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Community Detection

* What and why!?
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Related Work

e Methods
o Cut-based (M. Girvan and M. E. ]. Newman, 2002)
o Spectral-based (U. Luxburg, 2007)
> Density-based (S. Mancoridis, et al., 1998)
> Modularity-based (A. Clauset, et al.,2004)
o Statistical-inference-based (M. E. J. Newman, 201 3)

o Goal

> More connections inside each community
o Fewer connections across different communities



Opportunities for improvement

e Feature selection
> Spectral-based

e Objective function
o Cut-based
o Modularity-based (Our focus in this paper)
o Statistical-inference-based

e Search procedure
> Greedy search
- EM
o Simulated annealing



Major problem of modularity

» Resolution problem
(Lancichinetti & Fortunato 201 I)

> K, is an m-clique

o The detected communities are
marked by circles with dash lines.

e Multi-resolution
(Reichardt & Bornholdt 2006)

o Further divide each detected
community
° Bias (Xiang et al.2012)

Merge small communities
Split large communities




Connection with itemset search

e Graph communities: number of internal
edges is greater than expected under
assumption of random partition

e Correlated itemsets: occur more than
expected under the assumption of item
independence

e Connection: modularity = leverage



Correlated ltemsets uan,etal.2014)

Given:itemset S = {I;, I, ..., I,,} with m items in a dataset
with n transactions

e True probability: tp, = P(S)
 Expected probability: eps = [[12; P(I;)

» Correlation measure: M, = f (tps, eps)
(tps—eps)®
ePs
° Probability ratio / Lift:

o Chi-square:
tps

eps

> Leverage: tps — eps

tpsPS «(1-tpg) 1~ tPs
eps’Sx(1-epg)1~tPs

o Likelihood ratio:



Correlated itemset example

t1: Beef, Chicken, Milk

t2. Beef, Cheese

t3: Cheese, Boots

t4: Beef, Chicken, Cheese

t5: Beef, Chicken, Clothes, Cheese, Milk

° For the itemset {Beef, Chicken}

3 4 3 B 3
tp =, ep =_*, Leverage = tp —ep =



Modularity Function
_ 1 ki * k]
¢ = %ziEG,jEG (Wij - 2m ) * ot y)

e n:the number of nodes

e m:the number of links

* w;;:the edge between node i and j

e k;:the degree of node i
* 0(v;, vj): the Kronecker delta function

° 8(v;, v;)=1 when v; and v; are in the same community

° 0(v;, v;)=0 otherwise



Transforming modularity function

For partition {G{, G,, ..., G;} on graph G

o k;: degree of node i

o kmternal, number of nodes in the same group

of node i that connect to node i

= —— |

> For the green partition: \ /
ZiEkai — (2+2+3)=7

Yieg, ki" = (2+2+2) =6

Total number of edges: m = 10
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Transforming modularity function

K |1 2 3 4 5 6 7
\"“hn-..
I 0O I I 0 O O O
2 | 0 I 0 0 0 O
B3 1 101 00 0
B 4 001 0 1 1 1 N
5 0 0 0O I O I |
6 0 0 O I I O I
7 00 O I I I O
For the green partition: The probability of the edge
() Lieg, ki =2 +2+3)=7 (1) Both ends in the green partition:
(2) Zier kiinternal =(2+2+2)=6 6/20=Ziecp klgnternal /2m

(2) Started from the green partition:
7/20=Zi€Gp k;/2m

(3) Ended in the green partition:
7/20=Zier ki /Zm

(3) Total number of edges: m = 10



Transforming modularity function

If we randomly select an edge from the doubly-
directed graph,

* The true probability of the edge in G,:

internal
tp =
p 2m

ZiEGp ki
* Probability the edge started from G,:

ZieGp Ki

2m
LjeGp Kj

* Probability the edge ended in G:

2m

 The expected probability of the edge in G, under
the aszsumEtion of independence:
i€Gp
ep =

iy, 2jeGp Kj

2m 2Zm



Transforming modularity function
For partition {G{, G,, ..., G;} on graph G

kixkj

2m

1
* Q =5-2iec jec (Wij - ) * 0 (v, v))

* We define (,, as the partial modularity for the
group p where

C 2m ZierJEG Vi T Tom (Wi, vy)

* Q= 2%9=1 Qp




Transforming modularity function

 Partial modularity

internal
_ Liegp ki

on_ —

2m 2m 2m

LieGy Ki . Yjecy ki

* If we randomly select an edge from the
doubly-directed graph,

° The true probability of the edge in G,:

Z k internal
iEGp [

2m
° Expected probability of the edge in G, under the

thp =

assumption of independence:
LieGp Ki, LjeGy Kj

e o
Pp 2m 2m



Transforming modularity function

» Connecting correlation with modularity
° For a given partition G, partial modularity Q,, =

tp, — epp
> For a given itemset S, leverage = tp; — ep;

* For any correlation function f (tp, ep), the partial
modularity function can be changed accordingly.
(tps—eps)?
eéPs

Probability ratio / Lift: %

Chi-square:

Leverage: tp; — eps
tpFS+(1-tpg)1~tPs
epTS+(1-eps)1=tPs

Likelihood ratio:



Qutline

 Basic concepts
o Correlated itemset search

> Modularity function

» Connecting modularity with leverage in
correlated itemset search

e Upper bound analysis
 Evaluation



Upper bound analysis

* Correlation Property

> The correlation function monotonically increases
with the decrease of ep when tp remains the
same.

* Understanding the bias to the community
size

internal
LieGyp Ki

> Given a group G, with fixed tp = m

o Partial modularity has the highest possible value
YicGy ki Ljegy Kj
when ep = —2 "« Z2 J reaches its lowest

2 2Zm Zm
value tp




Upper bound analysis

* The highest possible partial modularity

f(tp,ep = tp?)

Simplified Chi-square

Leverage
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Qutline

 Basic concepts
o Correlated itemset search

> Modularity function

» Connecting modularity with leverage in
correlated itemset search

e Upper bound analysis
e Evaluation



Experiments

* Modify the objective function
» Greedy search (hierarchical clustering)
* Baseline:

> Modularity-based methods (Leverage)

e Datasets:
o Real life

o Simulated with LFR model (Lancichinetti et al.
2008)

e Evaluation measures:

o Rand Index (Rand|971), Jaccard, F-measure,
Normalized mutual information (Danon 2005)



Real life datasets

o Karate club: two equal size communities




Real life

datasets

[ Data Set Measure NMI Jaccard RI F-measure | DNC | ANC

% 0.4852 0.2842 0.6453 0.4426 7 2

Karate P 0.3868 0.0945 0.5561 0.1728 14 2
Leverage | 0.6925 0.6833 | 0.8414 0.8118 3 2

LR 0.5385 0.3958 0.6952 0.5671 5 2

% 0.9141 0.7571 0.9793 0.8618 14 12

Football P 0.6864 0.0829 0.9240 0.1531 hb 12
Leverage 0.6977 0.3622 0.8807 0.5317 § 12

LR

0.7897

0.9812

0.8825

12

(a) Karate

(b) Football
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Simulated datasets

e Parameters:
> Minimal community size: 50, 500, or 5000

o Community structure ratio :5, 10, or 20
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Experiments

* NMI when fixing Min-community-size

Small
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Experiments
* Number of detected groups when fixing

Min-community-size

Small Medium
1000 == |_everage/Modula 1000 | everage/Modula
800 rity 800 rity
Likelihood Ratio Likelihood Ratio
600 T — 600 —
400 Probability Ratio 400 Probability Ratio
200 The Simplified 200 The Simplified
Chi-square Chi-square
0 1 1 1 A | 0 1 1 A |
Fuzzy  Middle  Clear ctua Fuzzy  Middle  Clear ctua
Large
1000 === everage/Modula
800 rity
Likelihood Ratio
400 Probability Ratio
200 The Simplified
Chi-square
0 '
Fuzzy Middle Clear Actual




Summary

e Connection between community
detection and correlation search

e Conclusion

> Modularity is good only when there are large
and clear communities

o Likelihood ratio is robust to any type of
communities

> Probability ratio partitions the whole graph
into small communities with 2 or 3 objects
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