Community-Centric Vanilla-Rollback Access, or:
How I Stopped Worrying and Learned to Love
My Computer

Mike Burmester, Breno de Medeiros, and Alec Yasinsac

Department of Computer Science, Florida State University,
Tallahassee, FL 32306, USA
{burmester,breno,yasinsac}@cs.fsu.edu

Abstract. We propose a new framework for authentication mechanisms
that seek to interact with users in a friendlier way. Human or commu-
nity-centric authentication supports vanilla access to users who fail an
initial attempt to identify themselves. This limited access enables them
to communicate with their peer community to achieve authentication.
The actions of users with vanilla access can be rolled back in case they
do not progress to full authentication status.

This mechanism is supported by a peer community trust infrastruc-
ture that exploits the effectiveness that humans have in understanding
their communal roles in order to mitigate their lesser skill in remember-
ing passwords or pins. The techniques involved essentially implement a
human-centric key escrow and recovery mechanism.

1 Introduction

The research and practice of user authentication techniques often contradicts
human nature. Indeed, most tasks required for user authentication, such as re-
membering a password or a pin, are much more effectively done by machines.
While machines have no difficulties in storing and perfectly reproducing any
amount of data, we humans are used to committing to memory only a few
private authentication values (such as an identification card number or social
security number). The real security requirements of password-based authenti-
cation (frequently changeable, long and not easily guessable passwords) are not
truly compatible with human behavior, if acceptable to perhaps a minority of us.
Other mechanisms that underlie strong authentication protocols, such as secure
tokens, often work less well in practice than might be expected because of the
human tendency to think of security measures as hindrances to be tolerated as
necessary evils, or because they require extra investment in hardware and system
management which may not be available.

On the other hand, humans are very effective at understanding the roles they
play in their community, at organizing access control to common resources and
at protecting private property. This indicates that there is no intrinsic human
inability to deal with the authentication problem, only human ineffectiveness at

B. Christianson et al. (Eds.): Security Protocols 2005, LNCS 4631, pp. 228[-237| 2007.
© Springer-Verlag Berlin Heidelberg 2007

Community-Centric Vanilla-Rollback Access 229

dealing with machine-friendly protocols. The goal of this research is to introduce
a human-centric — and since authorization happens in the context of the human
role within society — a community-centric approach to access control.

The premise that humans are effective at comprehending their roles is a broad
one and we believe could lead to new directions and ways of thinking about
security. In this position paper, we illustrate how a broad principle of com-
munity-centric security can be applied to the design of securing a particular
task, namely remote login. We then broaden our scope and speculate how this
approach can be used to tackle other unwieldy areas where security technology
and human-behavior intersect.

Previous efforts to tailor protocols for human capabilities include the human-
computer authentication techniques by Hopper and Bloom [II2]. Our approach
here differs in that it considers not the exact user-login protocol used (in particu-
lar, Hopper-Bloom protocols could be employed for that end) but an architecture
to provide for alternative means to faithfully authenticate users when they have
forgotten their authenticating secrets.

Our mechanism is conceptually a human-centric escrow key recovery mecha-
nism [34]. Humans who forget their password can still get “vanilla” access to
network services. By interacting with other users, vanilla users can leverage the
peer community trust infrastructure to achieve full access to services —provided
they can convince others of their true identity. Otherwise, any transactions ac-
complished with vanilla-access can be rolled back.

2 A Toy Example

Consider the following use-case scenario: Alice moved to a new department in
her company, one that adopts a community-centric access control system. As
she starts to work using her new account, she notices few differences from her
previous experience, so she does not endeavor to read the tutorial recommended
by her system administrator. She next proceeds to import her “address book,”
and she finds that the address cards display differently in the new system. Indeed,
each address card has options related to being added to a trusted peer commu-
nity. She decides to add her office-mate Marla to such peer community, which
she fairly unimaginatively names “office-mate community.”

The following day the most disruptive event happens. Alice forgets her new
password, what with the stress of the new position. Now Alice must contact the
system administrator, get him to reset her password, and then remember a new
password. In a last desperate attempt to save her pride, Alice tries to login a
third time. Voila, success, or maybe not? (This is vanilla access.)

All her files and folders seem to be nowhere in sight. Her mailbox (with her
name on it, for sure) seems to be empty of e-mail; quite tragic considering all the
requests her new boss had sent her yesterday. On the verge of tears, Alice sends
a quick e-mail to her friend Marla, asking what should she do now? A minute
later, Marla sends her a reply. As Alice opens the e-mail, the most amazing thing
happens —suddenly all her files are back, her e-mail, everything. Did Marla set

230 M. Burmester, B. de Medeiros, and A. Yasinsac

her up on some practical joke, she wonders, but really Marla is not the type for
that. As she ponders the mystery of it all, Marla steps in and says, “I am glad
you trusted me in a peer community. That’s how I was able to authenticate you
by e-mail today.” “You authenticated me by e-mail?” Alice asks. Marla responds,
“That’s just it. Our e-mail system uses some secret sharing technique —or maybe
threshold trust, one of these buzzwords of techno-geek. What that means is that
you made me a fully trusted reference by creating a peer community with only
myself in it. By the way, I suggest that you add another person to the same com-
munity you added me. I don’t want to be solely responsible for authenticating
you, as that also means I am solely to blame if someone manages to fool me
into authenticating herself as you —not very likely, but you never know. You
can add our boss, he is a stickler for procedure and would never reply to an
authentication request without triple checking it was indeed you beforehand.”
After Alice plays the tutorial, she understands the notion of a trusted peer
community. Essentially all her files are encrypted under her password-derived
master key. Nonetheless, when she adds persons to a trusted peer community,
they automatically receive “shares” of her password-derived key by secure e-
mail. If she forgets her password, she may send e-mails to all the members of
one of the trusted communities and she may log in! Of course, they will have to
reply and they are supposed to check to ensure that she is indeed Alice. Today
this saved her from looking like a fool to the systems administrator. She was
rescued by her company’s community-centric vanilla-rollback access system.

3 Analyzing Community-Centric Vanilla-Rollback

A community-centric access control system recognizes that authentication is
scalar rather than Boolean. For example, it assumes that when Alice cannot
remember her password, she may not be Mallory, and as likely as not, just Alice
on a bad day (Murphy-Alice), so it allows a limited login to occur anyway. In
fact, it even allows Alice writd] access to her file system and e-mail accounts. We
call this vanilla access, because it provides a modest level of access. For instance,
it allows vanilla-Alice to accomplish low-risk tasks, e.g. to send e-mails. a (The
sending mail server modifies sender information to indicate that it may come
from someone impersonating Alice.) In addition, if vanilla-Alice sends e-mail
to Marla, a member of one of Alice’s trusted-peer communities, Marla is noti-
fied that she may provide Alice with authentication credentials if she believes

! Write-only access can be quite dangerous. For instance, vanilla-Mallory might add
invisible executable files to Alice’s account and cause mayhem when the real Alice
comes in. That’s where the rollback feature plays an important part. The write access
only creates “evidentiary” files that are not committed to the Alice’s file system if the
vanilla-logged user leaves the system without being promoted to full access status.
For details, see section g5l

Simple precautions would prevent spammers from using vanilla access to relay e-
mail. One possible measure is to prevent sending of e-mail to a recipient outside the
peer community.

Community-Centric Vanilla-Rollback Access 231

vanilla-Alice is indeed the real Alice. If Marla decides to do so, a share of Alice’s
key is securely transmitted in the response, and in combination with other shares,
it is sufficient to reconstruct Alice’s key (which protects her file-encrypting key).
Alice can then recover her files and other access privileges, and change her pass-
word. Conversely, if an intruder is impersonating Alice and she fails to complete
the authentication, the system will roll back to its previous safe state. We call
this process Vanilla-Rollback-Access (VRA).

The vignette in the previous section illustrates how VRA leverages the scalar
properties of community-centric authentication for rollback access control. An
essential notion that is a feature of human identity but that Boolean authenti-
cation overlooks, is that identity is naturally difficult or impossible to verify (or
deny) conclusively. Rather, we gain confidence in someone’s identity through ev-
idence that may take many forms with widely variable strength. VRA recognizes
this inconclusiveness and balances the potential damage against the level of iden-
tity confidence that the system has acquired. For example, while the password
may be incorrect, the person at the keyboard at least knew their user name. Not
a great source of identity confidence, but slightly greater than zero. Additional
confidence may be gained if VRA can determine behavioral aspects of users,
such as typing speed or other keyboarding characteristics. These offer additional
confidence in the identity (or identity denial) of the user under evaluation. Be-
yond intrinsic identity characteristics, external socio-contextual trust evidence
may also be gathered, as in the example given in Section 2l

4 Community-Centric Authentication Sequence

In order to enable sharing of user authentication tokens, it is convenient to model
the authentication mechanism as a key re-construction step. In systems that
support encrypted file systems, this key may indeed be used as a cryptographic
encrypting key to protect the user’s data. In regular systems, the key may be
used to simply encrypt (or key-hash) a particular system object. The result is
then verified against an authenticator value stored in the user database to verify
the user’s identity.

In the non-exceptional case — i.e., when the user remembers his password, or
is in possession of the authentication tokens — the password and other authen-
tication information is combined with user’s information stored in the system
database (here abstracted as a salt) to derive the authentication key. When the
user misses authentication tokens/information, he may instead use vanilla ac-
cess to the system’s communication resources to request that his peers release
to the system the key shares that will enable reconstruction of a pre-key. This
pre-key can then be combined with a second pre-key from the system itself to
reconstruct the user authentication key, as shown in Figure [l

The use of a system pre-key is required to ensure that the set of shares entrusted
to the community is semantically independent from any user password-derived
value. This eliminates the possibility that the peer community may collude to
reconstruct a password-derived value and use that to attack the user password

232 M. Burmester, B. de Medeiros, and A. Yasinsac

authentication
request

Peer
community

l reconstruct
prekkeyo

q salt H System I:ﬂprekkeyp }::>

key

Password/andm
or/biometrics

Fig. 1. Login sequence: The shaded arrows refer to the non-exceptional case. The light
arrows refer to a request initiated by the user with only vanilla access.

(e.g., via off-line dictionary or brute-force attacks). A separate advantage to the
use of pre-keys is that it facilitates peer community update. Whenever an update
takes place, the pre-keys are also changed, ensuring that old shares from an ear-
lier community cannot be combined with new shares from a current community to
achieve user authentication in violation of the current trust infrastructure. In this
fashion it is possible, for instance, to support peer community disenrollment with-
out requiring users to update passwords, by simply distributing new key shares.

A more sophisticated authentication sequence is shown in Figure 2l Here, an
additional step is introduced — the system must interact with the user to obtain
additional information in order to recover the authentication key. A typical ex-
ample is to require the user to answer a set of questions and verify the answers
against a database. A different approach would be to use the answers directly
to obtain key-like information, as in personal entropy systems [5l6].

authentication
request

> Peer
community

useri . reconstruct
_______ R reike
> entropy | > P s |

Password/and! preikeyn
or/biometrics

q salt H System preikeyo

[

key

Fig. 2. Another login sequence: The dotted arrows refer to the use of a personal entropy
system

The basic tools required to implement the above described authentication
sequence are standard off-the-shelf tools. We require secure (private and authen-
ticated) point-to-point channels, so that the shares of authentication keys do not

Community-Centric Vanilla-Rollback Access 233

leak, and techniques to derive keys from strings. In case of encrypted file systems,
we may require techniques such as password-based encryption. References to all
these mechanisms may be found in [9]. As for the sharing the file-encrypting
master keys, there are several practical secret sharing mechanisms that can be
readily used [7I8]. Finally, the peer community trust infrastructure is essentially
the access control structure of a secret sharing scheme; this can be based on an
unstructured trust infrastructure, such as PGP [I0].

5 Vanilla-Rollback: A State of Suspension

An important enabling feature of vanilla-rollback is that if a session ends be-
fore authentication is complete, the session manifestation may be suspended;
neither committed nor discarded, neither alive nor dead. If the questionable
session is later authenticated, manifestations can be triggered and the system
state updated as though the actions were taken at the time they were initi-
ated by vanilla-Alice. Conversely, if an impersonation attempt is recognized,
Vanilla-rollback can revert the system to its original state, essentially rolling
back changes that vanilla-Alice performed.

Suspended transactions are not uncommon in today’s systems. For instance,
journaled file systems delay the commitment of file changes for various reasons,
such as reducing disk-write latency and guaranteeing atomicity of file system
changes [IT]. Another prevalent illustration of suspended transactions include
credit card accounting. On most online credit card status systems, recent trans-
actions reflect a temporary status. Most of these are quickly confirmed or with-
drawn, but occasionally temporary transactions linger, awaiting supplementary
action to become final.

5.1 Rollback Technology

The most important element of an effective rollback mechanism is partitioning.
Many actions cannot be rolled back; for example, once someone has viewed a data
item, we cannot make them forget it. Consequently, vanilla-access cannot grant
read access, except to already world-readable data. However, there are many
actions that every user takes that can be safely, universally allowed: Document
creation and accessing some web sites are two examples of commonly allowed
actions.

To protect against inappropriate access, each action taken must be identified
as either: (1) Fully vanilla; (2) Vanilla-Rollback; (3) Neither. Actions in the first
class need not be monitored beyond their original recognition. They pose no
threatE divulge no sensitive information, nor change managed state as defined by

3 Rollback in SQL cancels proposed changes in a pending database transaction. In
this paper we use rollback as both an enabling and disabling procedure.

4 These actions potentially facilitate a denial-of-service attack by exhaustion of avail-
able resources by vanilla-users. This threat can be mitigated by restricting the num-
ber of vanilla instances of the same user within the system, and by imposing more
restrictive quotas on such users.

234 M. Burmester, B. de Medeiros, and A. Yasinsac

the prevailing security policy. Opening a browser, reading a public newsgroup, or
starting an SSH session are actions that fall into this class in many organizations.

Items in the second class pose no immediate threat and accomplish only ac-
tions that can be reversed. Creating a document and adding a record to a data-
base are potential examples of vanilla-reversible actions.

The third class encompasses all actions that are not in the first two classes. At
a minimum these include any action that (a) necessarily requires authenticated
access (is not fully vanilla) and (b) is not reversible. These are sensitive actions
that cannot be rolled back and are always prohibited to vanilla users.

5.2 Rollback Application

The reference monitor (RM) [12] is the foundation of many access control systems
and can implement VRA. Action partitions must be complete and applications
must be engineered to provide VRA, essentially requiring them to incorporate
temporary (commit-confirm) transaction processing. Applications without such
capabilities may utilize VRA, but only if they are fully vanilla. As we mentioned
earlier, many computing actions are universally safe, others are somewhat dan-
gerous, and still others are always risky. Write-only access can be quite danger-
ous. For instance, vanilla-Mallory might add invisible executable files to Alice’s

Authentication
Attempt

FAILURE

Identity
refuted

SUCCESS

UNRESOLVED

Fully vanilla _~Transaction other

type
Vanilla Transaction
Processing denied

Sensitive, but
Reversible

Normal Vanilla
processing Rollback
Processing
R O A New fransaction
SUCCESS Re-authentication UNRESOLVED
Process
FAILURE Rollback

(if required)

Fig. 3. Vanilla-Rollback Workflow. If the initial authentication attempt leads to an
inconclusive state, transactions are either rejected (if they require authentication in an
essential way), fully processed (if its execution does not require an authenticated state)
or processed but not committed (to be reversed if final attempt at authentication fails).

Community-Centric Vanilla-Rollback Access 235

account and cause mayhem when the real Alice comes in. Clearly, any executa-
bles installed during a vanilla session should be controlled appropriately—for
instance, their execution by real users could be denied. Only after the ques-
tionable vanilla section is authenticated might such programs be executable at
higher levels of privilege.

Transaction commit-confirm processing is one approach to rollback process-
ing. An essential element for any rollback mechanism in VRA is containment.
Temporary transactions must be separate from permanent state. This is essen-
tial to ensure that a vanilla process does not accomplish non-vanilla actions. For
example, write access to vanilla users should create temporary files that are not
committed to the user’s file system if the vanilla logged user leaves the system
without being promoted to full access status. This temporary file may provide
forensic evidence if authentication is not completed. Whether a vanilla session
was authenticated or not, the authenticated user could receive notification of
the vanilla session, and could be given a choice of options -authenticate, force
logout, or track the impostor, flagging her to the system administrator. Finally,
once a session is purged as illegitimate, its contents are not discarded, but logged
and used as evidentiary information for forensic analysis of intrusion attempts
—perhaps even leading to the intruder’s capture. We illustrate VRA in Figure Bl

6 Extensions

There are several ways in which our model for community-centric rollback can
be extended. In this section we discuss some of them.

In our basic model, rollback is managed by the trust infrastructure of peer
communities. Alice’s trusted friends (e.g. Marla) have shares of her secret key,
and use these to authenticate Alice, if they are convinced that she is the real
Alice. Their decisions will be based on several events that partially identify
Alice. For instance, Marla may remember that Alice was late and was wear-
ing a blue sweater, and that she told her that she also loved cats. Our trust
model is dynamic and context-driven: it is based on the augmentation of the
(essentially static) infrastructure of the peer communities by incorporation of
socio-contextual information to support trust dynamically. This information is
out-of-band information and volatile. It is the kind of information that hu-
mans are ideally suited to manage and machines cannot, at least in any
effective way.

A first and natural extension (from a deployment perspective) would be to
use other communication media that are potentially more effective at quickly
capturing socio-contextual trust data. Example of such mechanisms are video
or audio chat tools. These are, in many respects, ideally suited to capture trust
data which machines cannot recognize.

Another extension would be to involve enlarging the peer community, to in-
clude the system itself, with regards to the management of rollback. The system
may be enabled with capabilities to monitor (human) user behavior and to de-
velop biometric profiles of users. Profiling is a popular mechanism for supporting

236 M. Burmester, B. de Medeiros, and A. Yasinsac

authentication, and has been proven to be a very effective tool. User profiling
may be based on: face or voice recognition, or the recognition of keyboard stroke
and other biometric patterns.

Recognition can be done by the system locally (at the host) or remotely.
Both in the cases of local and remote authentication loco-temporal information
can enhance the reliability of biometric profiling. For instance, vanilla-Alice is
unlikely to be Mallory sitting at Alice’s workstation in the mid-morning of a
business day. Similarly, if the system dials Alice’s home/cell phone and recognizes
her voice requesting a login from home/airport —that is contextual evidence of
such a nature as to be nearly impossible to forge.

7 Towards a Threat Model for Community-Centric
Vanilla-Rollback Access

There is an inherent conflict between facilitating access to, and providing se-
curity for, protected computing resources. Thus, it is not surprising that an
access control system with vanilla-rollback may offer intruders a fertile target
for identity theft and system intrusion.

We distinguish between two types of intruders: authorized users, called in-
siders, and unauthorized users. Insiders (Mallory-Marlas) are the worst kind of
intruders. In community-centric rollback systems they possess some share of the
password-derived key of another user, say Alice, and will try to fool her com-
munity peers to get other shares so that they can impersonate Alice. Here we
focus on such threats, since protection from these will also protect from the other
threats.

Protection of a community-centric vanilla-rollback access system is achieved
by: (1) Requiring that entities distribute shares of their password-derived key to
community peers; (2) Allowing entities to choose their own secret sharing access
infrastructure, and; (3) Supporting the access infrastructure with out-of-band
socio-contextual trust information, optionally augmented by biometric-profiling
information available to the system.

The first two protection items deal with secure key recovery in the traditional
model [4]. The third deals with insiders, who may try to trick Alice’s trusted com-
munity peers into revealing their shares, so as to impersonate Alice. In traditional
authentication systems widely prevalent today, insiders can use their knowledge
of facts about Alice to social-engineer their way through, or otherwise circumvent
access controls. (In other words, they may know Alice’s mother’s maiden name.)
However, that is a less significant advantage if the intruder’s task is to fool
Alice’s trusted circle of humans. The third item in this access-control paradigm
is an essential component of a hardened (and yet more human-friendly) security
environment. In conjunction with the other features it shows that the access
control approach based on rollback and community-centric trust infrastructures
is robust against both insider and outsider attacks.

Community-Centric Vanilla-Rollback Access 237

References

10.

11.

12.

. Hopper, N., Bloom, M.: A secure human-computer authentication scheme. Tech-

nical Report CMU-CS-00-139, Carnegie Mellon University (2000)

. Hopper, N., Bloom, M.: Secure human identification protocols. In: Boyd, C. (ed.)

ASTACRYPT 2001. LNCS, vol. 2248, pp. 52-66. Springer, Heidelberg (2001)
Denning, D., Branstad, D.: A taxonomy of key escrow encryption. Comm. of the
ACM 39, 34-40 (1996)

. Fouque, P., Poupard, G., Stern, J.: Recovering keys in open networks. In: ITW

1999. Proc. IEEE Information Theory and Communications Workshop, IEEE Com-
puter Society Press, Los Alamitos (1999)

Ellison, C., Hall, C., Milbert, R., Schneier, B.: Protecting secret keys with personal
entropy. J. of Future Generation Computer Systems 16, 311-318 (2000)
Frykholm, N., Juels, A.: Error-tolerant password recovery. In: Proc. of the 8th ACM
Conference on Computer and Communications Security, pp. 1-9. ACM Press, New
York (2001)

Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. of the National Computer
Conference, vol. 48, pp. 242-268 (1979)

Shamir, A.: How to share a secret. Comm. of the ACM 22, 612-613 (1979)
Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton, USA (1997)

Zimmermann, P.: The Official PGP Guide. MIT Press, Cambridge, MA, USA
(1995)

Seltzer, M.I., Granger, G.R., McKusick, M.K., Smith, K.A., Soules, C.A.N., Stein,
C.A.: Journaling versus soft updates: Asynchronous meta-data protection in file
systems. In: Proc. of the 2000 USENIX Annual Conference, General Session,
USENIX, the Advanced Computer Systems Association (2000)

Anderson, J.P.: Computer security technology planning study. Technical Report
ESD-TR-73-51, Air Force Electronic Systems Division, Hanscom AFB, Bedford,
MA (1972)

	Community-Centric Vanilla-Rollback Access, or : How I Stopped Worrying and Learned to Love My Computer
	Introduction
	A Toy Example
	Analyzing Community-Centric Vanilla-Rollback
	Community-Centric Authentication Sequence
	Vanilla-Rollback: A State of Suspension
	Rollback Technology
	Rollback Application

	Extensions
	Towards a Threat Model for Community-Centric Vanilla-Rollback Access

