvaccinated older children and adults. 

Interestingly, the decrease in S.  pneumoniae prevalence, 

along with the increase in S. aureus, started before the intro-

duction of PCVs. The reason for these changes remain unclear, 

given that no major public health interventions that could 

have resulted in a rapid epidemiological shift were introduced 

around the same time. Nevertheless, years after the introduc-

tion of the wider serotype-covering PCV13, S.  pneumoniae 

remains an important cause of invasive disease across all age 

groups (second most cause of both bacteremia and menin-

gitis). Recent data from The Gambia have shown persistence of 

nasopharyngeal carriage of pneumococci of vaccine serotypes 

along with an increased carriage of nonvaccine serotypes [31]. 

Because carriage is a prerequisite for invasive disease, those 

data, along with our results, suggest that further improvement 

to widen the coverage of serotypes and schedule of PCV could 

have an additional impact.

S.  aureus was prevalent over the surveillance period but 

emerged as the primary cause of bacteremia in the post-PCV 

era being isolated in 30% of proven bacteremia cases among 

infants 2–23 months old. Although our study design precludes 

documenting an increase incidence of S.  aureus bacteremia, 

there is a global increase in incidence with a changing epide-

miology attributed to a range of factors such as vaccines, viru-

lence, invasive procedures, antibiotic resistance, and immune 

suppression [32, 33], underlying an urgent need for further 

studies and improved preventive strategies. In particular, the 

underlying source of S.  aureus bacteremia cases in low- and 

middle-income countries warrants further investigation, be-

cause these may be distinct from the prevalent causes in high-

income countries, such as intravenous drug use and nosocomial 

infections related to intravenous devices and catheters. Other 

factors, such as skin and soft-tissue infections, bone and joint 

infections, and endocarditis [34], are implicated in methicillin-

susceptible S. aureus bacteremia.

E.  coli and NTS were also important causes of bacte-

remia in our setting. Although the prevalence of E.  coli has 

remained stable, that of NTS significantly declined after PCV 

introduction, with the overall number of cases relatively 

small (n = 97). This is consistent with previous reports from 

rural Gambia [35], in which it has been associated with the 

decline in malaria infection, because malaria transmission is 

relatively low in the study setting [20]. In addition, multiple 

host risk factors described for invasive NTS, such as HIV in-

fection and poor sanitation, are low in prevalence, and with 

documented improvement in the latter [22, 36]. Only 10 cases 

of meningitis due to N. meningitidis were observed over the 

entire surveillance period, and these coincided with an out-

break in the Eastern region. More than 2 decades after the 

Hib vaccine was introduced, with near-elimination of inva-

sive disease in The Gambia and neighboring Senegal [10, 37], 

sporadic cases still occur, reinforcing the need for continued 

surveillance.

Antimicrobial resistance was generally low, including very 

few methicillin-resistant S.  aureus isolates compared with 

some SSA countries [17, 38]. Antimicrobial resistance for NTS 

in our setting has been described elsewhere [39], and resist-

ance to third-generation cephalosporins was low for E.  coli. 

However, overall ciprofloxacin resistance for E.  coli may war-

rant monitoring resistance quinolones for probable emergence 

of multidrug resistance [40]. Although resistance did not sig-

nificantly increase over the study period, overprescription of 

antibiotics needs to be monitored, and stringent control meas-

ures should be in place to encourage the use of guidelines [41], 

because alternative antibiotics strategies are limited in resource-

limited countries such as The Gambia.

The current study had several limitations intrinsic to the 

surveillance design. Because our data are hospital based, the 

Figure 2. Annual trends in major bacterial pathogens associated with invasive bacterial infections in The Gambia, 2005–2015, in relation to the introduction of pneumo-

coccal conjugate vaccines. A, Bacteremia. B, Meningitis.
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Table 1. Distribution of Blood Pathogens in the Different Vaccine Periods by Age Group

Pathogen by Age Group

Pathogens, No. (%) OR for  

Post-PCV vs  

Pre-PCV  

Periods 95% CI

Change in  

Post-PCV vs  

Pre-PCV  

Periods, %

P 

ValueTotal. 

Pre-PCV  

Period 

PCV  

Introduction

Post-PCV 

Period 

All age groups 972 494 126 352 … … … …

 Streptococcus pneumoniae 242 160 (32.4) 24 (19.0) 58 (16.5) 0.41 .29–.58 −15.9 <.001

 Staphylococcus aureus 214 87 (16.9) 31 (23.4) 96 (27.2) 1.75 1.26–2.44 10.3 <.001

 Escherichia coli 106 55 (11.1) 12 (9.5) 39 (11.1) 0.99 .64–1.54 0.0 .98

 NTS 97 61 (12.3) 8 (6.3) 28 (8.0) 0.61 .38–.98 −4.3 .04

 Other gram-negative bacteria 73 30 (6.1) 7 (5.6) 36 (10.2) 1.76 1.06–2.92 4.1 .03

 Other gram-positive bacteria 58 14 (2.8) 18 (14.3) 26 (7.4) 2.73 1.41–5.32 4.6 .002

 Klebsiella spp. 46 20 (4.0) 5 (4.0) 21 (6.0) 1.50 .80–2.82 2.0 .20

 Pseudomonas spp. 33 25 (5.1) 4 (3.2) 4 (1.1) 0.22 .07–.63 −4.0 <.001

 Haemophilus influenzae non– 

type b

32 9 (1.8) 8 (6.3) 15 (4.3) 2.40 1.04–5.55 2.5 .04

 GAS 20 14 (2.8) 1 (0.8) 5 (1.4) 0.49 .18–1.38 −1.4 .16

 Neisseria meningitidis 16 2 (0.4) 1 (0.8) 13 (3.7) 9.43 2.12– 42.07 3.3 <.001

 Salmonella Typhi 16 9 (1.8) 4 (3.2) 3 (0.9) 0.46 .12–1.72 −0.9 .23

 H. influenzae type b 12 5 (1.0) 1 (0.8) 6 (1.7) 1.70 .51–5.60 0.7 .38

 GBS 7 3 (0.6) 2 (1.6) 2 (0.6) 0.94 .16–5.63 0.0 .94

2–23 mo 332 173 39 120 … … … …

 S. aureus 92 38 (22.0) 11 (28.2) 43 (35.8) 1.98 1.18–3.33 13.8 .009

 S. pneumoniae 81 57 (32.9) 7 (17.9) 17 (14.2) 0.34 .18–.61 −18.7 <.001

 NTS 26 15 (8.7) 4 (10.3) 7 (5.8) 0.65 .26–1.65 −2.9 .36

 E. coli 26 14 (8.1) 1 (2.6) 11 (9.2) 1.15 .50–2.62 1.1 .75

 H. influenzae non–type b 21 5 (2.9) 7 (17.9) 9 (7.5) 2.72 .89–8.34 4.6 .07

 Other gram-negative bacteria 19 5 (2.9) 2 (5.1) 12 (10.0) 3.73 1.28–10.89 7.1 .01

 Other gram-positive bacteria 17 10 (5.8) 1 (2.6) 6 (5.0) 0.86 .30–2.43 −0.8 .77

 Klebsiella spp. 16 8 (4.6) 2 (5.1) 6 (5.0) 1.09 .37–3.21 0.4 .88

 Pseudomonas spp. 10 8 (4.6) 1 (2.6) 1 (0.8) 0.17 .02–1.40 −3.8 .12

 GAS 9 7 (4.0) 0 (0) 2 (1.7) 0.40 .08–1.97 −2.3 .23

 H. influenzae type b 6 3 (1.7) 1 (2.6) 2 (1.7) 0.96 .16–5.84 0.0 .96

 GBS 5 2 (1.2) 1 (2.6) 2 (1.7) 1.45 .20–10.43 0.5 .71

 N. meningitidis 3 1 (0.6) 0 2 (1.7) 1.06 .26–32.52 1.1 .37

 S. Typhi 1 0 1 (2.6) 0 … … NA …

24–59 mo 145 61 27 57 … … … …

 S. pneumoniae 41 20 (32.8) 7 (25.9) 14 (24.6) 0.67 .30–1.49 −8.2 .32

 S. aureus 33 10 (16.4) 9 (33.3) 14 (24.6) 1.66 .67–4.11 8.2 .27

 NTS 18 10 (16.4) 1 (3.7) 7 (12.3) 0.71 .25–2.02 −4.1 .52

 Other gram-positive bacteria 10 2 (3.3) 4 (14.8) 4 (7.0) 2.23 .39–12.65 3.7 .35

 E. coli 8 2 (3.3) 2 (7.4) 4 (7.0) 2.23 .39–12.65 3.7 .35

 Other gram-negative bacteria 8 6 (9.8) 1 (3.7) 1 (1.8) 0.16 .02–1.40 −8.0 .05

 N. meningitidis 7 1 (1.6) 1 (3.7) 5 (8.8) 5.77 .64–50.98 7.2 .07

 Klebsiella spp. 6 2 (3.3) 1 (3.7) 3 (5.3) 1.64 .26–10.19 2.0 .59

 H. influenzae non–type b 4 3 (4.9) 0 1 (1.8) 0.35 .03–3.42 −3.1 .33

 GAS 4 1 (1.6) 1 (3.7) 2 (3.5) 2.18 .19–24.74 1.9 .52

 Pseudomonas spp. 2 1 (1.6) 0 1 (1.8) 1.07 .07–17.54 0.2 .96

 H. influenzae type b 2 1 (1.6) 0 1 (1.8) 1.07 .07–17.54 0.2 .96

 GBS 1 1 (1.6) 0 0 1.00 1.00–1.00 NA …

 S. Typhi 1 1 (1.6) 0 0 1.00 1.00–1.00 NA …

5–14 y 127 45 23 59 … … … …

 S. aureus 42 13 (28.9) 6 (26.1) 23 (39.0) 1.57 .69–3.61 10.1 .28

 S. pneumoniae 24 13 (28.9) 3 (13.0) 8 (13.6) 0.39 .14–1.03 −15.3 .054

 Other gram-negative bacteria 14 5 (11.1) 3 (13.0) 6 (10.2) 0.91 .26–3.18 −0.9 .88

 NTS 11 6 (13.3) 2 (8.7) 3 (5.1) 0.35 .08–1.48 −8.2 .14

 Other gram-positive bacteria 9 0 5 (21.7) 4 (6.8) 1.00 1.00–1.00 NA NA

 S. Typhi 6 3 (6.7) 2 (8.7) 1 (1.7) 0.24 .02–2.40 −5.0 .19

 E. coli 5 0 1 (4.3) 4 (6.8) 1.00 1.00–1.00 NA …

 Klebsiella spp. 4 2 (4.4) 0 2 (3.4) 0.75 .10–5.57 −1.0 .78
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observed changes in pathogen prevalence were dependent on 

sampling and may not reflect changes in disease incidence. It 

is a retrospective analysis, and any changes in case ascertain-

ment, amount of sample volume collected, or health-seeking 

behavior in the population may have modified the overall yield 

of bacteria. Although the case ascertainment for patients seen 

at the MRCG CSD did not change over the surveillance period, 

there were several research studies during the period, each with 

different age inclusion criteria. Although this might not have 

changed the distribution of pathogens, it probably increased 

the number of isolates in some years compared with others. The 

linking of clinical data associated with microbiological findings 

is an another limitation. In addition, we could not determine 

what proportion of patients had received the PCV. Finally, 

we determined antimicrobial sensitivity using disk diffusion 

without final confirmation by Etest, which may have resulted 

Table 2. Distribution of Cerebrospinal Fluid Pathogens in the Different Vaccine Periods (All Age Groups)

Pathogen

Pathogens, No. (%) OR for  

Post-PCV vs  

Pre-PCV  

Periods 95% CI

Change in  

Post-PCV vs  

Pre-PCV  

Periods, %

P 

ValueTotal

Pre-PCV 

Period

PCV  

Introduction 

Post-PCV  

Period 

All pathogens 73 49 5 19 … … … …

Streptococcus pneumoniae 39 33 (67.3) 1 (20.0) 5 (26.3) 0.17 .05–.57 −41.0 .002

Neisseria meningitidis 10 3 (6.1) 1 (20.0) 6 (31.6) 7.08 1.55–32.24 25.5 .009

Haemophilus influenzae non– 

type b

6 3 (6.1) 2 (40.0) 1 (5.3) 0.85 .85–8.74 −0.8 .89

Staphylococcus aureus 5 3 (6.1) 0 2 (10.5) 1.80 .28–11.75 4.4 .55

Escherichia coli 4 2 (4.1) 1 (20.0) 1 (5.3) 1.31 .11–15.30 1.2 .83

H. influenzae type b 3 2 (4.1) 0 (0.0) 1 (5.3) 1.31 .11–15.30 1.2 .83

Other gram-negative bacteria 3 1 (2.0) 0 2 (10.5) 5.65 .48–66.32 8.5 .55

Nontyphoidal Salmonella 1 1 (2.0) 0 0 1.00 1.00–1.00 NA NA

Klebsiella spp. 1 0 0 1 (5.3) 1.00 1.00–1.00 NA NA

Pseudomonas spp. 1 1 (2.0) 0 0 1.00 1.00–1.00 NA NA

Abbreviations: CI, confidence interval; NA, not available; OR, odds ratio; PCV, pneumococcal conjugate vaccine.

Table 1. Continued

Pathogen by Age Group

Pathogens, No. (%)
OR for  

Post-PCV vs  

Pre-PCV  

Periods 95% CI

Change in  

Post-PCV vs  

Pre-PCV  

Periods, %

P 

ValueTotal. 

Pre-PCV  

Period 

PCV  

Intro-

duction

Post-

PCV 

Period 

 Pseudomonas spp. 4 2 (4.4) 1 (4.3) 1 (1.7) 0.37 .03–4.22 −2.7 .42

 N. meningitidis 4 0 0 4 (6.8) 1.00 1.00–1.00 NA …

 H. influenzae non–type b 3 0 0 3 (5.1) 1.00 1.00–1.00 NA …

 H. influenzae type b 1 1 (2.2) 0 0 1.00 1.00–1.00 NA …

 GAS 0 0 0 0 NA NA NA NA

 GBS 0 0 0 0 NA NA NA NA

≥15 y 359 210 36 113 … … … …

 S. pneumoniae 93 69 (32.9) 6 (16.7) 18 (15.9) 0.39 .22–.69 −17.0 <.001

 E. coli 66 38 (18.1) 8 (22.2) 20 (17.7) 0.97 .54–1.77 −0.4 .93

 S. aureus 47 26 (12.4) 5 (13.9) 16 (14.2) 1.17 .60–2.28 1.8 .65

 NTS 42 30 (14.3) 1 (2.8) 11 (9.7) 0.65 .31–1.35 −4.6 .23

 Other gram-negative bacteria 30 12 (5.7) 1 (2.8) 17 (15.0) 2.92 1.34–6.36 9.3 .006

 Other gram-positive bacteria 22 2 (1.0) 8 (22.2) 12 (10.6) 10.94 2.38– 50.33 9.6 <.001

 Klebsiella spp. 18 7 (3.3) 2 (5.6) 9 (8.0) 2.51 .91–6.93 4.7 .08

 Pseudomonas spp. 17 14 (6.7) 2 (5.6) 1 (0.9) 0.12 .02–.96 −5.8 .008

 S. Typhi 8 5 (2.4) 1 (2.8) 2 (1.8) 0.74 .14–3.87 −0.6 .72

 GAS 7 6 (2.9) 0 1 (0.9) 0.30 .04–2.55 −2.0 .21

 H. influenzae non–type b 3 1 (0.5) 1 (2.8) 1 (0.9) 1.87 .12–.12 0.4 .66

 H. influenzae type b 3 0 0 3 (2.7) 1.00 1.00–1.00 NA …

 N. meningitidis 2 0 0 2 (1.8) 1.00 1.00–1.00 NA …

 GBS 1 0 1 (2.8) 0 … … NA …

Abbreviations: CI, confidence interval; GAS, group A streptococci; GBS, group B streptococci; NA, not available; NTS, nontyphoidal Salmonella; OR, odds ratio; PCV, pneumococcal conju-

gate vaccine.
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in an overestimation of the prevalence of antibiotic resistance 

levels. Still, results show a low prevalence of antibiotic resistance 

and no trends for an increase.

Our long surveillance data have shown that S.  aureus and 

N.  meningitis have emerged as the leading causes of bacte-

remia and meningitis, respectively, in urban Gambia, while 

S. pneumoniae remains a leading cause of IBD, even after the in-

troduction of PCV13. The changing epidemiology of IBD makes 

a compelling case for regular microbiological and antimicrobial 

surveillance data, which is lacking in SSA. Not only are such data 

necessary for healthcare workers to inform appropriate antibi-

otic prescribing practices, but they are also vital for prioritizing 

vaccine development, for emerging pathogens such as S. aureus 

and optimizing schedules of current vaccines. New vaccines 

targeting S. aureus should focus on young infants and older chil-

dren, among whom the prevalence of IBD is highest.
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