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Community Detection in Complex 
Networks via Clique Conductance
Zhenqi Lu1, Johan Wahlström2 & Arye Nehorai1

Network science plays a central role in understanding and modeling complex systems in many areas 

including physics, sociology, biology, computer science, economics, politics, and neuroscience. 

One of the most important features of networks is community structure, i.e., clustering of nodes 

that are locally densely interconnected. Communities reveal the hierarchical organization of nodes, 

and detecting communities is of great importance in the study of complex systems. Most existing 

community-detection methods consider low-order connection patterns at the level of individual links. 

But high-order connection patterns, at the level of small subnetworks, are generally not considered. 

In this paper, we develop a novel community-detection method based on cliques, i.e., local complete 

subnetworks. The proposed method overcomes the deficiencies of previous similar community-
detection methods by considering the mathematical properties of cliques. We apply the proposed 

method to computer-generated graphs and real-world network datasets. When applied to networks 

with known community structure, the proposed method detects the structure with high fidelity and 
sensitivity. When applied to networks with no a priori information regarding community structure, the 

proposed method yields insightful results revealing the organization of these complex networks. We 

also show that the proposed method is guaranteed to detect near-optimal clusters in the bipartition 

case.

Networks are a standard representation of complex interactions among multiple objects, and network analysis has 
become a crucial part of understanding the features of a variety of complex systems1–10. One way to analyze net-
works is to identify communities, mesoscopic structures consisting of groups of nodes that are relatively densely 
connected to each other but sparsely connected to other dense groups in the network11. Communities, also called 
clusters or modules, mark groups of nodes which could, for example, share common properties, exchange infor-
mation frequently, or have similar functions within the network12. �e existence of communities is evident in 
many networked systems from a great many areas, including physics, sociology, biology, computer science, engi-
neering, economics, politics, and neuroscience13–20.

Community detection is important for many reasons. It allows classi�cation of the functions of nodes in 
accordance with their structural positions in their communities21–23. It reveals the hierarchical organization that 
exists in many real-world networks24. Moreover, it improves the performance and e�ciency of processing, ana-
lyzing, and storing networked data25,26. Communities also have concrete applications. In social networks, com-
munities represent groups of individuals with mutual interests and backgrounds, and imply patterns of real social 
groupings15. In purchase networks, communities represent groups of customers with similar purchase habits, 
and can help establish e�cient recommendation systems26. In citation networks, communities represent groups 
of related papers in one research direction, and identify scholars sharing research interests27. In brain networks, 
communities represent groups of nodes that are intricately interconnected and that could perform local compu-
tations, and they give insights into structural units of the brain28.

�e mathematical synonym of networks is graphs, and in the context of graph theory, one of the mathemati-
cal formalizations of community detection is graph partitioning. Guided by spectral graph theory29, the method 
of spectral graph partitioning arose by relating network properties to the spectrum of the Laplacian matrix30. 
�e earliest method in this category minimized connections between di�erent communities31,32. In practice, this 
optimization problem can be e�ciently solved, but it favors non-optimal solutions involving cutting a small part 
from the graph. One way to circumvent this drawback is to introduce balancing factors to the objective functions 
in order to enforce a reasonably large size for each community33,34. However, introducing balancing factors makes 
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these optimization problems NP-hard35. Hence relaxed versions of these problems are solved by taking advantage 
of the properties of the Laplacian matrix.

Despite thousands of publications in the literature on spectral partitioning, these methods are constrained 
to conventional graph-based models. �ese models involve a set of vertices, which represent objects of interest, 
and a set of edges, which encode the existence or non-existence of a relationship between each pair of objects. 
However, in many real-world systems, the complex and rich nature of systems cannot be captured by such 
dyadic relationships. More importantly, recent computer innovations have greatly increased the size of the 
real networks that one can potentially handle. As a result, the way to process and understand graphs has been 
changed, and polyadic interactions are becoming more and more important. In particular, a community is 
intuitively a cohesive group of vertices that are “more densely” connected within the community than across 
communities11. �e precise de�nition and characterization of “more densely” relies on polyadic interactions 
among multiple vertices. In order to quantitatively characterize polyadic structures, we employ the high-order 
structures of cliques, de�ned to be local complete subgraphs. In the context of networks, cliques are groups of 
objects that rapidly and e�ectively interact. �is paper presents a graph-partitioning method that identi�es 
clusters of cliques.

One line of related work is the method of k-clique percolation36,37. �is method de�nes the k-clique com-
munity to be the union of “adjacent” k-cliques, which by de�nition share k − 1 vertices, where k is any positive 
integer. However, this de�nition is too stringent because it rules out other possible communities that are not so 
well-connected. Its performance also relies heavily on the choice of k: A small k leads to a single giant community, 
and a large k leads to multiple small and possibly distant communities. In addition, this de�nition includes top-
ological cavities38, which enclose holes in networks and mark local lacks of connectivity. However, this feature is 
not an expected property of communities.

In a recent paper, Benson et al. devised a community-detection method based on high-order connectivity 
patterns called network motifs39,40, and proposed a generalized framework for identifying clusters of network 
motifs41. Cliques are certainly one special kind of network motif, and Benson et al. provide numerical simulations 
for applying this framework to cliques. However, this framework has several drawbacks. First, the framework 
fails to consider the nested nature of cliques and so su�ers from unnecessary computational cost, since it needs 
to take into consideration non-maximal cliques. Second, the method requires pre-speci�cation of the sizes of the 
cliques involved, instead of considering all clique sizes occurring in the network. �ird, the conductance function 
merely counts the number of cliques and ignores other properties in�uenced by partitions. Lastly, the perfor-
mance guarantee works only for 3-cliques. We overcome all these drawbacks by designing a novel conductance 
function speci�cally for cliques.

In this paper, we propose a novel community-detection method that minimizes a new objective function, 
called the clique conductance function. We encode in this objective function the number and sizes of cliques, 
and the numbers of edges in the cliques. Finding a partition that exactly minimizes the clique conductance is 
computationally intractable. �us we extend the spectral graph partitioning methodology, and devise a com-
putationally tractable solution that approximately minimizes the clique conductance. In addition, we derive a 
performance guarantee for the bipartition case, showing that the resulting bipartition is near-optimal. Finally, 
we apply the proposed method to computer-generated graphs and real-world network datasets. When applied 
to networks with known community structure, the proposed method achieves excellent agreement with the 
ground-truth communities. When applied to networks with no a priori information regarding community 
structure, the proposed method yields insightful results that help us understand the structures embedded in 
these complex networks.

Methods
In this section, we describe our proposed graph-partitioning method. We begin by introducing several graph nota-
tions, and then state the formulation of our proposed graph-partitioning method based on clique-conductance 
minimization. We conclude this section by proposing a computationally e�cient algorithm that approximately 
solves the optimization problem.

Graph Notations. An undirected weighted graph  is an ordered triplet V E π( , , ) consisting of a set of verti-
ces  = …v v{ , , }n1 , a set of edges ⊂ ×E V V  satisfying u v( , ) ∈   if and only if v u( , ) ∈   for all u v, ∈ , and a 
weight function    ∪π × → +: {0} satisfying ( ) 0π > , π × − =V V E( ) 0, and π(u, v) = π(v, u) for all 
u v, ∈  . If the weight function π in addition satisfies ( ) 1π = , then  is an undirected binary graph. The 
weighted adjacency matrix W of the graph is de�ned as W(i, j) := π(vi, vj). Since  is undirected, we have W = 
WT. �e degree of a vertex vi is de�ned as π=∑ ∈d u v: ( , )i u i , and the degree matrix D is a diagonal matrix with 
d1, …, dn as diagonal entries. �e Laplacian matrix L of the graph is de�ned as L := D − W. A graph  is said to 
have no loops if π(u, u) = 0 for all ∈u .

Formally, a k-clique is a subgraph consisting of k nodes with all pairwise connections, where k is any positive 
integer. It naturally follows from the de�nition that any subgraph of a clique is also a clique, and such a subgraph 
is called a face. We call this feature the nested nature of cliques. A maximal clique is a clique that is not a face. Due 
to the nested nature of cliques, the maximal cliques of a graph contain all the clique information. �e number of 
vertices constituting a clique σ is called the size of a clique and is denoted as ω(σ). In this paper, we use k  to 
represent the collection of all maximal k-cliques, and = ⋃k k   to represent the collection of all maximal 
cliques.

Clique Conductance Minimization. We now state the formulation of our proposed graph-partitioning 
method. Intuitively, the graph-partitioning problem based on cliques can be described as follows: We wish to 
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�nd a partition of the graph, such that cliques between di�erent groups are few and have small sizes (which 
means that vertices in di�erent clusters share few high-order connections), and cliques within each group have 
large sizes (which means that vertices within one cluster are connected in high-order fashion). Formally, sup-
pose that G V E π= ( , , ) is an undirected binary graph with no loops. Given a positive integer m > 1, we wish to 
�nd a partition (A1, …, Am) that satis�es Ai∩Aj = ∅ for any i ≠ j and ⋃ =Ai i , and that minimizes

A A A A( , , ) : cut ( , ),
(1)

m

i

m

i i1

1

∑ψ … =

=

where

A A u A v Acut ( , ) : ( ) ( , ),
(2)u v,

�¯ ∑ ∑ω σ= ∈ ∈
σ σ∈ ∈

where � is the truth-value indicator function. Conceptually, the cut function A Acut( , ) measures how severely 
maximal cliques are in�uenced by the partition A A( , ). �e cut function considers both the number and sizes 
of maximal cliques that are cut by the partition, and also the number of edges in each maximal clique that are 
cut by the partition. Unfortunately, in practice the solution of this approach o�en yields extreme cases separat-
ing the vertex with the lowest degree from the rest of the graph, similar to phenomena observed in minimizing 
conventional cut functions31. To circumvent this problem, we introduce a balancing factor


�∑ ∑ω σ=





∈

σ σ∈ ∈

A u Avol( ) : ( ) ),
(3)u

which conceptually measures the size of a cluster A, and propose to minimize the clique conductance function 
de�ned as

A A
A A

A A
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cut( , )
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We note that this objective function is formulated in a similar way to normalized spectral partitioning34. 
However, introducing balancing factors causes the computationally tractable problem of minimizing equation (1) 
to become NP-hard35. Following the idea of spectral graph partitioning30, we next reformulate our optimization 
problem and seek a computationally tractable solution.

Partitioning Algorithm. We introduce a new weighted graph, which we call the induced clique graph, to 
encode the maximal-clique information of  . The induced clique graph of π= ( , , )G V E  is an undirected 
weighted graph G V E( , , )c cπ= , where the weight function πc is de�ned as

u v( , ) : ( )
(5)

c
u v,

∑ ∑π ω σ= .
σ σ∈ ∈

By de�nition, πc(u, v) is the sum of the sizes of the maximal cliques that vertex u and vertex v both engage. 
Intuitively, πc measures how densely two vertices are connected in . We denote by Wc, Dc, Lc the corresponding 
adjacency matrix, degree matrix, and Laplacian matrix, respectively. Following this spirit, the graph-partitioning 
problem on an undirected binary graph  can be transformed and implemented as a graph-partitioning problem 
on a weighted graph c. Notice that a partition (A1, …, Am) on the original network  induces a partition on the 
induced clique graph c. To measure conductance on this weighted graph, we recall the traditional conductance 
function on weighted graphs30, de�ned as

∑φ … =
=

A A
A A

A A
( , , ) :

cut ( , )

min(vol ( ), vol ( ))
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∑ π=
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A A u vcut ( , ) : ( , )
(7)
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u A v A
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,

is the total weight of edges cut, and

A u vvol ( ) : ( , )
(8)

c
u A v

c
, 
∑ π=
∈ ∈

is the total connection from vertices in A to all vertices in the graph. �e next proposition relates the traditional 
conductance function in equation (6) to the clique conductance function in equation (4).
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Proposition 1. Given any undirected binary graph π= ( , , )G V E , for any subset ⊂ A , we have

=A A A Acut( , ) cut ( , ), (9)c

= .A Avol( ) vol ( ) (10)c

�e proof of Proposition 1 is given later. A straightforward consequence of Proposition 1 is that the conduct-
ance functions as shown in equations (4) and (6) are equal.

Corollary 2. Given any undirected binary graph ( , , )π=G V E , for any natural number m > 1 and any partition 
(A1, …, Am), we have

φ φ… = … .A A A A( , , ) ( , , ) (11)m c m1 1

Corollary 2 shows that the clique conductance minimization problem,

φ …
…

A Aminimize ( , , ),
(12)A A

m
( , , )

1
m1

is equivalent to the conductance minimization problem on the induced weighted graph,

φ … .
…

A Aminimize ( , , )
(13)A A

c m
( , , )

1
m1

Solving this minimization problem directly can be computationally intractable35. One way to circumvent this 
issue is to solve a relaxed version of this problem by employing normalized spectral partitioning30,34,42. �us our 
partitioning algorithm consists of three steps. First the maximal cliques are computed using the Bron-Kerbosch 
algorithm43–46. �en the induced clique graph c is formed. Finally, normalized spectral partitioning42 is applied 
to achieve a partition of the graph . Our partitioning algorithm is stated in detail in Algorithm 1. As shown in 
Algorithm 1, we use two di�erent clustering methods for m = 2 and m > 2 when applying normalized spectral 
partitioning, because for m = 2 the Cheeger inequality ensures that this clustering method produces a 
near-optimal partition, as shown later. For the general case of m > 2, there are no similar results providing per-
formance guarantees. Among the several spectral partitioning methods30, we choose normalized spectral parti-
tioning42 because of the construction of the clique conductance function. A recent work provides a performance 
guarantee for the general case, but the proof is constrained to regular binary graphs and is based on a new and 
untested clustering method47. We choose to keep using the k-means clustering method for its ease of implemen-
tation and successful empirical results.

Empirical Results
In this section we present a number of numerical experiments with the proposed method. We �rst perform 
experiments on computer-generated graphs, and then apply the proposed method to real-world networks with 
known community structures. In each case, we �nd that the proposed method almost perfectly detects commu-
nity structures indicated by network connectivity.

Benchmarks. We use benchmarks to compare the proposed method to the motif-conductance method41, the 
normalized spectral partitioning34, and greedy methods, including the Louvain method48, the Ravasz method49, 
and the fast modularity maximization method50–52. Benchmarks are computer-generated graphs whose commu-
nity structure is known. To compare two partitions  ,1 2 of the same graph, we use the normalized mutual infor-
mation53,54, de�ned as

Algorithm 1. Graph partitioning via clique conductance minimization.
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Here, p(c) is the probability that a randomly chosen vertex belongs to community c, p(c1, c2) is the probability that 
a randomly chosen vertex belongs to both community c1 and community c2. Also, ( )H C  is the Shannon entropy, 
de�ned as

∑= − .

∈

p c p c( ) : ( ) log ( )
(15)c

H C

C

Intuitively, the normalized mutual information measures the similarity between two partitions. If the two 
partitions ,1 2   are identical, then   =I ( , ) 1n 1 2 , and if the two partitions are independent of each other, then 

=I ( , ) 0n 1 2  . In the following experiments, 1 is the ground-truth partition given by the benchmark, and 2 is 
the partition predicted by a community-detection method.

�e �rst benchmark we use is the Girvan-Newman (GN) benchmark55. Here, each graph is composed of 128 
vertices and is partitioned into 4 communities of size 32. Each vertex is connected to approximately 16 others. For 
each vertex, a fraction zout of 16 connections is made to randomly chosen vertices of other communities, and the 
remaining connections are made to randomly chosen members of the same community. When zout is a 
half-integer k 1

2
+ , half of the vertices have k inter-community connections and the other half have k + 1 

inter-community connections. �e GN benchmark produces graphs with known community structures, which 
are essentially random in all other aspects.

�e results of di�erent community-detection methods compared against the GN benchmark are shown 
in Fig. 1a. Each curve is averaged over 1000 realizations. As can be seen, the proposed method achieves com-
plete mutual information when zout ≤ 7, detecting virtually correct communities. �e proposed method yields 
almost zero mutual information when zout ≥ 9, where each vertex has more inter-community connections than 
intra-community connections. �e transition between these two regions is swi� and sharp. In other words, the 
proposed method performs almost perfectly up to the point where each vertex has as many inter-community con-
nections as intra-community connections. �is performance is almost optimal, because the ground-truth com-
munity structure diminishes when each vertex has more inter-community connections than intra-community 
connections. In this situation, the community structure represented by graph connections deviates from the 
ground-truth community structure, and so these two sets of clusters share little mutual information. �e normal-
ized spectral partitioning and the motif-conductance method using 3-cliques as the network motif perform as 
well as the proposed method. But when 4-cliques and 5-cliques are chosen as network motifs, the performance of 
the motif-conductance method degrades severely. �is degradation shows that the motif-conductance method 
heavily relies on the choice of, and prior knowledge about, which cliques are overexpressed in a graph. Finding 
this knowledge and determining this choice necessarily involve a brute-force search over all subgraphs of certain 
sizes. Among the greedy methods, the Louvain method and the fast modularity method o�er the best perfor-
mance, but compared to the proposed method, the accuracies of both methods are lower when zout ≤ 7.

�e GN benchmark generates a random graph where all vertices have approximately same degrees and all 
communities have an identical size. However, many real-world networks are scale-free56, with node degrees and 
community sizes following the power-law distribution. As a result, a community-detection method that performs 
well on the GN benchmark might fail on real-world networks. To ensure that the proposed method does not suf-
fer from this limitation, we use the Lancichinetti-Fortunato-Radicchi (LFR) benchmark as a second benchmark57, 
where both vertex degrees and ground-truth community sizes follow the power-law distribution. In this bench-
mark, each graph is composed of n vertices and is partitioned into m communities. Each vertex is given a degree 
following a power-law distribution with exponent γ, and each community is given a size following a power-law 
distribution with exponent β. �e minimal and maximal values of degrees, kmin, kmax, and of community sizes, 

Figure 1. Normalized mutual information of di�erent community-detection methods on (a) the Girvan-
Newman benchmark, (b) the Lancichinetti-Fortunato-Radicchi benchmark (using the same legend as sub�gure 
(a)).
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smin, smax, are chosen such that kmin < smin and kmax < smax. For each vertex, a fraction 1 − µ of its connections is 
made to randomly chosen members of the same community, and the remaining connections are made to ran-
domly chosen members of other communities. A realization of this benchmark is constructed via the following 
steps. At the beginning, all vertices are homeless, i.e., they belong to no communities. Each vertex is assigned to 
a randomly chosen community with a size greater than the vertex degree. If the community is already full, a ran-
domly chosen member of this community is kicked out. �is procedure continues until each vertex is assigned 
to a community. �en connections are randomly generated while preserving the ratio between the external and 
internal degrees of each vertex.

�e results of di�erent community-detection methods compared against the LFR benchmark are shown in 
Fig. 1b, with parameters chosen as n = 500, m = 10, kmin = 20, kmax = 80, γ = 2, smin = 30, smax = 100, and β 
= 1.1. Each curve is averaged over 1000 realizations. �e results are similar to those on the GN benchmark. 
�e proposed method, the normalized spectral partitioning method, and the motif-conductance method using 
3-cliques perform similarly: All closely approximate complete mutual information when µ ≤ 0.5, and yield nearly 
zero mutual information when µ ≥ 0.8. �e performance of the motif-conductance method degrades severely 
when 4-cliques and 5-cliques are chosen as network motifs. �e performances of the greedy methods are similar 
to their performances on the GN benchmark, except that the fast modularity method has a much lower accuracy 
when µ ≤ 0.6.

To further validate the advantage of the proposed method over the motif-conductance method, we depict in 
Fig. 2 the size distribution of maximal cliques in both benchmarks averaged over 1000 realizations. �e distribu-
tions in both benchmarks are similar. When zout and µ are small, the 4-cliques are the dominant maximal cliques 
and other maximal cliques generally have sizes of 2, 3, and 5. With increasing zout and µ, the numbers of 4-cliques 
and 5-cliques decrease rapidly and are exceeded by the numbers of 2-cliques and 3-cliques when approximately 
1/3 of the connections of each vertex are inter-community. In the GN benchmark, the number of 3-cliques keeps 
growing a�er this point and remains the most numerous maximal clique. But in the LFR benchmark, the number 
of 3-cliques is exceeded by the number of 2-cliques when µ > 0.7. Given these patterns in the distributions, it is 
not surprising that the motif-conductance method performs poorly when 4-cliques and 5-cliques are chosen as 
network motifs. �ese distributions also further demonstrate the advantage of the proposed method. In practice, 
the distribution of cliques (and other network motifs) is mostly probably unavailable when one is processing 
observed network data. Collecting this information is computationally expensive. Since the maximal cliques con-
tain all the clique information, the proposed method is able to process general networks with no prior knowledge 
of clique sizes and clique locations.

In summary, the proposed method achieves state-of-the-art performance on the homogeneous GN benchmark 
and on the scale-free LFR benchmark. In addition, the proposed method yields almost the optimal performance 

Figure 2. Distribution of sizes of maximal cliques in (a) the Girvan-Newman benchmark, (b) the 
Lancichinetti-Fortunato-Radicchi benchmark.

Figure 3. �e friendship network from Zachary’s karate club study. (a) �e communities observed by Zachary. 
(b) �e communities detected by the proposed method.
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one could expect on these two benchmarks: �e proposed method detects the pre-de�ned ground-truth commu-
nity structure when it is well represented by connections, and deviates from it when the ground truth diminishes. 
�is behavior explains why there is little improvement over the existing methods. As opposed to the motif-based 
method, the proposed method also bene�ts from the fact that it requires no pre-speci�cation of clique sizes. As a 
result, the proposed method bypasses a computationally expensive search for the optimal choice of clique sizes.

Zachary’s Karate Club. We apply our method to the network from the well-known karate club study by 
Zachary58. �is study followed a social network composed of 34 members and 78 pairwise links observed over 
a period of three years. During the study, a political con�ict arose between the club president (node 34) and 
the instructor (node 1). �is political con�ict later caused the club to split into two parts, each with half of the 
members. Zachary recorded a network of friendships among members of the club shortly before the �ssion, and 
a simpli�ed unweighted version is shown in Fig. 3a. Di�erent node colors are used in this �gure to show the two 
factions of the �ssion a�er the political con�ict.

Figure 3b shows the community structure detected by the proposed method. �e identi�ed communities 
almost perfectly re�ect the two factions observed by Zachary, with only 1 (node 9) out of 34 nodes “incorrectly” 
assigned to the opposing faction. �is exception can be explained by the con�ict of interest faced by individual 
number 9. As recorded by Zachary, individual number 9 was a weak political supporter of the club president 
before the �ssion, but not solidly a member of either faction58. �is ambivalence is revealed by the fact that node 
9 is engaged in two maximal 3-cliques, on nodes {1, 3, 9} and on nodes {3, 9, 33}, and one maximal 4-clique on 
nodes {9, 31, 33, 34}, implying that node 9 is weakly more densely associated with members of the club president’s 
faction. On the other hand, Zachary pointed out that individual number 9 had an overwhelming interest in stay-
ing associated with the instructor, which was not shared by any other member of the club. Individual number 9 
was facing his black-belt exam in three weeks, and joining the club president’s faction would result in renouncing 
his rank and starting over again58. In other words, individual number 9 would have joined the club president’s 
faction, if this con�ict of interest had not emerged. �erefore, the proposed method perfectly detected the social 
communities in an empirically observed network of friendships.

College Football Network. We then apply the proposed method to a more complex real-world network 
with known community structures. �e network represents the schedule of United States football games between 
Division IA colleges during the regular season in Fall 200055. �e network is shown in Fig. 4, where the nodes 
represent teams, and the links represent regular season games between the two teams connected. �e known 
communities are de�ned by conferences, each containing around 8 to 12 teams and marked with colors. Links 
representing intra-conference games are also marked with the same colors as the corresponding conferences. In 
principle, teams from one conference are more likely to play games with each other than with teams belonging to 
di�erent conferences. �ere also exist some independent teams that do not belong to any conference, and these 
teams are marked with a light-green color.

�e communities identi�ed by the proposed method are represented by spatial clusterings in Fig. 4. In general, 
the proposed method correctly clusters teams from one conference. �e independent teams are clustered with 
conferences with which they played games most frequently, because the independent teams seldom play games 
between themselves. �e clusters detected by the proposed method deviate from the conference segmentation in 
several ways. First, the Sun Belt conference, marked with a brown color, is split into two parts, shown at the eleven 
o’clock and three o’clock directions, and each part is grouped with teams from the Western Athletic conference, 
marked with a yellow color, and independent teams. But this result is understandable given the fact that there 
was only one game involving teams from both these two parts. Second, one team from the Conference USA con-
ference, marked with a dark red color, is clustered with teams from the Western Athletic conference. �is team 

Figure 4. Communities of college football network, using colors for conferences and spatial clusterings for 
identi�ed communities.
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played no games with other teams from the Conference USA conference, but played games with every team from 
the Western Athletic conference. �ird, two teams from the Western Athletic conference are isolated from other 
teams from this conference, and each is grouped with part of the Sun Belt conference. �e team at eleven o’clock 
had no intra-conference game, and the team at three o’clock had only two intra-conference games, but they had 
inter-conference games with every member of the cluster that they are assigned to. In summary, the proposed 
method perfectly re�ected the community structures established in regular-season-game association, and in 
addition detected the lack of intra-conference association that the known community structure fails to represent.

Applications to Complex Real-World Networks
In the previous section, we tested the proposed method on both computer-generated graphs and real-world net-
works for which the community structures are well-de�ned and known a priori. In this section, we apply the pro-
posed method to complex real-world networks of which the community structures are not known, and show that 
the proposed method helps us understand these complex networks. For each application example, the number of 
communities is chosen based on prior information regarding the datasets.

Bottlenose Dolphin Social Network. Our �rst example is a social network composed of 62 bottlenose 
dolphins living in Doubtful Sound, New Zealand59. �e social ties between dolphin pairs are established based on 
direct observations conducted during a period of seven years by Lusseau et al. �e clustering analysis conducted 
by Lusseau et al. on 40 of these dolphins shows that three groups spent more time together than all individuals 
did on average, but group 1 is relatively weak in the sense that it is an artifact of the similar likelihood of encoun-
tering these individuals in the study area59. Figure 5 shows the social network of bottlenose dolphins, where 
nodes represent dolphins and links represent social ties. �e three groups observed by Lusseau et al. are colored 
in green, red, and blue, respectively, and the dolphins not involved in the clustering analysis by Lusseau et al. are 
le� in black. �e dashed line denotes the community division found by the proposed method. As can be seen, the 
achieved division corresponds well with the observed groups, separating the red and blue groups into two com-
munities. �e green group (group 1) is split evenly between the two detected communities. �is phenomenon is 
understandable, because group 1 is a weak group and is not well represented by the social network since most of 
its members share no social ties.

Food Web. Our second example is a food web representing the carbon exchange among 128 compartments 
(organisms and species) occurring during the wet and dry seasons in the Florida Bay ecosystem60, as shown in 
Fig. 6. In this network, nodes represent compartments, and links represent energy �ow (the link from node i to 
node j means that carbon is transferred from node i to node j). Part of the compartments are classi�ed into a total 
of 13 groups (Part of the groups were compiled by Benson et al.41), as marked with di�erent colors in Fig. 6. �e 
remaining compartments are le� in grey. �is network is a directed network, and we apply the proposed method 
to a simpli�ed version with each directed edge converted to an undirected edge.

�e communities detected by the proposed method are divided by the dashed lines. �e division corresponds 
quite closely with the division of groups of compartments. �e clustering reveals four known aquatic layers: 
macroinvertebrates and microbial microfauna (le�), sediment organism microfauna (bottom), pelagic �shes and 

Figure 5. Social network of 62 bottlenose dolphins. �e nodes are colored based on the groups observed in the 
study by Lusseau et al.59. �e spatial clustering represents communities detected by the proposed method.
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zooplankton microfauna (right), and algae producers, avifauna, benthic �shes, herpetofauna, and seagrass pro-
ducers (middle). Interestingly, some groups are evenly distributed in multiple communities, like mammals, dem-
ersal �shes, and phytoplankton producers, while some other groups have a few members clustered into di�erent 
communities, like benthic �shes, macroinvertebrates, and pelagic �shes. �is phenomenon presumably indicates 

Figure 6. Food web in the Florida Bay. �e nodes are colored based on the group classi�cation given in the 
original research report60. �e spatial clustering represents communities detected by the proposed method.

Figure 7. Neural network of the nematode Caenorhabditis elegans. �e nodes are colored based on neuron 
categories described in the original research report61. �e spatial clustering represents communities detected by 
the proposed method.
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that the roles of these species in the carbon exchange cannot be derived from the traditional divisions in a trivial 
manner. For example, though both are mammals, the manatee and the dolphin have very diverse diets. �e man-
atee feeds on submergent aquatic vegetation, and the dolphin feeds on small �shes and shrimps. Consequently, 
one would expect that the manatee and the dolphin play di�erent roles in the carbon exchange. �us the simple 
traditional divisions of taxa, for example, into benthic, demersal, and pelagic organisms, or into �shes, aves, herp-
tiles, and mammals, may not ideally re�ect their roles in the carbon exchange.

Neural Network. Our third example is the nervous system of the soil nematode Caenorhabditis elegans61, the 
only organism whose connectome has been completely mapped so far. �e nervous system of C. elegans is repre-
sented by a neural network consisting of 280 nonpharyngeal neurons and covering 6393 chemical synapses, 890 
electrical junctions, and 1410 neuromuscular junctions62,63, as shown in Fig. 7. In this network, nodes represent 
neurons and links represent the existence of any of the three neural interactions. �e original network is directed 
and contains multi-edges and loops, and we apply the proposed method to the simpli�ed undirected version, with 
each directed edge converted to an undirected edge, multi-edges merged, and loops deleted. We have labeled part 
of the neurons as ciliated/sensory neuron or motoneuron based on descriptions in the original research61, and 
these labeled neurons are colored in Fig. 7. �e remaining neurons are le� in grey. In general, ciliated/sensory 
neurons are neurons that are part of sensilla (groups of sense organs) or directly associated with sensilla, and 
motoneurons are neurons that innervate muscles. �e neurons le� in grey are mostly interneurons that create 
neural circuits among other neurons.

�e dashed line denotes the community division found by the proposed method. As can be seen, the achieved 
division yields an approximate distinction between ciliated/sensory neurons and motoneurons. �is distinction 
is not perfect: A small number of ciliated/sensory neurons �nd their way into the motoneuron community (le�), 
and several motoneurons are clustered into the ciliated/sensory-neuron community (right). �is “incorrect” clus-
tering of motoneurons is understandable. �e families of motoneurons clustered into the ciliated/sensory-neuron 
community (RIM, RMD, RME, RMF, RMG, RMH, SMB, SMD, URA) are motoneurons that innervate head mus-
cles and are located near the head, where the major sensilla are also located. �us one would expect these moto-
neurons to frequently interact with ciliated/sensory neurons that are also located in the head. On the other hand, 
part of the families of ciliated/sensory neurons clustered into the motoneuron community (PHB, PHA, PDE, 
PLM) are ciliated/sensory neurons that are connected to sensilla located at the posterior body, where motoneu-
rons are densely located to control body movements. As a result, one would expect these ciliated/sensory neurons 
to be more associated with local motoneurons than with ciliated/sensory neurons in the head. However, the other 
four families of incorrectly clustered ciliated/sensory neurons (ADL, ASJ, ALM, FLP) cannot be explained by this 
theory, because they are located near the head, and in addition some of them are connected to major sensilla in 
the head. �is anomaly might arise because our simpli�cation of the neural network (ignoring interaction direc-
tions, merging multi-edges, deleting loops, and regarding all kinds of neural interactions as equivalent) could 
only approximately represent neural associations, and some information is lost a�er the simpli�cation.

Conclusion and Discussion
In this paper, we developed a novel community-detection method on the basis of cliques, i.e., local complete 
subnetworks. �e proposed method overcomes the de�ciencies of previous similar community-detection meth-
ods by considering the nested nature of cliques and encoding the size of cliques into the optimization objective 
function. In addition, it does not require any pre-speci�cation of the type or size of the subnetworks considered 
in partitioning. To verify the e�ectiveness of the proposed method, numerical experiments were conducted using 
both well-established benchmarks and real-world networks with known communities. In all cases, the commu-
nity structure detected by the proposed method either achieves state-of-the-art performance or aligns well with 
ground-truth communities. Finally, we applied the clique-based community-detection method to real-world net-
works with no a priori information regarding community structure. Speci�cally, the detected community struc-
ture provides insights into the social groupings of bottlenose dolphins, the roles of compartments in ecological 
carbon exchange, and the functions of neurons in the connectome of the model organism Caenorhabditis elegans. 
We also presented a theoretical analysis of the performance of the proposed method. Speci�cally, we showed that 
our method was guaranteed to yield near-optimal performance in the bipartition case, and analyzed the compu-
tational complexity of our method.

�e proposed method emphasizes the power of maximal cliques in community detection. In networks with 
community structure, nodes within each community tend to be densely interconnected and may potentially 
form multiple cliques with large sizes, whereas nodes from di�erent communities are sparsely connected and 
so are unlikely to form high-order cliques. It would in general be unfair to assume that the sizes of these cliques 
are above some certain threshold, though most existing methods involving cliques have made such assumptions. 
Maximal cliques allow algorithms to operate without such assumptions by adaptively encoding all clique informa-
tion based on whatever clique sizes are available. �ough the computational complexity of the proposed method 
makes it unsuitable for large-scale networks, considering maximal cliques could be useful in devising more com-
putationally e�cient methods. For example, some greedy methods may converge faster without losing much 
accuracy by treating local maximal cliques as a whole. By requiring only information of local maximal cliques, 
it is possible to bypass the collection of global maximal-clique information, which is computationally expensive.

Theoretical Analysis
In this section, we present the theoretical analysis of the proposed method. We begin by analyzing the perfor-
mance of the proposed method for a special case. We then discuss the computational complexity of the proposed 
method, and conclude this section by proving the key theoretical results in this paper.
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Performance Guarantee for Graph Bipartition. For the case m = 2, the graph-partitioning problem 
becomes a graph-bipartition problem. For this special case, spectral graph theory provides guidance on measur-
ing the goodness of approximation to the clique conductance minimization64–66. One way is through an expanded 
version of the Cheeger inequality that characterizes the performance of spectral graph partitioning67. We follow a 
similar approach in the remainder of this subsection. Next we introduce terminology necessary to present our 
result. Let G V E π= ( , , ) be a connected undirected binary graph with no loops. For a subset A ⊂ , the Cheeger 
ratio of A is de�ned as

=h A
A A

A A
( ) :

cut( , )

min(vol( ), vol( ))
,

(16)

and the Cheeger constant of  is de�ned as

h h A: min ( )
(17)A

= .

Let α be the Cheeger ratio of the output of Algorithm 1. Chung proved an expanded version of the Cheeger 
inequality, relating these values for spectral bipartition on connected binary graphs67. However, in our setting, c 
is de�ned to be a weighted graph. �us our �rst step is to generalize Chung’s result to connected weighted graphs.

Lemma 3. (Expanded Cheeger inequality). Let  be a connected undirected binary graph and c be the induced 
clique graph with a normalized Laplacian matrix c . Let λ be the second smallest eigenvalue of c , and h be the 
Cheeger constant of . �en

 
 

λ
α

≥ ≥ ≥h
h

2
2 2

,
(18)

2 2

where α is the Cheeger ratio of the output of Algorithm 1.
�e proof of Lemma 3 is given later in this section. In our setting, the Cheeger constant h  is equal to *φ , which 

is the optimal value of the clique conductance optimization (12), and the Cheeger ratio α is equal to φ̂, which is 
the clique conductance of the output of Algorithm 1. �erefore, combining Proposition 1 and Lemma 3 yields 
�eorem 4.

�eorem 4. Let  be a connected undirected binary graph. Let *φ  denote the optimal clique-conductance value of 
(12) and φ̂ be the clique-conductance value of output of Algorithm 1 for the case m = 2. �en

* 2 * (19)φ φ φ≤ ≤ .ˆ

�eorem 4 shows that our optimization algorithm �nds a bipartition that is bounded within the optimal 
bipartition by a quadratic factor. �erefore our algorithm is mathematically guaranteed to achieve a near-optimal 
partition.

Performance Guarantee Verification. To verify the performance guarantee of the proposed method, 
given in �eorem 4, we apply it to a set of randomly generated graphs. Each graph is composed of n vertices, each 
of which is assigned a random point in [0,1]100. An undirected weighted graph is generated by computing the neg-
ative Euclidean distances between each pair of these vertices, and then an undirected binary graph is generated 
by preserving a percentage ρ of the edges with the largest weights. �is process produces graphs that re�ect the 
degradation of correlation with distance, which is a common assumption in many network models, and that are 
essentially random in other aspects.

Figure 8. Comparisons of clique conductance of the proposed method and the performance bounds in 
�eorem 4. (a) Varying n and �xed ρ = 0.6. (b) Varying ρ and �xed n = 30.
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We apply the proposed method to each graph and partition it into two parts. We also enumerate all possible 
bipartitions and �nd the bipartition with the minimal clique conductance. In Fig. 8a, we show comparisons of 
clique conductance of the bipartitions achieved by the proposed method and the optimal bipartitions, with n 
varying from 20 to 30 and ρ = 0.6. In Fig. 8b, we repeat the experiments with n = 30 and ρ varying from 0.2 to 
0.8. Each curve is averaged over 50 independent trials. As can be seen, the proposed method follows the optimal 
performance curve closely in general, and is well bounded by the upper bound in �eorem 4. In other words, the 
proposed method performs almost perfectly and always �nds a near-optimal bipartition.

Computational Complexity. Finding all maximal cliques in an arbitrary graph requires O(3n/3) compu-
tations45, which is optimal as a function of n because any n-vertex graph has up to 3n/3 maximal cliques68. A�er 
forming the clique weight matrix, computing the �rst m eigenvectors requires an eigenvalue decomposition of the 
clique weight matrix, for which the computational complexity is O(n3)69. �e k-means clustering algorithm needs 
O(nm2i) computations70, where i is the number of iterations needed to achieve convergence. Since m is much less 
than n and i is very small in practice, we conclude that the number of required computations in the clustering 
scales as O(n3).

In Table 1, we summarize the computational complexity of the proposed method, the motif-conductance 
method, and other community-detection methods discussed in the Empirical Results section. As can be seen, 
the greedy methods are much faster than the proposed method, but the proposed method exhibits better perfor-
mance on benchmarks (see Fig. 1). �e motif-conductance method su�ers from the high computational com-
plexity of the brute-force search for the optimal clique size before clustering. By focusing on maximal cliques, 
the proposed method decreases the computational complexity of this step from O(2n) to O(3n/3). However, the 
exponential complexity of the proposed method still makes it unsuitable for large networks.

Proof of Proposition 1

Proof. Let z ∈ {0, 1}n be a vector such that z(i) = 1 if vi ∈ A and z(i) = 0 if ∈v Ai . Further let Wc,k be an adjacency 
matrix de�ned as
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where the fourth and sixth equalities make use of the standard properties of Laplacian matrices30, and the ��h 
equality follows = ∑L Lc k c k, . In addition,
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Initialization Clustering

Proposed O(3n/3) O(n3)

Motif41 O(2n) O(n3)

Spectral34 — O(n3)

Louvain48 — O(nlogn)

Ravasz49 — O(n2)

Fast Modularity50–52 — O(n(logn)2)

Table 1. Computational complexity of the community-detection methods.
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where the third equality follows from = ∑D Dc k c k, . �is concludes the proof. ☐

Proof of Lemma 3

Proof. �is proof extends Chung’s proof to connected weighted graphs67. �e second smallest eigenvalue λ  of c  
can be expressed as the in�mum of the Rayleigh quotient
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�us the remainder of this proof focuses on deriving a lower bound for λ  in terms of Cheeger ratios.
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Without loss of generality, we may assume R(g+) ≤ R(g−), and then we have gR( )λ ≥
+  because
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where the second inequality is by the Cauchy-Schwarz inequality and the arithmetic-geometric-mean inequality, 
and the third inequality is by de�nition of α . �is concludes the proof. ☐
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