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In this paper, we propose weighted symmetric binary matrix factorization (wSBMF) frame-
work to detect overlapping communities in bipartite networks, which describes the relation-

ships between two types of nodes. Our method improves performance by recognizing the

distinction between two types of missing edges ��� ones among the nodes in each node type and

the others between two node types. Our method can also explicitly assign community mem-
bership and distinguish outliers from overlapping nodes, as well as incorporating existing

knowledge on the network. We propose a generalized partition density for bipartite networks

as a quality function, which identi¯es the most appropriate number of communities. The
experimental results on both synthetic and real-world networks demonstrate the e®ectiveness

of our method.
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1. Introduction

Community structure is a common characteristic of various complex networks found

in biological, social, and information systems, etc.1–8 A community is commonly

de¯ned as a densely interconnected set of nodes that is loosely connected with the

rest of the network.1 Studies have shown that community structures are highly

relevant to the organization and functions of the network. For instance, communities

in social networks correspond to social circles1; communities in protein–protein

interaction networks capture functional modules5,3 and communities a®ect the

spread of behaviors and ideas.3,9,10
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Although numerous community detection methods have been proposed, relatively

few methods are designed for bipartite networks.11–17 A bipartite networkGð�;�;EÞ
contains two disjoint types of nodes,� and �, and the edge set E connecting the two

parts. There is no edge among vertices in� and among those in �. Many systems can

be naturally modeled as bipartite networks.14,18 For instance, a metabolic network

can be considered as a bipartite network of reactions and metabolites.19 Many uni-

partite networks are derived from bipartite ones. For instance, a scienti¯c collabo-

ration network is derived from an author-paper bipartite network.20 A community in

a bipartite network Gð�;�;EÞ can be de¯ned as a set of nodes ��� from both � and

� ��� that are densely interconnected. Bipartite community detection is not neces-

sarily equivalent to unipartite community detection on the projected networks, be-

cause the projection often destroys important information.12,14,21 Here, we would like

to point out the di®erence between the missing edge among� and among �, and that

between � and �. Imagine a network of people and their a±liations. With complete

information about people's a±liation, the absence of edge ði; jÞði 2 �; j 2 �Þ means

that the person i does not belong to the organization j. However, the absence of edge

ði; kÞ ði; k 2 �Þ simply indicates that we do not know the direct social relationships

between i and k.

In our previous work, we proposed the Symmetric Binary Matrix Factorization

(SBMF) to detect overlapping communities in unipartite networks and demon-

strated its e®ectiveness.22 In this paper, we propose weighted Symmetric Binary

Matrix Factorization (wSBMF) model to detect overlapping communities in bipar-

tite networks. The model can di®erentiate between the two kinds of missing edges in

the bipartite network to improve detecting performance. The model allows us ex-

plicitly to assign community membership to nodes and distinguish outliers from

overlapping nodes while providing a way to analyze the strength of membership and

incorporate existing information. To quantify the goodness of the communities that

we found, we generalize partition density and use it to select the most appropriate

number of communities.

2. Methods

2.1. Weighted symmetric binary matrix factorization

The adjacency matrix of an undirected and unweighted simple graph G with n nodes

can be de¯ned as:

Aij ¼
1; if i � j;

0; if i ¼ j or i�= j;

�

where i � j means there is an edge and i�= j means there is no edge.

Imagine an unweighted and undirected bipartite network Gð�;�;EÞ, which has

n� and n� nodes in � and �, respectively, and an edge set E connecting the two

parts. The corresponding adjacency matrix A can be split into four blocks after the
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n�th row and the n�th column:

A ¼ 0¢ B

BT 0¡

� �
;

where 0¢ and 0¡ are null matrices of size n� � n� and n� � n�, respectively, and

Bij ¼
1; if i � j; i 2 �; j 2 �;

0; if i�= j; i 2 �; j 2 �:

�

The meaning of the zeros in 0¢, 0¡ is di®erent from that in B. If B captures all

existing connections perfectly, then all zeros in B indicate the absence of the corre-

sponding edges. By contrast, the zeros in 0¢ and 0¡ represent missing information,

rather than the absence of edges. To use this information, we introduce a weight

matrix L of size n� n to handle these unobserved or missing values,23 which can be

de¯ned as:

Lij ¼
� if Aij is observed;

0 if Aij is unobserved;

�

where � is a nonnegative weight parameter that captures the reliability of Aij: For

standard bipartite networks, L can be formulated as:

L ¼ 0¢ I¢;�

I¡;¢ 0¡

� �
;

where I¢;� and I¡;� are matrices where all entries are one, meaning that only the

zeros in B are considered. The sizes of I¢;� and I¡;� are n� � n� and n� � n�,

respectively.

Our wSBMF model can be de¯ned as the following constrained nonlinear

programming:

min
U

jjL � ðA� UUT Þjj1 þ
X
i

1��
X
j

Uij

 ! !

subject to U 2
ij � Uij ¼ 0; i ¼ 1; 2; . . . ;n; j ¼ 1; 2; . . . ; c;

ð1Þ

where � represents element-wise multiplication (Hadamard product); A is the ad-

jacency matrix of size n� n (n ¼ n� þ n�); U is the community membership matrix

such that Uit ¼ 1 if node i is in the community t, and 0 if otherwise; Note that

numerical experiments show that the Frobenius norm on the sparse adjacency matrix

A often results in the ultra-sparsity of U , even null matrix U , which is not infor-

mative enough for real analysis. We use 1-norm instead to obtain more reasonable

and explainable matrix U . 1-norm of a matrixX is the largest column sum of absðXÞ,
where absðXÞij ¼ absðXijÞ, and absð�Þ is the absolute value; � is the Heaviside step

function such that for some matrix X,

�ðXÞij :¼
1 if Xij > 0;

0 if Xij � 0:

�

Community detection in bipartite networks
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L chooses which entries of the adjacency matrix should be considered in the opti-

mization and thus allows us to incorporate existing knowledge. For instance, if we

already know that some edges are present between nodes in �, then we can update

the corresponding elements of L from zero to �. If we want to ignore edges in B, we

can simply update the corresponding element of L from one to zero. We can even

vary � across elements if we can assess the reliability of the incorporated knowledge.

We initialize U by solving the following weighted Symmetric Nonnegative Matrix

Factorization model:

min
U

jjL � ðA� UUT Þjj2F
subject to Uij � 0; i ¼ 1; 2; . . . ;n; j ¼ 1; 2; . . . ; c;Xc
j¼1

Uij ¼ 1; i ¼ 1; 2; . . . ;n:

ð2Þ

Then we ¯x U , and discretize the domain fu : 0 � u � maxðUÞg to ¯nd û that

minimizes the following, simpler optimization problem:

min
U

jjL � ðA��ðU � uÞ�ðU � uÞT Þjj1 þ
X
i

1�
X
j

�ðU � uÞij
 !

; ð3Þ

where u is a scalar. Finally, we obtain the binary matrix U as follows:

U :¼ �ðU � ûÞ:

To optimize U for model (2), we initialize U using the algorithm of alternative

least squares error developed for NMF24,25:

min
U1;U2

jjB� U1U
T
2 jj2F

subject to U1 � 0; U2 � 0:
ð4Þ

See Algorithm 1 Appendix.

Then, based on the boundedness theorem,26–28 we normalize U1 and U2 to balance

their scales:

U1 ¼ U1D
�1=2
1 D

1=2
2 ; U2 ¼ U2D

�1=2
2 D

1=2
1 ; ð5Þ

where

D1 ¼ diagðmaxU1ð:; 1Þ;maxU1ð:; 2Þ; . . . ;maxU1ð:; cÞÞ;
D2 ¼ diagðmaxU2ð:; 1Þ;maxU2ð:; 2Þ; . . . ;maxU2ð:; cÞÞ;

and diagða1; a2; . . . ; anÞ is the diagonal matrix whose diagonal entries starting from

the upper left corner are a1; a2; . . . ; an: U1ð:; iÞ is the ith column of U1. Finally, we

merge U1 and U2 into U such that U ¼ U1

U2

� �
, and employ the algorithm of multi-

plicative update rules for model (2). See Algorithm 2 Appendix.
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2.2. Model selection

We have proposed a modi¯ed partition density to select the appropriate number of

communities.5,22 The modi¯ed partition density is de¯ned as:

D ¼
Xc
�¼1

1

qð�Þ
nð�Þ

N
Dð�Þ;

where Dð�Þ is the partition density of community � :

Dð�Þ ¼ mð�Þ �mð�Þ

mð�Þ �mð�Þ ;

and mð�Þ ¼ ðnð�Þ � 1Þ; mð�Þ ¼ nð�Þðnð�Þ � 1Þ=2 are the minimum and maximum

possible numbers of links between the nodes in the community �, respectively; nð�Þ

and mð�Þ are the number of nodes and the number of edges in the community �,

respectively; qð�Þ ¼ maxj2�lj is the maximum number of community memberships

(lj) among the nodes (j) that belong to the community �; N is the sum of the sizes of

di®erent communities and the number of outliers.

Here, we generalize it for bipartite networks by transforming each bipartite

community to a unipartite one and getting the corresponding partition density. For a

community �; we de¯ne the subnetwork Gð�Þ as the set of nodes in � and the edges

among them. The subnetwork has n
ð�Þ
� nodes in � and n

ð�Þ
� nodes in �, and the

corresponding adjacency matrix is

Að�Þ ¼ 0 Bð�Þ

Bð�ÞT 0

" #
:

Then, we transform the bipartite subnetwork Gð�Þ to a unipartite subnetwork

Gð�Þ0 by overlaying the two projections onto � and �. The adjacency matrix Að�Þ

becomes:

Að�Þ0 ¼ Bð�ÞBð�ÞT Bð�Þ

Bð�ÞT Bð�ÞTBð�Þ

" #
;

and the diagonal elements indicate the number of neighbors in the other part that the

corresponding node has. The values of mð�Þ;mð�Þ and mð�Þ are changed to:

mð�Þ0 ¼
X
i;j

ðAð�Þ0 � diagðAð�Þ0 ÞÞij=2;

where diagðAð�Þ0 Þ is the diagonal matrix whose diagonal entries are those of Að�Þ0 ;

mð�Þ0 ¼ n
ð�Þ
� ðn ð�Þ

� � 1Þ
2

n
ð�Þ
� þ n

ð�Þ
� ðn ð�Þ

� � 1Þ
2

n
ð�Þ
� þ n

ð�Þ
� n

ð�Þ
�

" #
;

and

mð�Þ0 ¼ ½ðn ð�Þ
� � 1Þ þ ðn ð�Þ

� � 1Þ þ ðn ð�Þ
� þ n

ð�Þ
� � 1Þ�:

Community detection in bipartite networks
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Then Dð�Þ becomes:

Dð�Þ0 ¼ mð�Þ0 �mð�Þ0

mð�Þ0 �mð�Þ0

and the generalized partition density is:

D0 ¼
Xc
�¼1

1

qð�Þ
nð�Þ

N
Dð�Þ0 :

2.3. An illustrative example

We show a small example that illustrates how the method works. Figure 1 exhi-

bits a bipartite network with two communities, which can be clearly recovered

by our approach. Speci¯cally, for c ¼ 2 we have mð1Þ ¼ 136; mð2Þ ¼ 114; mð1Þ ¼
35; mð2Þ ¼ 35; mð1Þ ¼ 147; mð2Þ ¼ 147; qð1Þ ¼ 2; qð2Þ ¼ 2 and N ¼ 20: Let us il-

lustrate how we can incorporate existing knowledge. If we know that Nodes III

and IV are in the same community, then we can revise A and L such that the

elements in the positions of ð13; 14Þ and ð14; 13Þ are 1. The result for events is

changed to

1 1 1 1 1 0

0 0 0 1 1 1

� �
T

;

which group III and IV together.

Note that the bipartite network can be projected onto the Event part or onto the

People part. Two events are connected if they have at least one common neighbor in

the People part, resulting in a complete network containing six nodes. The loss of

information is obvious and the community structures vanish, which means that the

problem of community detection in bipartite networks is not reducible to unipartite

case.

Fig. 1. (Color online) Illustration of wSBMF method. The network consists of events and people and

exhibits two overlapping groups where some individuals (4)–(7) belong to both communities.

Z.-Y. Zhang & Y.-Y. Ahn
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2.4. Possible extensions

The wSBMF model can be naturally extended to M-partite networks, whose adja-

cency matrix can be split into M �M blocks:

A ¼

0�1;�1
B�1;�2

0�1;�3
� � � 0�1;�M

BT
�1;�2

0�2;�2
B�2;�3

� � � 0�2;�M

0�3;�1
BT

�2;�3
0�3;�3

� � � 0�3;�M

..

. � � � � � � � � � ..
.

..

. � � � � � � � � � ..
.

0�M�1;�1
0�M�1;�2

� � � 0�M�1;�M�1
B�M�1;�M

0�M ;�1
0�M ;�2

� � � BT
�M�1;�M

0�M ;�M

2
66666666666664

3
77777777777775
;

where 0�i;�j
is null matrix of size n�i

� n�j
; and

B�i;�iþ1ab ¼
1; if a � b; a 2 �i; b 2 �iþ1

0; if a�= b; a 2 �i; b 2 �iþ1; i ¼ 1; 2; . . . ;M � 1:

�

In this case, L should be reformulated as:

L ¼

0�1;�1
I�1;�2

0�1;�3
� � � 0�1;�M

I�2;�1
0�2;�2

I�2;�3
� � � 0�2;�M

0�3;�1
I�3;�2

0�3;�3
� � � 0�3;�M

..

. � � � � � � � � � ..
.

..

. � � � � � � � � � ..
.

0�M�1;�1
0�M�1;�2

� � � 0�M�1;�M�1
I�M�1;�M

0�M ;�1
0�M ;�2

� � � I�M ;�M�1
0�M ;�M

2
6666666666664

3
7777777777775
;

where I�i;�j
is matrix where all entries are one with size n�i

� n�j
.

3. Results

In this section, we evaluate the performance of our method using both synthetic and

real-world networks.

3.1. Datasets description

We ¯rst discuss the existing bipartite benchmark networks.11 The benchmark has

¯ve communities, each having the same number of nodes. Edges only exist between

� and � with possibility pin if they are in the same community and pout if otherwise.

Often, pin is set equal to either 0:5 or 0:9 and pout is set as �pin, where � varies from

0 to 1. With increasing �, the community structure becomes less clear. Here, we

Community detection in bipartite networks
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propose two new, more realistic benchmark graphs that exhibit overlaps, variable

community sizes, and ¯xed density with di®erent mixing parameters.

. Nonoverlapping communities: This class of networks has four communities with

the same number of nodes (each with 32 from � and 32 from �). Edges exist only

between � and �. On average, each node has Zin þ Zout ¼ 16 edges. In other

words, each node in � has Zin neighbors within its own community and Zout ones

outside. With decreasing Zout, the community structures become clearer.

. Overlapping communities: This class of networks has c communities and the

number of nodes in each community can di®er from each other. A community �

contains n
ð�Þ
� nodes and n

ð�Þ
� ones in � and �, respectively. On average each �

node in the community � has Z
ð�Þ
in � neighbors in its own community and Z

ð�Þ
out�

neighbors in other communities. Actually, since we should have Z
ð�Þ
in =n

ð�Þ
� ¼

Z
ð�0Þ
in =n

ð�0Þ
� ; and Z

ð�Þ
out=ð

P
tn

ðtÞ
� � n

ð�Þ
� Þ ¼ Z

ð�0Þ
in =ðPtn

ðtÞ
� � n

ð�0Þ
� Þ; �; �0 ¼ 1; 2; . . . c,

it is enough only to give Z
ð1Þ
in and Z

ð1Þ
out to generate the network. In our setting there

are four communities containing 32� nodes and 32� ones in each community. In

addition, there are t overlapping � nodes between communities � and �þ 1,

� ¼ 1; 2; 3. Z
ð1Þ
in and Z

ð1Þ
out are set to 10 and 6, respectively.

We also use real-world networks for evaluation.

. Southern women network29: This dataset is the network describing the relations

between 18 women and 14 social events. Edges only exist between the women and

the events, which makes the graph bipartite. There are 89 edges. The network is

commonly used as a benchmark for bipartite community detection.

. Senator networka: This is the network of 110 US senators connected by voting

records for 696 bills. There is an edge between the senator and the bill if the senator

voted for the bill.We remove inactive senatorswho abstained frommore than 30%of

the bills and also the inactive bills which are waived by more than 30% of senators.

The ¯nal dataset contains 96 senators and 690 bills. There are still abstention cases

in the network, which are considered as missing values and can be handled by L.

3.2. Assessment standards

Normalized mutual information is used as the standard to evaluate community

structure detection performance. The value can be formulated as follows30:

InormðM1;M2Þ ¼

Pc
i¼1

Pc
j¼1

nij ln
nijn

n
ð1Þ
i n

ð2Þ
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPc

i¼1

n
ð1Þ
i ln

n
ð1Þ
i

n

� � Pc
j¼1

n
ð2Þ
j ln

n
ð2Þ
j

n

 !vuut
;

ahttp://www.senate.gov/.

Z.-Y. Zhang & Y.-Y. Ahn
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where M1 and M2 are the true cluster label and the computed cluster label, re-

spectively; c is the community number; n is the number of nodes; nij is the number

of nodes in the true cluster i that are assigned to the computed cluster j; n
ð1Þ
i is the

number of nodes in the true cluster i and n
ð2Þ
j is the number of nodes in the com-

puted cluster j. The larger the values of NMI, the better the graph partitioning

results. For overlapping benchmarks we use the generalized normalized mutual

information.31

3.3. Results

We compare our method with the BRIM model,11 which is the only method that we

can get the codes, on the synthetic benchmarks. Note the BRIM method cannot

handle overlapping communities and missing values in the network. To show that

the problem of detecting overlapping communities in bipartite networks is not trivial

and cannot be reduced to the unipartite case, we also compare our method with

SBMF model22 on the two unipartite networks � and �, where the two nodes are

connected if they have at least one common neighbor.

In many real scenarios there is background information available. We can in-

corporate it into the detection process by revising the objective matrix A and the

weight matrix L to improve the performance of detection and the interpretability of

the results. Speci¯cally, we consider two types of background information for node

pairs of the same type (i.e. � or �): (i) existence constraint Ce: ði; jÞ 2 Ce means

that nodes i and j are connected; (ii) absence constraint Ca: ði; jÞ 2 Ca means that

nodes i and j are not connected.

We only consider incorporating background information on the nodes in � in

this paper for simplicity. Given a bipartite network with n� nodes in �, there are

n�ðn� � 1Þ=2 pairs of nodes available. We randomly select 5% of pairs for prior

information: if the two nodes in one pair have the same community label, we assume

that they belong to Ce, otherwise they belong to Ca.
32,33 The zero matrices 0� in A

and L are revised accordingly:

0�ij ¼
1; if ði; jÞ 2 Ce;

0; otherwise;

�
ð6Þ

where 0� is the submatrix in A.

0� ij ¼
�; if ði; jÞ 2 Ce or ði; jÞ 2 Ca;

0; otherwise;

�
ð7Þ

where 0� is the submatrix in L. We set � equal to 1.

The results are shown in Figs. 2 and 3. They show that the wSBMF method is

much better than SBMF on unipartite networks, indicating the nonreducible

property of community detection problem in bipartite networks, and it also per-

forms better than BRIM in nonoverlapping community benchmark graphs. Our
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(a) (b)

Fig. 2. (Color online) Performance of BRIM and wSBMF on the bipartite networks, SBMF on the

monopartite networks, and the number of communities estimated by BRIM and wSBMF on nonover-

lapping networks. We randomly select 5% of pairs in � for background information.

(a) (b)

Fig. 3. (Color online) Performance of wSBMF and the number of communities estimated by SBMF on

overlapping networks. We randomly select 5% of pairs in � for background information.
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Fig. 4. Averaged partition density of wSBMF versus community number on (a) women network and (b)

senator network.
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method can identify reasonable number of communities, and the background in-

formation can signi¯cantly improve the results. We also evaluate the method on

the southern women network and the senator network. Figure 4 shows the results

of partition density under di®erent community numbers on the two networks, and

the most appropriate number is 2 for both of them. For the southern women

network, the result is very similar to that in Ref. 29, where there are two groups

in women, women 1� 9 and 9� 18. For the senator network, the result is consis-

tent with American two-party politics. Figure 5 shows the result of community

structure on the women network detected by wSBMF. We also use exponential

entropy eHi ; i ¼ 1; 2; . . . ;n�,
34 to analyze the strength of women's community

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.5

1

1.5

2

Women Labels

E
xp

on
en

tia
l E

nt
ro

py

Fig. 6. Exponential entropy of women. Higher value means fuzzier membership degree.

Fig. 5. (Color online) Communities detected by wSBMF model in the women network. There are no

outliers and overlapping nodes.
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memberships, where

Hi ¼ �
X2
j¼1

Uij logUij; i ¼ 1; 2; . . . ;n�:

The result is given in Fig. 6.

4. Discussion

In this paper, we have shown how to apply SBMF and partition density to ¯nd

communities in bipartite networks. The model is parameter free, easy to implement,

and °exible enough to incorporate background information. Experimental results on

both the synthetic and real-world networks demonstrate the e®ectiveness of the

proposed method.

There are two interesting problems for future work: (i) extension of the method to

weighted bipartite networks and directed bipartite networks; and (ii) theoretical

investigation on partition density and algorithm design for its direct optimization.
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Appendix

Summarization of Algorithms 1 and 2. We set the iteration number C1 equal to 10

and the iteration number C2 equal to 100.

Algorithm 1 Nonnegative Matrix Factorization (Alternative Least Squares Error)
Require: B, C1

Ensure: U1, U2

1: Initialize elements of U1 with nonnegative random numbers drawn from [0, 1].
2: for t = 1 : C1 do
3: Solve for U2 in equation UT

1 U1U2 = UT
1 A

4: U2 = max(U2, 0)
5: Solve for U2 in equation U2U

T
2 UT

1 = U2A
T

6: U1 = max(U1, 0)
7: end for

Z.-Y. Zhang & Y.-Y. Ahn
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