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Community Detection 

 What and why? 



Related Work 

 Methods 
◦ Cut-based (M. Girvan and M. E. J. Newman, 2002) 

◦ Spectral-based (U. Luxburg, 2007) 

◦ Density-based (S. Mancoridis,  et al., 1998) 

◦ Modularity-based (A. Clauset, et al.,2004) 

◦ Statistical-inference-based (M. E. J. Newman, 2013) 

 

 Goal 
◦ More connections inside each community 

◦ Fewer connections across different communities 

 



Opportunities for improvement 

 Feature selection 
◦ Spectral-based 

 

 Objective function 
◦ Cut-based 
◦ Modularity-based (Our focus in this paper) 
◦ Statistical-inference-based 

 

 Search procedure 
◦ Greedy search 
◦ EM 
◦ Simulated annealing 



Major problem of modularity 

 Resolution problem  
(Lancichinetti & Fortunato 2011) 

◦ 𝐾𝑚 is an m-clique 
◦ The detected communities are 

marked by circles with dash lines. 

 
 Multi-resolution  

(Reichardt & Bornholdt 2006) 

◦ Further divide each detected 
community 
◦ Bias (Xiang et al. 2012) 

 Merge small communities 
 Split large communities 

 
 
 



Connection with itemset search 

 Graph communities: number of internal 
edges is greater than expected under 
assumption of random partition 

 

 Correlated itemsets: occur more than 
expected under the assumption of item 
independence 

 

 Connection: modularity = leverage 

 



Correlated Itemsets (Duan, et al. 2014) 

Given: itemset 𝑆 = {𝐼1, 𝐼2, … , 𝐼𝑚} with 𝑚 items in a dataset 
with 𝑛 transactions 

 

 True probability: 𝑡𝑝𝑠 = 𝑃(𝑆) 
 

 Expected probability: 𝑒𝑝𝑠 =  𝑃(𝐼𝑖)𝑚𝑖=1  

 

 Correlation measure: 𝑀𝑠 = 𝑓(𝑡𝑝𝑠, 𝑒𝑝𝑠) 
◦ Chi-square: 

𝑡𝑝𝑠−𝑒𝑝𝑠 2𝑒𝑝𝑠  

◦ Probability ratio / Lift: 
𝑡𝑝𝑠𝑒𝑝𝑠 

◦ Leverage: 𝑡𝑝𝑠 − 𝑒𝑝𝑠 
◦ Likelihood ratio: 

𝑡𝑝𝑠𝑡𝑝𝑠∗ 1−𝑡𝑝𝑠 1−𝑡𝑝𝑠𝑒𝑝𝑠𝑡𝑝𝑠∗ 1−𝑒𝑝𝑠 1−𝑡𝑝𝑠 



Correlated itemset example 

 

 

 

 

 

◦ For the itemset {Beef, Chicken} 

 𝑡𝑝 = 35, 𝑒𝑝 = 45 ∗ 35, 𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑡𝑝 − 𝑒𝑝 = 325 

t1: Beef, Chicken, Milk 

t2: Beef, Cheese 

t3: Cheese, Boots 

t4: Beef, Chicken, Cheese 

t5: Beef, Chicken, Clothes, Cheese, Milk 



Modularity Function 

𝑄 = 12𝑚 𝑤𝑖𝑗 − 𝑘𝑖 ∗ 𝑘𝑗2𝑚 ∗ 𝛿(𝑣𝑖 , 𝑣𝑗)𝑖∈𝐺,𝑗∈𝐺  

 

 𝑛: the number of nodes 

 𝑚: the number of links 

 𝑤𝑖𝑗 : the edge between node 𝑖 and 𝑗 
 𝑘𝑖: the degree of node 𝑖 
 𝛿(𝑣𝑖 , 𝑣𝑗): the Kronecker delta function 

◦ 𝛿(𝑣𝑖 , 𝑣𝑗)=1 when 𝑣𝑖 and 𝑣𝑗 are in the same community 

◦ 𝛿(𝑣𝑖 , 𝑣𝑗)=0 otherwise 



Transforming modularity function 

For partition {𝐺1, 𝐺2, … , 𝐺𝑙} on graph 𝐺 
 

◦ 𝑘𝑖: degree of node 𝑖 
 

◦ 𝑘𝑖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 : number of nodes in the same group 
of node 𝑖 that connect to node 𝑖 
 

◦ For the green partition: 
  𝑘𝑖𝑖∈𝐺𝑝 = 2 + 2 + 3  = 7 

  𝑘𝑖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑖∈𝐺𝑝 = 2 + 2 + 2 = 6 
 Total number of edges: 𝑚 = 10 
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Transforming modularity function 
1 2 3 4 5 6 7 

1 0 1 1 0 0 0 0 

2 1 0 1 0 0 0 0 

3 1 1 0 1 0 0 0 

4 0 0 1 0 1 1 1 

5 0 0 0 1 0 1 1 

6 0 0 0 1 1 0 1 

7 0 0 0 1 1 1 0 
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For the green partition: 
(1)  𝑘𝑖𝑖∈𝐺𝑝 = 2 + 2 + 3  = 7 

(2)  𝑘𝑖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑖∈𝐺𝑝 = 2 + 2 + 2 = 6 
(3) Total number of edges: 𝑚 = 10 

The probability of the edge  
(1) Both ends in the green partition: 

6/20= 𝑘𝑖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑖∈𝐺𝑝 /2m 

(2) Started from the green partition: 
7/20= 𝑘𝑖𝑖∈𝐺𝑝 /2𝑚 

(3) Ended in the green partition: 
7/20= 𝑘𝑖𝑖∈𝐺𝑝 /2𝑚 



Transforming modularity function 

If we randomly select an edge from the doubly-
directed graph, 
 The true probability of the edge in 𝐺𝑝: 

 𝑡𝑝 =  𝑘𝑖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑖∈𝐺𝑝 2𝑚  

 Probability the edge started from 𝐺𝑝:  𝑘𝑖𝑖∈𝐺𝑝2𝑚  

 Probability the edge ended in 𝐺𝑝:  𝑘𝑗𝑗∈𝐺𝑝2𝑚  

 
 The expected probability of the edge in 𝐺𝑝 under 

the assumption of independence:  𝑒𝑝 =  𝑘𝑖𝑖∈𝐺𝑝2𝑚 * 
 𝑘𝑗𝑗∈𝐺𝑝2𝑚  



Transforming modularity function 

For partition {𝐺1, 𝐺2, … , 𝐺𝑙} on graph 𝐺 
 

 𝑄 = 12𝑚 𝑤𝑖𝑗 − 𝑘𝑖∗𝑘𝑗2𝑚 ∗ 𝛿(𝑣𝑖 , 𝑣𝑗)𝑖∈𝐺,𝑗∈𝐺  

 
 We define 𝑄𝑝 as the partial modularity for the 

group 𝑝 where 
  𝑄𝑝 = 12𝑚 𝑤𝑖𝑗 − 𝑘𝑖 ∗ 𝑘𝑗2𝑚 ∗ 𝛿(𝑣𝑖 , 𝑣𝑗)𝑖∈𝐺𝑝,𝑗∈𝐺  

 

 𝑄 =  𝑄𝑝𝑙𝑝=1  



Transforming modularity function 

 Partial modularity 

◦ 𝑄𝑝 =  𝑘𝑖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑖∈𝐺𝑝 2𝑚 −  𝑘𝑖𝑖∈𝐺𝑝2𝑚 ∗  𝑘𝑗𝑗∈𝐺𝑝2𝑚  

 
 If we randomly select an edge from the 

doubly-directed graph, 

◦ The true probability of the edge in 𝐺𝑝:  𝑡𝑝𝑝 =  𝑘𝑖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑖∈𝐺𝑝2𝑚  

◦ Expected probability of the edge in 𝐺𝑝 under the 

assumption of independence:  

  𝑒𝑝𝑝 =  𝑘𝑖𝑖∈𝐺𝑝2𝑚 * 
 𝑘𝑗𝑗∈𝐺𝑝2𝑚  

 



Transforming modularity function 

 Connecting correlation with modularity 
◦ For a given partition 𝐺𝑝, partial modularity 𝑄𝑝 =𝑡𝑝𝑝 − 𝑒𝑝𝑝 
◦ For a given itemset 𝑆, leverage = 𝑡𝑝𝑠 − 𝑒𝑝𝑠 

 

 For any correlation function 𝑓(𝑡𝑝, 𝑒𝑝), the partial 
modularity function can be changed accordingly. 

 Chi-square: 
𝑡𝑝𝑠−𝑒𝑝𝑠 2𝑒𝑝𝑠  

 Probability ratio / Lift: 
𝑡𝑝𝑠𝑒𝑝𝑠 

 Leverage: 𝑡𝑝𝑠 − 𝑒𝑝𝑠 
 Likelihood ratio: 

𝑡𝑝𝑠𝑡𝑝𝑠∗ 1−𝑡𝑝𝑠 1−𝑡𝑝𝑠𝑒𝑝𝑠𝑡𝑝𝑠∗ 1−𝑒𝑝𝑠 1−𝑡𝑝𝑠 



Outline 

 Basic concepts 

◦ Correlated itemset search 

◦ Modularity function 

 Connecting modularity with leverage in 
correlated itemset search 

 Upper bound analysis 

 Evaluation 



Upper bound analysis 

 Correlation Property 
◦ The correlation function monotonically increases 

with the decrease of 𝑒𝑝 when 𝑡𝑝 remains the 
same. 
 

 Understanding the bias to the community 
size 

◦ Given a group 𝐺𝑝 with fixed 𝑡𝑝 =  𝑘𝑖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑖∈𝐺𝑝 2𝑚  

◦ Partial modularity has the highest possible value 

when 𝑒𝑝 =  𝑘𝑖𝑖∈𝐺𝑝2𝑚 ∗  𝑘𝑗𝑗∈𝐺𝑝2𝑚  reaches its lowest 

value 𝑡𝑝2 



Upper bound analysis 

 The highest possible partial modularity: 𝑓(𝑡𝑝, 𝑒𝑝 = 𝑡𝑝2) 



Outline 

 Basic concepts 

◦ Correlated itemset search 

◦ Modularity function 

 Connecting modularity with leverage in 
correlated itemset search 

 Upper bound analysis 

 Evaluation 



Experiments 

 Modify the objective function 
 Greedy search (hierarchical clustering) 
 Baseline: 
◦ Modularity-based methods (Leverage) 

 Datasets: 
◦ Real life 
◦ Simulated with LFR model (Lancichinetti et al. 

2008) 

 Evaluation measures: 
◦ Rand Index (Rand1971), Jaccard, F-measure, 

Normalized mutual information (Danon 2005) 



Real life datasets 

 Karate club: two equal size communities 

 

 

 

 College football: 12 equal size communities 

 



Real life datasets 



Simulated datasets 

 Parameters: 

◦ Minimal community size: 50, 500, or 5000 

◦ Community structure ratio 𝛽: 5, 10, or 20 



Experiments 

 NMI when fixing Min-community-size 
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Experiments 
 Number of detected groups when fixing 

Min-community-size 
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Summary 

 Connection between community 
detection and correlation search 

 Conclusion 

◦ Modularity is good only when there are large 
and clear communities 

◦ Likelihood ratio is robust to any type of 
communities 

◦ Probability ratio partitions the whole graph 
into small communities with 2 or 3 objects 
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