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Abstract. This paper focuses on the use of community-based

early warning systems for flood resilience in Nepal. The first

part of the work outlines the evolution and current status

of these community-based systems, highlighting the limited

lead times currently available for early warning. The second

part of the paper focuses on the development of a robust op-

erational flood forecasting methodology for use by the Nepal

Department of Hydrology and Meteorology (DHM) to en-

hance early warning lead times. The methodology uses data-

based physically interpretable time series models and data as-

similation to generate probabilistic forecasts, which are pre-

sented in a simple visual tool. The approach is designed to

work in situations of limited data availability with an em-

phasis on sustainability and appropriate technology. The suc-

cessful application of the forecast methodology to the flood-

prone Karnali River basin in western Nepal is outlined, in-

creasing lead times from 2–3 to 7–8 h. The challenges faced

in communicating probabilistic forecasts to the last mile of

the existing community-based early warning systems across

Nepal is discussed. The paper concludes with an assessment

of the applicability of this approach in basins and countries

beyond Karnali and Nepal and an overview of key lessons

learnt from this initiative.

1 Introduction

Nepal is considered one of the most disaster-prone countries

in the world (NRRC, 2011). Alongside other natural hazards,

such as earthquakes and landslides, flooding poses a recur-

rent risk to large sections of the population. Between 1971

and 2011, 3520 flood events were recorded, causing 3329

deaths and affecting 3.9 million people (DesInventar, 2015).

Detailed analysis of two recent flood events, the 1993 cen-

tral Nepal floods (NCVST, 2009), and the Koshi embank-

ment breach in 2008 (Dixit, 2009) highlights the extent to

which vulnerability contributes to flood risk. Vulnerability

stems from multiple sources (Khanal et al., 2015) but is in-

creased by poor disaster preparedness and risk management

on both the individual and institutional levels. Section 2 out-

lines in more detail the nature of the flood risk in a major

river basin in Nepal, the Karnali River basin.

Improving the flood resilience of communities and infras-

tructure in Nepal is a priority for the national government

(NRRC, 2011; MoHA, 2015) and the international commu-

nity. This has led to various initiatives, such as the World

Bank funded “Building Resilience to Climate Related Haz-

ards” programme (http://brch.dhm.gov.np/), and engagement

from regional institutions such as the “Regional Integrated

Multi-Hazard Early Warning System for Africa and Asia”

(RIMES, http://www.rimes.int). Both of these initiatives col-

laborate with the government of Nepal, particularly the De-

partment of Hydrology and Meteorology, to build institu-

tional capacity for anticipating future floods through activ-

ities such as expanding the hydrological and meteorological

station network or developing prototype forecasting systems.

An approach to improving flood resilience, the devel-

opment of which has been supported by international

non-governmental organizations (INGOs), is the use of

community-based early warning systems (CBEWSs). A

CBEWS is an early warning system (EWS) where commu-

nities are active participants in the design, monitoring and
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management of the EWS, not just passive recipients of warn-

ings. Community-based flood early warning systems are in

place in a wide range of countries, for example in Malawi

with support from Christian Aid (Brown, 2014), in Indonesia

(e.g. in the Binajaan basin Practical Action and Mercy Corps,

2012) and in Cambodia (Kandal Province) with support from

the national societies Red Cross and Red Crescent (IFRC,

2010). In 2002, Practical Action piloted a CBEWS for floods

in the East Rapti–Narayani river basin in Nepal and has since

expanded CBEWS into a wide number of other basins in and

beyond Nepal, including the Karnali River basin (Shukla and

Mall, 2016; Practical Action and Mercy Corps, 2012).

Section 3 outlines the evolution, current status and ongo-

ing limitations of CBEWSs in Nepal, focusing on the Karnali

River basin. While successful at saving lives, the often lim-

ited lead time (2–3 h in the Karnali River basin) means that

CBEWSs may not be adequate for saving assets or liveli-

hoods (Zurich, 2015). Increasing the lead time, hence the

time available for action (while maintaining the accuracy and

precision of the warning), would allow for a more proac-

tive response to flood risk. To this end, Sect. 4 outlines the

desirable properties of a forecasting system designed to en-

hance CBEWSs within Nepal. Section 5 presents a robust

operational flood forecasting system developed in response

to these requirements. Results from an experimental applica-

tion in the flood-prone Karnali River basin in western Nepal

are given in Sect. 6. Section 7 discusses ongoing pilot studies

incorporating forecasts of the type outlined into CBEWSs.

The conclusions (Sect. 8) summarize the key lessons that can

be drawn from this initiative.

2 Flood risk in Nepal

Nepal is bordered by the Himalayas in the north and the In-

dian plains to the south (Shrestha et al., 2008). The country

has a diverse topography, which can be classified into five

physiographic zones extending from the east to the west of

the country (NCVST, 2009). From south to north these are

the Terai plains, Siwalik Hills, the Middle Hills, the High

Mountains and the High Himalayas (Zurich, 2015).

Figure 1 shows the main rivers in Nepal. There are ma-

jor snow-fed rivers, such as the Koshi, Gandaki, Karnali and

Mahakali, along with mid-size rain-fed rivers such as Mechi,

Kankai, Bagmati, East Rapti, West Rapti and Babai. In addi-

tion, there are intermittent rivers originating from the Siwalik

Hills that are subject to frequent flash floods and carry high

sediment loads (Sharma, 1997), despite having no significant

flow outside of the monsoon season.

The Karnali River basin lies in western Nepal (see

Fig. 1). The Karnali River is a perennial transboundary river

that originates in the Himalayas. It has three main tribu-

taries (West Seti, Bheri and Karnali), which drain an area

of 45 000 km2 above the Chisapani gauge station (Zurich,

2015). The Chisapani gauge station marks the boundary be-

Figure 1. Map of Nepal showing the major river basins.

Figure 2. Detailed map of the Karnali River basin, including to-

pographic detail and the location of monitoring stations within the

catchment.

tween the upper catchment dominated by steep-sided moun-

tainous valleys and the lower catchment consisting of a flood

plain that runs to the Indian border (Fig. 2).

The climatic regime of the Karnali River basin is af-

fected by the monsoon (June–September) and westerly cir-

culation systems, with the former being dominant (Gautam

and Phaiju, 2013). Analysing the historical records made

available by the Nepal Department of Hydrology and Me-

teorology (DHM) indicates that the 70–80 % of the annual

total precipitation and river flow occurs during the monsoon

(Gautam and Phaiju, 2013; Shrestha et al., 2014). Snow melt

contributes to pre-monsoon and post-monsoon stream flow.

The concentrated period of high rainfall results in dramatic

changes in flow and water level from summer to winter. For

example, the changes in water level shown in Fig. 3 represent

a change in discharge from around 500 to 10 000 m3 s−1.

Despite the strong seasonal pattern in river flows in the

Karnali River basin, forecasting is still challenging. During
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Figure 3. An example year of data for the Karnali River basin showing the observed water level at Chisapani (lower pane) and rainfall

recorded at the three gauges (Chisapani, Dipayal and Asaraghat). Note the spatial variability in the rainfall and, even in this comparatively

dry monsoon, the river range of approximately 7 m.

the monsoon there is a high variability in magnitude, duration

and intensity of precipitation at the macro- and micro-scales

(NCVST, 2009). Assessing the impact of this is problematic

due to limited understanding of the response of river flow

to the high intensity and short duration precipitation events,

which trigger floods downstream (Shrestha et al., 2008). The

production of forecasts is further complicated by Nepal’s dy-

namic geomorphology coupled with topographic and geolog-

ical constraints, which makes the collection of reliable data

difficult (Nepal et al., 2014).

Significant flood events have occurred in the Karnali River

basin in 1983, 2009, 2013 and most recently 2014 (Zurich,

2015). In the Karnali River basin, as with other basins in

Nepal, flooding has a particular impact on communities re-

siding in the Terai (NCVST, 2009), affecting livelihoods and

especially affecting subsistence agriculture in the floodplains

(Zurich, 2015). Floods kill livestock, which is of critical im-

portance to poor communities, with 14 571 cows, pigs, chick-

ens and goats killed in the 2008 Koshi flood (Baral, 2009).

Floods also deposit sand on farmland, negatively affecting

agricultural livelihoods and food production (Gautam and

Dulal, 2013). As well as damage to lives, livelihoods and

property, floods damage critical roads, communication in-

frastructure and power supplies, significantly impacting de-

velopment (Gautam and Dulal, 2013).

In the Karnali River basin, a CBEWS has been success-

fully operating (in the lower catchment, which lies on the

Terai) since 2010. This CBEWS has been initiated by the

INGO Practical Action working alongside the DHM. Sec-

tion 3 provides further details on the CBEWS in Karnali.

3 Community-based early warning systems

Early warning systems (EWSs) are defined as “the set of

capacities needed to generate and disseminate timely and

meaningful warning information to enable those threatened

by a hazard to prepare and act appropriately and in sufficient

time to reduce the possibility of harm or loss” (UNISDR,

2006). Early warning is a key component of disaster risk re-

duction. Enhancement of risk monitoring and early warning

is the second priority of the Hyogo Framework for Action

2005–2015 (UN, 2005) and a key component of the current

Sendai Framework for Action 2015–2030 (UN, 2015).

The Hyogo Framework prioritized the development of

people-centred early warning systems encompassing four

critical components: risk knowledge, monitoring and warn-

ing, dissemination and communication and response capa-

bility (UNISDR, 2006; UN, 2005; IFRC, 2010). Effective

EWSs provide warnings that are accurate, timely and under-

standable, enabling at-risk groups to respond appropriately

(Shrestha et al., 2014). Weakness in any of the four key ar-

eas can result in EWS failure (UNISDR, 2006; Kundzewicz,

2013).

Community-based early warning systems (CBEWSs),

such as those outlined in this paper, are people centric, help-

ing communities use local resources and capacities to ef-

fectively prepare for and respond to flood events. This en-

ables communities to reduce their vulnerability to flood risks

(Mercy Corps and Practical Action, 2010). In a CBEWS the

communities are active participants not just in the design but

also in the ongoing monitoring and management. As out-

lined in the remainder of this section, community involve-

ment at all levels in CBEWSs often entails an emphasis on
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end-mile dissemination and the use of sustainable and appro-

priate technology.

3.1 Community-based early warning systems

(CBEWSs) in Nepal

The first CBEWS in Nepal was piloted by the INGO Practi-

cal Action in 2002 for the East Rapti River (Practical Action,

2008). This initial pilot was enhanced and extended, expand-

ing over the next 10 years to cover eight river basins across

Nepal (Karnali, West Rapti, Babai, East Rapti, Narayani,

Bagmati, Kankai and Koshi basins) (Gautam and Phaiju,

2013). Over the past 5 years, the CBEWSs have become

increasingly integrated with EWS provided by the national

government, whilst maintaining community driven and man-

aged features.

This section will focus on the CBEWS in place in one

major river basin, the Karnali River basin in western Nepal.

The Karnali CBEWS considers all four key EWS compo-

nents listed in the Hyogo framework (risk knowledge, mon-

itoring and warning, dissemination and communication, and

response capability), as will be outlined below.

3.1.1 Risk knowledge

Risk knowledge involves assessing and mapping key haz-

ards, vulnerabilities and exposure (UNISDR, 2005). At the

community level, this information can be discussed and

documented through Community Risk Assessments (IFRC,

2012) such as Participatory Vulnerability and Capacity As-

sessments (PVCAs). In a CBEWS an emphasis is placed

on community actors having awareness and understanding

of risk (vulnerability, capabilities, exposure and hazards)

(IFRC, 2010; Mercy Corps and Practical Action, 2010).

Early CBEWSs in Karnali worked directly with communities

to map historic flood events and to determine the relationship

between observed river height at an upstream location and

expected inundation downstream. Upstream “warning” and

“danger” water levels were then established based on past

floods (Gautam and Phaiju, 2013). Later CBEWSs in Kar-

nali derived these thresholds at a community level based on a

mixture of flood hazard mapping (carried out by DHM) and

community experience.

For Karnali, warning and danger levels of the river height

at Chisapani gauge station (upstream of flood-vulnerable

communities) were calculated to correspond to expected

river height in downstream communities. The danger and

warning levels at the Chisapani gauge station are intended

to correspond to

– Warning Level – condition when water reaches the top

of the riverbanks for the downstream site at risk,

– Danger Level – condition when water overflows the

riverbanks and water enters the communities and flood-

plains downstream.

Communities also identify safe locations and routes that

can be used for evacuation during floods via participatory

methods. These exercises combine scientific and community

knowledge to help communities gain a better understanding

of flood risk and take necessary steps during a flood event.

An acknowledged challenge is ensuring that the applied

danger and warning levels continue to correspond to the ac-

tual impact. This is a significant concern in an area like the

Karnali River basin, where the area at risk is a low-lying

inland delta with wide, shallow, naturally mobile channels.

These display significant sediment movement and braiding

and are subject to time varying human impact (irrigation

channels being cut, banks eroded due to vehicular river cross-

ing at low flows, etc.). In such an environment the accurate

spatial prediction of impacts is (at least) very challenging

and subject to significant uncertainties. Key to the success

of the CBEWS is the recognition of this and an acceptance

that community input is required in both the initial setting

and the ongoing revision of the levels used to trigger alerts

and warnings.

3.1.2 Monitoring and warning

EWSs require a monitoring and warning component, includ-

ing hazard monitoring, defining parameters and indicators

on which to base early warning, and ensuring accurate and

timely forecasts and alerts (UNISDR, 2005). In CBEWSs

communities are the active owners and drivers of their EWS,

engaged in monitoring and or analysis, rather than passive

receivers of early warning (IFRC, 2012).

Initially the CBEWSs trained community gauge readers to

monitor river levels and disseminate warnings to downstream

communities when river levels rose above the defined warn-

ing and danger thresholds (Mercy Corps and Practical Ac-

tion, 2010). Currently, in addition to the rising water level,

gauge readers also disseminate warnings when the observed

rainfall in the upstream catchment exceeds certain thresh-

olds that might trigger floods downstream. Community level

structures, such as Community Disaster Management Com-

mittees (CDMCs), also monitor and record information on

flood levels, duration and impact (Gautam and Phaiju, 2013).

Over the past decade, in close partnership with the DHM,

these community systems of manual river-gauge monitor-

ing have evolved to become integrated with national sys-

tems (Practical Action and Mercy Corps, 2012). DHM now

has 286 meteorological and 170 hydrological stations nation-

wide (Shrestha et al., 2014). Most of these stations are manu-

ally operated, though some have been upgraded to automatic

stations, with continuous monitoring of water level and/or

rainfall. In the Karnali River basin, there are 7 hydrological

and 25 rainfall stations that are fully automated, along with a

combined station at Chisapani.

River gauges in Nepal are maintained by the government

via part-time staff who, in nearly all cases, are members of

the local community who are trained to record and monitor

Nat. Hazards Earth Syst. Sci., 17, 423–437, 2017 www.nat-hazards-earth-syst-sci.net/17/423/2017/



P. J. Smith et al.: CBEWS in Nepal 427

river water levels. This results in a situation where, although

the government pays for the gauges, information on water

levels (in the period immediately leading up to flooding) is

provided directly to the local community by one of its mem-

bers.

The automated gauge network links to a national-level

DHM-managed web-based flood early warning system,

which monitors rainfall and river height, with real-time

data publicly accessible through the DHM website (Shrestha

et al., 2014). Data is transmitted to the DHM server ev-

ery 15 min, with flood warning bulletins available on www.

hydrology.gov.np throughout the monsoon period (Gautam

and Phaiju, 2013).

3.1.3 Dissemination and communication

Once a warning or danger level is reached, the dissemina-

tion and communication components of an EWS are criti-

cal. Dissemination and communication focuses on whether

warnings reach all “at-risk” groups, whether such warnings

are understood and if they are acted upon (UNISDR, 2005).

Effective early warning messages convey timing (when the

hazard is due to strike), location, scale, impact (what will be

the effect on at risk groups), probability and response (what

should at-risk populations do to protect themselves) (IFRC,

2012). Systems are put into place and tested to ensure that the

early warning is disseminated widely and in a timely and ef-

ficient manner (WMO, 2015). “An actionable early warning

provides a timely message that reaches, is understood and is

acted upon by the population at-risk” (IFRC, 2012).

Work with the CBEWS in Karnali has focused on build-

ing redundancy into early warning dissemination avoiding a

“singular dependence on one communication device or chan-

nel” (IFRC, 2012). In Karnali, gauge readers disseminate

warnings via mobile telephones and SMS using predefined

communication charts (Mercy Corps and Practical Action,

2010). These communication charts have the contact details

of all relevant stakeholders and dissemination procedures and

protocols that are prepared in advance and updated regularly

before each monsoon (Shrestha et al., 2014). Through these

channels, information regarding preparation for floods, mo-

bile numbers of upstream gauge readers and actions to be

taken during floods are disseminated as well as the actual

warnings.

Amongst those informed by the gauge readers are the Dis-

trict Disaster Relief Committees (DDRCs), District Emer-

gency Operation Centre (DEOC), Community Disaster Man-

agement Committee (CDMC) members, security forces (po-

lice and army) and local media, enabling wider dissemination

(Zurich, 2015).

Dissemination of warnings initiated by the gauge read-

ers can be seen as “bottom up”, starting at the most local

level. Two “top-down” dissemination routes also exist, both

based on the automated network of river gauges. The first

of these occurs at the sub-national level where district-level

government offices maintain electronic flood monitoring dis-

play boards with sirens that sound automatically when water

reaches warning levels.

The second utilizes the telemetry system to trigger auto-

matic SMS text messages, such that warnings are sent to

chief district officers, DHM basin offices, along with secu-

rity forces (Gautam and Phaiju, 2013). The chief district offi-

cer simultaneously mandates security forces to communicate

warnings to police posts, army posts and local FM radio sta-

tions to enable wider community dissemination (Gautam and

Phaiju, 2013).

Once warnings reach communities, Community Disaster

Management Committees (CDMCs) come into action and,

using handheld megaphones, loud speakers and sirens, make

sure the warning reaches all community members. Various

community task forces such as first-aid and search and res-

cue are called into action, ensuring all at-risk groups, par-

ticularly groups of higher vulnerability, are informed and

assisted when responding or evacuating to safer locations

(Shrestha et al., 2014).

3.1.4 Response capability

Response capability focuses on building local and national

capacities to respond appropriately to early warnings by

putting into place well-defined response plans whilst build-

ing upon local capacities and knowledge (UNISDR, 2005).

Actions focus on strengthening the “capacity of at-risk com-

munities and volunteers to receive, analyse and act on warn-

ings” (IFRC, 2012).

Awareness-raising programmes in the Karnali River basin

have used a wide range of approaches. These range from

disseminating messages via FM radio, to posters, calendars,

leaflets, wall paintings, song competitions, street theatre, and

school art and essay competitions, all conveying key infor-

mation to support appropriate preparedness and reaction to

early warnings (Gautam and Phaiju, 2013).

Response capabilities have been strengthened by pre-

defining response options, roles and responsibilities (includ-

ing identifying evacuation routes and safe areas), ensuring

teams have access to dissemination and response materials

(e.g. loud speakers, life vests, rope) and embedding response

plans in wider contingency plans that coordinate across mul-

tiple local and national levels (Mercy Corps and Practical

Action, 2010). Individuals designated as “first receivers”

of early warning messages can be trained in interpreting,

repackaging and communicating such messages to ensure

they are disseminated in a manner appropriate to each target

group (IFRC, 2012).

Response capabilities are also enhanced through practis-

ing and testing response plans through mock drills and un-

dertaking post-event reviews to learn from past hazard events

(WMO, 2015). “A community is deemed ’response capable’

when they know, have practised and have the means to en-

gage in appropriate response actions” (IFRC, 2012). These
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response capabilities are generally put to test during a flood

event, and any shortcomings are discussed during PVCA as-

sessments and CDMC meetings to ensure enhanced response

to the next monsoon.

3.1.5 Successes and limitations

Prior to 2002 and the first CBEWS in the East Rapti River

basin, there were no operational forecasting and early warn-

ing systems in place in Nepal and therefore no coordinated

early warnings, evacuations or early responses. The effec-

tiveness of CBEWSs in Nepal has been demonstrated on a

number of occasions, including during the 2010 monsoon in

Banke District (Mid-Western Region, Nepal), where the dis-

trict gauge reader upstream informed downstream commu-

nities of rising water levels, enabling the safe evacuation of

flood-prone communities in Binauna.

The CBEWSs in the Karnali River basin give vulnera-

ble communities around 2–3 h of lead time to prepare in the

event of a flood (Practical Action and Mercy Corps, 2012). In

the 2014 floods in West Nepal, CBEWS worked effectively in

the Karnali and West Rapti river basins, where communities

received flood warnings and were able to respond effectively

and in time.

Tragically in 2014 the CBEWS did not succeed in the

nearby Babai River basin and lives were lost (Zurich, 2015).

The failure of the CBEWS in Babai was primarily due to

the washing away of the water level gauging station used

for triggering alerts. Communities and stakeholders down-

stream were thus deprived of critical information regarding

when water levels crossed the warning and danger thresh-

olds. Compounding this, the gauge reader was unable to ac-

cess the gauge station to provide a manual assessment of the

flows (he was trapped between torrents of water in the trail

leading to the station) and damaged his cell phone. This left

him unable to communicate with local communities, secu-

rity forces and district authorities at a crucial period. The

resulting delays in the response and rescue operations con-

tributed to more than 20 people losing their lives. A further

contributing factor was that floodwaters entered places that

were deemed safe in past risk mapping exercises and caught

communities by surprise.

Three significant limitations of the current early warning

system based on monitoring river levels have been identi-

fied. Firstly, the current system is reliant on real-time wa-

ter level readings, yet both automatic and manual systems

are susceptible to failure during extreme rainfall events (as

in Babai where the hydro-met station was washed away)

(Zurich, 2015). Secondly, lead times are short, especially

where rivers convey water rapidly, a common situation in

mountainous catchments. Thirdly, Nepal has a limited den-

sity of hydro-met stations, particularly in remote or hard-to-

access areas, meaning some flood-prone areas do not have a

corresponding upstream gauge (Zurich, 2015).

The current CBEWS in Karnali offers 2–3 h of warning

time to downstream communities at risk of flooding. The cur-

rent, very limited lead time for early warnings are sufficient

for saving lives, but an extended lead time will offer a num-

ber of potential benefits:

– Extended lead times allow for a more robust system of

early warning; currently any failure in communication

results in a delay that may render the warning ineffec-

tive.

– Current lead times are insufficient for saving movable

assets, livestock, livelihood tools, etc. Warnings with

extended lead times could help protect livelihoods as

well as lives.

– Adding to the warning lead time would enhance the

confidence in this system reaching all at-risk groups.

– A 2–3 h lead time for evacuation is especially challeng-

ing for vulnerable groups, such as disabled people, preg-

nant women, the elderly, and children. Increasing the

lead time enables safer evacuation.

The last significant flood event in the Karnali River basin

(2014) released a warning at 13:00 LT (all times are local

time) at a time when most people were asleep and the river

was high and rising quickly, with evacuation occurring dur-

ing dangerous conditions in the dark in the early hours of

the morning. Increasing the lead time gives more likelihood

of warning messages being transferred and evacuation oc-

curring when communities are awake and/or during daylight

hours and before river conditions are at their worst, enabling

safer and easier evacuation. An increased lead time would

also enable a warning to be released before river levels are at

the danger level, enabling warning before critical gauges and

monitoring stations are likely to be damaged or washed away

by the flood, increasing the robustness of the EWS.

4 Forecasting for CBEWS

Hydrological forecasts can be used to predict future water

levels, expanding the lead time of an EWS based on moni-

toring river levels. Smith et al. (2013) identify two distinct

horizons for hydrological forecasts. The first horizon of days

or weeks relies on numerical weather prediction and is useful

for strategic activities such as recovery planning. The second

forecast horizon, often of the order of hours, is required to

communicate urgent warnings to local communities, and is

therefore of more direct benefit in augmenting CBEWS.

A common approach (Cloke and Pappenberger, 2009) to

generating forecasts at either horizon is to cascade meteoro-

logical forecasts through a hydrological model, resulting in

predictions of discharge that can be related to the water level

threshold used to issue warnings. Existing global or local

area numerical weather prediction (NWP) models could be
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used to provide meteorological forecast data. The resolution

and performance of such precipitation forecasts is, however,

inadequate for the shorter forecast horizons, which best com-

plement the existing CBEWS (Regmi et al., 2011). More-

over, suitable hydrological models do not exist for many ma-

jor river basins in Nepal, including the Karnali.

In addressing these problems to develop a forecasting

methodology, importance was placed on the sustainability

and technological appropriateness of the solution. Desirable

features of a suitable approach would include

– near zero running and setup costs, including licenses

and hardware provision;

– a simple and transferable means of interfacing with ex-

isting CBEWS infrastructure, including data collection,

warning levels and dissemination mechanisms;

– open and well-documented code that can be maintained

and developed with limited ongoing external support

and restrictions;

– limited or no reliance on external data sources that may

become unavailable.

Section 5 outlines one solution that meets these require-

ments predicting future values of the observed water level

using only the available observed rainfall data as an input.

In Sect. 6 it is demonstrated that such an approach can of-

fer forecasts of adequate lead time to enhance the existing

CBEWS in the Karnali basin.

5 Data-based mechanistic modelling

The forecasting methodology developed to align with the

CBEWS uses a data-based mechanistic (DBM) modelling

approach (Young, 2002) to predict future water levels at a

site where CBEWS warning thresholds are defined. In this

approach each gauged site where warning thresholds are de-

fined requires its own model.

As in previous works using DBM modelling (see Alfieri

et al., 2011; Beven et al., 2011; Leedal et al., 2013; Ro-

manowicz et al., 2008, and the references below) the focus

is on forecasting water levels. This removes the effects of

the uncertainties in the rating curve used to compute dis-

charge from the observed water level. Such models cannot be

constrained by mass balance. This may be advantageous for

flood forecasting, where a knowledge of rainfall input data

may be limited and rating curves extrapolated well beyond

the range of available measurements.

The data-based mechanistic modelling approach is based

on the estimation from observed data of parsimonious time

series models that can be interpreted in a hydrological fash-

ion (see for example Young and Beven, 1994; Young, 2002,

2003; Smith et al., 2013). Section 5.1 outlines the application
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Figure 4. Schematic representation of a simplified DBM model

showing the relationship between input precipitation, gain, linear

pathways of response, a constant minimum water level and noise

that gives the observed water level.

of the DBM approach developed to support CBEWS and ap-

plied in the Karnali River basin. This is a simplification of

the more general approach used in previous work. The sim-

plifications enforce a specific hydrological interpretation of

the resulting models, which is motivated by the findings pre-

sented in Smith et al. (2013) (see also Romanowicz et al.,

2006, 2008; Beven et al., 2011, and the references within).

It has been widely recognized by both scientists and users

(Penning-Rowsell et al., 2008; Frewer et al., 1996) that the

uncertainty in the forecasts should be recognized and if pos-

sible quantified. As outlined in Sect. 5.3 the structure of the

models that result from the DBM approach are well suited

to the assimilation of real-time water level data to reduce the

uncertainty in the forecasts, which can then be quantified.

Further details of the DBM techniques used can be found

in Smith (2017a), which outlines FloodForT, the software

package developed by the authors in the R statistical com-

puting language (Ihaka and Gentleman, 1996) to implement

the methodology and provide a convenient web-based graph-

ical user interface (GUI). Both are available by request from

the corresponding author.

5.1 Simplified DBM forecast models

Each model represents the hydrological response in the form

of the water level at a single gauge using a single input series.

In the description below this is taken to be a catchment aver-

age precipitation estimate derived from the weighted average

of rain gauge observations, but it could in certain situations

be an observed upstream water level series.

The model formulation shown in Fig. 4 indicates that the

observed output is modelled as the summation of three com-

ponents:

1. a constant that is set at a value indicative of the water

level during long dry periods,

2. a non-linear response to the rainfall,

3. a stochastic noise with unknown statistical properties.
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The non-linear response to the rainfall is formed by three

components. The first of these is a non-linear transforma-

tion of the observed rainfall to an effective value. This is

achieved at each time step of model evaluation t by mul-

tiplying the observed rainfall (ut ) by a gain value (ft ) to

give an effective input (ftut ). In the case of a rainfall in-

put the value of the gain relates to wetness of the catch-

ment, with wetter catchments typically producing more of

a response to rainfall. A number of different methods to cal-

culate the gain have proved acceptable representations of a

variety of catchments (see for example, Beven et al., 2011;

Romanowicz et al., 2006, 2008; Leedal et al., 2013). In the

work on the Karnali River basin three representations of the

gain are used. The first is that with a lack of non-linearity,

where the gain takes a constant value of 1. In the remain-

ing two parametric representations, the gain (ft ) is related to

the observed water level at the same time step (yt ), which is

used as a surrogate for catchment wetness. The second repre-

sentation is the widely used power law non-linearity, where

ft = y
φ
t : 0 < φ < 1. The constraints on φ ensure that ft is

strictly increasing as yt increases but asymptotes to a con-

stant value, indicating a saturated catchment.

The final parametric description of the input non-linearity

available is a sigmoid where

ft =
1

1 + exp(−φ1 (yt − φ2))
, (1)

which is strictly increasing if φ1 > 0. The additional flexi-

bility offered by this functional form allows for greater flex-

ibility in the location of the most rapid change in ft . This

can be useful in representing catchments where there may be

a distinct “wetting up” phase before parts of the catchment

produce a significant response to the input.

The observed value of the water level can be used in com-

puting the gain series due to the time delay component in the

response to the effective rainfall. This is considered to be a

pure time delay. If the time delay is d time steps, the input to

the final components, the linear pathways of response, is the

effective rainfall computed d time step before (ft−dut−d ).

Due to this, the maximum lead time of the model is d time

steps.

The final components of the non-linear response to the

rainfall are the parallel linear pathways of response. Each

of these is a linear transfer function where the output of the

ith pathway at time t , denoted yt,i , is constant fraction αi of

the value at the previous time step added to a product of a

constant βi and the delayed input (ft−d ,ut−d ) as shown in

Eq. (2).

yt,i = αiyt−1,i + βift−dut−d (2)

To ensure that the response, a linear pathway, decreases when

there is no effective rainfall and increases with effective rain-

fall the following parameter restrictions are applied to all

paths:

0 < αi < 1, (3)

0 < βi . (4)

5.2 Identification and estimation of the model

The simplified DBM model outlined in Sect. 5.1 results,

for each model structure defined by a combination of non-

linearity, time delay (d) and number of pathways of response

(n), in a vector of parameters θ = (α1, . . .αn,β1, . . .βn,φ),

which require estimation. This is achieved using a gener-

alized method of moments (GMM, Hall and Inoue, 2003)

methodology, which is in keeping with the methods outlined

in Beven et al. (2011) and used in, for example, Leedal et al.

(2013). A robust estimate of 6, the covariance of the esti-

mate of θ , is provided by the heteroscedastic autocovariance

consistent (HAC) estimator of Newey and West (1987).

Since the estimation of parameter vector is rapid, an ex-

haustive search of the combinations of model non-linearity,

n and d, is performed. For each estimated model, a num-

ber of summary statistics (Table 1) are produced. Those that

trade off model fit and parsimony, such as the Young Infor-

mation Criterion (YIC, Young and Beven, 1994), can then

be screened to remove poor or over-parameterized models.

Those that remain can undergo a more detailed analysis us-

ing, for example, the threshold RMSE and visual inspection

of the model hydrographs (particularly focusing on the tim-

ing of the rising limbs) both before and after the estimation

of the forecast uncertainty. Such an approach allows the con-

sideration of other requirements since it may be acceptable to

trade off the quality of the forecast for increased lead time.

5.3 Characterizing forecast uncertainty

Acknowledging the uncertainty in forecasts of future output

observations requires that both the sources of the uncertainty

and their treatment in the forecasting process be recognized.

This offers a starting point for the use of uncertainty rep-

resentations within the frameworks used for flood response,

such as CBEWS. A number of different sources of uncer-

tainty are identified in Smith et al. (2013):

1. uncertainty in observed rainfall fields, only partially

captured by interpolation of rain gauge data and cali-

bration of radar data;

2. uncertainty in antecedent conditions, only partially cap-

tured by running hydrological models continuously;

3. uncertainty in calibration of model parameters, only

partially captured by estimation of parameter distribu-

tions and their dependence on uncertainty in obser-

vations used in model calibration or data assimilation

(which may be particularly high at flood levels);

4. uncertainty in model structures in representing runoff

generation and routing processes.
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Table 1. Summaries of the model fit expressed in terms of the time-indexed observed values (yt ), deterministic model output (xt ) and

realizations of the forecast distribution (Ft ) denoted Xt and X′
t .

Value Formula Description

R2
t 1 −

∑

t (yt−xt )
2

∑

t (yt−y)2

Fraction of the variance of the observed data explained.

Values approaching 1 are preferred.

log

(

∑

i
6i,i

θ2
i

)

+ log
(

1 − R2
t

)

An information criteria that trades the identifiability of the

YIC parameters (first term) with the model performance (second term).

On a log scale, more negative values are to be preferred.

Bayesian information

n log
(

∑

t (yt − xt )
2
)

+ (k + n) log(n)

An information criteria offering an alternative trade off between

criteria (BIC) the number of parameters k and the fit to the n observation. The formula

given presumes independent and identically distributed errors.

Continuously ranked

1
2

EFt

∣

∣Xt − X′
t

∣

∣ + EFt
|Xt − yt |

An assessment of forecast performance on the same scale as

probability score the observations, which is based on summaries of precision (first term)

(CRPS) and accuracy (second term). Corresponds to the mean absolute error in

the case of a deterministic forecast.

The first three of these sources are addressed in part

through assimilation of observed water levels to correct the

starting point (or initial states) of the model prior to gen-

erating new forecasts and in part through a non-parametric

quantification of the forecast errors. The deductive method

of model selection outlined in Sect. 5.2 allows for the ex-

ploration of the potential impact of uncertainty on the model

structures, although in forecasting only one model structure

is utilized.

Assimilating observations of the water level to improve the

forecasts generated by the simplified DBM models can be

considered as a special case of the more general state space

framework for non-linear models (e.g. Liu and Gupta, 2007).

Since the effective rainfall is computed from observed data,

the uncertainty in the initial states of the model corresponds

to the uncertainty in the output of each of the linear path-

ways of response. The evolution of these unknown states is

governed by linear equations that may be embedded in the

linear Kalman filter as a framework for assimilating new ob-

servations and producing probabilistic forecasts.

The assumptions of the linear Kalman filter, particularly

those relating to the unbounded, hence potentially negative,

values that may be taken by the output of the pathways of re-

sponse, are inconsistent with the model formulation. There-

fore, as in Smith et al. (2014), a two-stage process is used.

Firstly, the noise variance ratios of the linear filter are se-

lected to minimize the sum, over all lead times and time

steps, of the squared errors of the expected forecast. Follow-

ing this the expected value of the forecasts offered by the lin-

ear filtering are calibrated to the observed output using quan-

tile regression. This handles the uncertainty arising from all

the sources noted earlier and not accounted for by the data

assimilation in a lumped fashion. A number of quantile re-

gression techniques have been used in hydrology (see Weerts

et al., 2011, and references within). In this work the quantile

regression follows the non-parametric approach outlined in

Yu (1999).

5.4 Data requirements

A further advantage of DBM modelling in the context of aug-

menting CBEWS is the relatively limited data required for

their development. Table 2 outlines the typical data require-

ments for the construction of a DBM model representing a

rainfall–water level relationship. Similar data periods are re-

quired for a model representing flood routing and using an

observed upstream water level as input.

There is no requirement for physiographical information

(such as a digital terrain model or land surface characteris-

tics) beyond readily available metadata such as catchment

maps showing rain gauges and river connectivity. Nor are

further observations such as global radiation or wind speed

required.

For low amounts of data, which are best considered on an

event basis, it is suggested that estimation of the model be

carried out using a cross-validation approach in which the

performance of the model for each event is evaluated using

parameters estimated from the remainder of the data. With

larger data quantities the split sample approach where cali-

bration and validation periods are chosen can be successfully

used. The quantity and quality of available data will also in-

fluence the estimation of the forecast uncertainty. It should

not be expected that high (or low) quantiles of the forecast

uncertainty can be reliably estimated from small samples of

data.

6 Experimental application to the Karnali River basin

Two experimental applications were undertaken, forecast-

ing the water level at Chisapani using catchment-averaged

rainfall derived from the three most reliable automated rain
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Table 2. Typical data requirements for the DBM methodology to be applied in a catchment (minimal data requirements in bold) (after Smith

et al., 2013). Temperature only required if snow melt is a significant runoff generation mechanism (Smith et al., 2014).

Variable Time step Time period

Precipitation 15 min, 1 h 10 significant events, 5+ years

Discharge or water level 15 min, 1 h 10 significant events including baseflow periods, 5+ years

Temperature 15 min, diurnal profile 10 significant events, 5+ years

gauges (Chisapani, Dipayal and Asaraghat), which have been

operational since 2011. Data on an hourly time step were

used. As can be seen in Fig. 3, there may be significant miss-

ing or poor quality data outside of the monsoon period. The

marked deviation between the rain gauge readings in Fig. 3

suggests a high degree of spatial patterning in the precipita-

tion.

The two experiments mimic a plausible operational de-

ployment. In the first experiment a forecasting model was

estimated using data from 2011 and 2012 and was then used

to predict the 2013 monsoon and flood. This provides a stern

test since 2013 contains a flood event whose magnitude, ap-

proximately 14 m, exceeds those in the calibration period by

around 4 m. In the second experiment, data from 2011 to

2013 were used to estimate the model and the 2014 flood,

which peaked at over 16 m was forecast.

Currently in the Karnali River basin, an anticipatory warn-

ing is issued if the water level at the Chisapani gauge rises

above 10 m, with a danger warning (indicating the probabil-

ity of severe flooding downstream) issued at 10.8 m. The fo-

cus of these experiments was therefore not just on prediction

of the peak magnitudes but also on when the forecasts indi-

cate the crossing of these warning thresholds.

6.1 Experiment 1

The constant value relating to low water level conditions was

estimated from the calibration data to be 3.07 m. Table 3

shows the performance of a selection of the estimated mod-

els ranked by the YIC criteria. No models with three parallel

pathways of response or with the sigmoid non-linearity are

shown since these return a high YIC value due to the high

level of uncertainty in the estimation of the parameters. The

similarity of the R2
t and YIC values indicates that no individ-

ual model structure is, in terms of these criteria, superior to

the others.

Visual inspection of the model hydrographs suggests that

the models with two pathways of response (n = 2) capture

the dynamics of the system markedly better those with only

one. Regardless of the non-linearity, models with a time de-

lay of greater then 6 h (d > 6) appear to have poor correspon-

dence to the rising limb of the hydrograph. This indicates that

there is a significant response in the water level to the ob-

served precipitation in at most 5 h. Given this, a time delay

of 5 h (d = 5) was chosen to maximize the forecast lead time

while retaining an acceptable fit.

Table 3. Summaries of the performance of a subset of models dur-

ing the calibration period (1 April 2011–30 September 2012).

Non-linearity n d R2
t MAE BIC YIC

[h] [m]

None 2 8 0.802 0.506 34412.30 −17.267

None 2 8 0.802 0.506 34412.30 −17.267

None 2 7 0.802 0.622 34392.15 −17.212

None 2 6 0.802 0.620 34375.27 −17.134

None 2 5 0.803 0.616 34355.40 −17.079

None 2 4 0.803 0.613 34342.57 −16.987

None 2 3 0.803 0.610 34327.32 −16.917

None 2 2 0.803 0.606 34314.13 −16.835

None 2 1 0.804 0.603 34298.01 −16.771

Power law 2 9 0.828 0.481 32368.67 −16.244

Power law 2 8 0.828 0.480 32313.62 −16.181

Power law 2 7 0.829 0.480 32258.15 −16.124

Power law 2 6 0.830 0.480 32205.95 −16.035

None 1 2 0.800 0.499 34536.61 −16.017

None 1 3 0.800 0.499 34553.34 −16.003

None 1 5 0.799 0.500 34587.50 −15.995

None 1 8 0.798 0.500 34645.20 −15.995

None 1 7 0.799 0.500 34625.23 −15.994

None 1 6 0.799 0.500 34606.38 −15.991

None 1 9 0.798 0.500 34665.07 −15.990

None 1 1 0.800 0.499 34518.39 −15.989

None 1 4 0.800 0.500 34570.68 −15.989

Power law 2 5 0.830 0.479 32151.79 −15.963

Power law 2 4 0.831 0.479 32103.44 −15.854

Power law 2 3 0.831 0.478 32054.01 −15.775

Power law 2 2 0.832 0.478 32007.97 −15.669

Power law 2 1 0.833 0.478 31960.19 −15.557

Power law 1 9 0.815 0.501 33382.66 −13.458

Power law 1 8 0.816 0.500 33344.82 −13.451

Power law 1 7 0.816 0.500 33307.00 −13.440

Power law 1 6 0.817 0.500 33269.80 −13.429

Power law 1 5 0.817 0.499 33234.05 −13.422

Figure 5 shows the marked improvement that results from

the use of data assimilation and the uncertainty representa-

tion. After data assimilation is applied, performance between

the two models shown is very similar; however, due to its su-

perior performance without data assimilation, particularly at

high water levels (e.g. at a threshold of 8 m), the model with

the power law non-linearity is to be preferred.

With only a single flood event in the validation period

of 1 June–30 September 2013, detailed analysis of model

performances in forecasting the crossing of the warning
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Figure 5. Summary plot of the CRPS results of two model fits.

The lines correspond to the mean CRPS value evaluated based on

the time steps for which the observed value exceeded the threshold

shown on the x axis. Where shown, the vertical error bars repre-

sent ±2 standard deviations of the mean estimate. The results of

two pathway models with a 5 h time delay and with (red) or without

(blue) the power law non-linearity are shown for both the estimated

model (solid) and for the 5 h lead time forecasts (dashed).

levels is not possible. However, Fig. 6 issued at 16:00 LT

17 June 2013 shows that the model discriminates between

exceedance and non-exceedance of the warning and danger

thresholds, even at its maximum lead time.

6.2 Experiment 2

The analysis performed in Experiment 1 was repeated using

a longer calibration period, 1 April 2011–1 September 2013.

This contains data for a further monsoon period during which

a flood event occurred. The impact of this on model estima-

tion can be clearly seen in the results shown in Table 4. In

contrast to Table 3, there is a clear preference for model with

n = 2 and some preference for a power law non-linearity.

Taking, as in Experiment 1, the model with a power law

non-linearity, n = 2 and d = 5 (with revised parameter esti-

mates). Figure 7 shows the forecasts issued at 23:00 14 Au-

gust 2014. Again the model clearly discriminates on the

crossing of the warning thresholds.

6.3 Summary of experiments

The model and approach allows visual presentation of antic-

ipated water level at Chisapani up to 5 h in the future, along

with graphs of probability of reaching warning or danger

level in each of the next 5 h (Figs. 6 and 7).

In the period 2011–2015 (the period for which reliable

hourly observed data are available for the Karnali River

basin) the danger level was crossed twice, at the two time

steps shown in Figs. 6 and 7. For the two illustrated events,

the forecast registers a greater than 80 % probability of a

warning level being reached. With such a high probability an

advance warning would likely be triggered. Therefore, nei-

ther of these forecasts could be considered as missing the

forthcoming event. There were no other cases in the avail-

Table 4. Summaries of the performance of a subset of models dur-

ing the calibration period (1 April 2011–1 September 2013). This

shows a clearer definition of the preferred model then results in Ta-

ble 3.

Non-linearity n d R2
t MAE BIC YIC

[h] [m]

Power law 2 2 0.807 0.549 39697.05 −22.236

Power law 2 3 0.806 0.550 39804.56 −22.202

Power law 2 1 0.808 0.548 39596.65 −22.176

Power law 2 8 0.797 0.557 40504.23 −22.161

Power law 2 9 0.796 0.558 40655.08 −22.161

Power law 2 5 0.803 0.553 40056.37 −22.134

Power law 2 4 0.804 0.551 39926.08 −22.133

Power law 2 7 0.799 0.555 40349.75 −22.114

Power law 2 6 0.801 0.554 40203.86 −22.102

None 2 9 0.794 0.547 40796.81 −21.719

None 2 8 0.795 0.547 40719.24 −21.591

None 2 7 0.796 0.547 40639.45 −21.450

None 2 6 0.797 0.547 40571.15 −21.306

None 2 5 0.798 0.547 40492.91 −21.167

None 2 4 0.798 0.547 40437.03 −20.998

None 2 3 0.799 0.547 40382.34 −20.855

None 2 2 0.799 0.546 40339.38 −20.709

None 2 1 0.800 0.546 40298.90 −20.502

None 1 6 0.779 0.541 41894.44 −16.979

None 1 5 0.780 0.541 41833.68 −16.975

None 1 7 0.779 0.541 41954.98 −16.969

None 1 4 0.781 0.540 41776.89 −16.964

None 1 8 0.778 0.542 42017.90 −16.963

None 1 9 0.777 0.542 42080.51 −16.960

None 1 3 0.782 0.540 41720.96 −16.959

able data sample where a forecast gave a greater than 50 %

probability of exceeding the warning threshold, suggesting

no potential false alarms were found in this sample. However,

the limited time period of data and low number of observed

events means care should be taken in interpreting the level of

discrimination between flood and non-flood events that may

be available from the forecasts.

From Chisapani, it takes 2–3 h for flood waters to arrive at

the first significant communities approximately 30 km down-

stream. The settlement at Chisapani itself is mostly set well

above the river and has a low flood risk. A reliable, accurate

forecast with 5 h lead time at Chisapani could then, when

added to the 2–3 h lead time offered by the existing CBEWS,

result in a warning with 7–8 h lead time in the most affected

downstream communities. While this extension in lead time

may appear short, it is significant both in minimizing the risk

to life as well as in allowing the first steps to be taken in

minimizing the risk to livelihoods.

7 Incorporating forecasts in CBEWS

Following from the two experimental applications, the op-

erational use of the Karnali model was piloted (jointly with

DHM) in the 2016 monsoon. During the 2016 monsoon, the
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Figure 6. Forecast issued at 16:00 LT 17 June 2013. Shown on the left are the predictions of future water level (blue) and observed data

(black). On the right the probability of crossing the respective warning levels at each lead time is shown.

Figure 7. Forecast issued at 23:00 LT 14 August 2014 showing on the left the predictions of future water level (blue) and observed data

(black). On the right the probability of crossing the respective warning levels at each lead time is shown.

water level for Karnali at Chisapani did not cross the warning

and danger levels. Nevertheless, this pilot provided a unique

opportunity to test the system in terms of retrieving real-

time rainfall and river gauge data from stations across the

Karnali River basin. Data assimilation and forecast quality

were deemed satisfactory when compared with observed wa-

ter level values. The system will continue to be maintained

and evaluated in 2017.

Concurrently, DHM adopted and adapted the methodol-

ogy presented in Sect. 5, taking it beyond the Karnali River

basin to cover all the major basins of Nepal that flow from

the mountains into the Terai plains (with reliable real-time

data for 3–5 years). This includes large river basins such

as the Narayani and Koshi, along with smaller basins, such

as Kankai, Babai and West Rapti. Initial results indicate

that the model provides an additional lead time of 3–5 h for

larger basins and around 1–3 h for smaller basins. As part

of this model development, DHM developed a methodology

for deriving catchment-averaged precipitation values based

on weights assigned to stations depending upon data quality,

contribution of rainfall to runoff and proximity of the station

to the flood forecasting point.

For the 2016 monsoon, the DHM adopted a top-down

communication strategy for the trial probabilistic forecasts,

whereby the DHM Central Office would provide advice to

basin offices, which in turn would pass advice to district

stakeholders including District Emergency Operation Cen-

tres (DEOC), security forces and community groups. These

are well established communication channels on services

manned 24/7 during the monsoon season.

It remains to be seen if such an approach to disseminating

probabilistic forecast information is appropriate. In late 2016

Practical Action will consider best practices in the dissemi-

nation and communication of probabilistic forecasts within

CBEWS. Lessons will be drawn from Bangladesh, where

the Bangladesh Flood Forecasting and Warning Centre of the

Bangladesh Water Development Board is disseminating 10-

day probabilistic flood forecasts to communities. It is hoped

that a more direct approach to communicating probabilistic

forecasts to communities will be attempted in future years.
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In 2017 Practical Action will also explore options for in-

cluding rainfall forecast data in the model to generate further

extensions in lead time. Considering how to effectively man-

age and communicate uncertainty in such forecasts will need

to be a focus of future work.

8 Conclusions

This paper has outlined the current status of CBEWSs in

Nepal, the benefits they have offered to communities that are

vulnerable to flooding, as well as some ongoing challenges.

To address one of these challenges, that of limited lead

time for warnings derived from observed data, a robust prob-

abilistic forecasting methodology based on observed data has

been proposed. Features that make this approach worth con-

sidering in the context of developing countries (and else-

where) include

– near-zero running costs due to open free licensing, a

simple and transferable means of interfacing with ex-

isting CBEWS infrastructure (including data collection,

warning levels and dissemination mechanisms) and low

computer hardware requirements. In an operational set-

ting each new forecast and visualization, such as Fig. 7,

can be generated in around 5 s on a basic single core

Pentium PC.

– low data requirements. Like most hydrological ap-

proaches, there is the need for well-defined and consis-

tent precipitation and river flow data, but unlike most

approaches, direct use can be made of water level data.

This removes the need to maintain a high-quality stage–

discharge relationship for determining the discharge

during flood events. Unlike many lumped or distributed

modelling strategies, there is no need for detailed topo-

graphic, land use or soil property data or any reliance

on external data providers. The timely transmission of

gauged data, as well as a catalogue of historic data (see

Sect. 5.4) is a prerequisite of a successful application.

– a particularly flexible framework. It can be used either

as a lumped rainfall–runoff model (as outlined in the

example) or for modelling river routing. The open and

well-documented code may be maintained and devel-

oped with limited ongoing external support and restric-

tions.

– low human resource cost. Experience from providing

training to Nepal DHM staff indicates that the mod-

elling approach can be successfully taught over 1–

2 days. Using the software tools developed by the au-

thors, models can be constructed in a few hours on a

standard laptop.

The case study presented indicates that for the CBEWS

operating in the Karnali River basin the lead times at which

warnings are issued can potentially be increased from the

current 2–3 h to up to 7–8 h. Subsequent work by DHM on

other basins in Nepal indicates that similar increases in lead

time are available elsewhere in the country. Achieving these

increases will require strengthened connections between the

probabilistic forecasts and other components of the CBEWS.

Ongoing work is focused on this integration, appropriate

ways to disseminate probabilistic forecasts and extending

this approach to longer lead time forecasts.

9 Data availability

The data (Smith, 2017b) and software (Smith, 2017c) used

in this work are available in publicly accessible repositories.
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