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Abstract

Natural networks such as those between humans observed through their inter-
actions or biological networks predicted based on various experimental measure-
ments contain a wealth of information about the unobserved structure of the social
or biological system. However, these networks are inherently noisy in the sense
that they contain spurious connections making them seemingly dense. Therefore,
identifying important, refined structures such as communities or clusters becomes
quite challenging. Specifically, we find that the popular, traditional method of
spectral clustering does not manage to learn refined community structure. The
primary reason for this is that it is based uponexternalcommunity connectivity
properties such as graph-cuts.
Motivated to overcome this limitation, we propose a community detection algo-
rithm, called the leader-follower algorithm, based upon identifying the natural
internal structure of the expected communities. The algorithm uses the notion of
network centrality in a novel manner to differentiateleaders(nodes which connect
different communities) fromloyal followers(nodes which only have neighbors
within a single community). Using this approach, it is able to learn the communi-
ties from the network structure. A salient feature of our algorithm is that, unlike
the spectral clustering, it does not require knowledge of number of communities
in the network; it learns it naturally.
We show that our algorithm is quite effective. We prove that it detects all of the
communitiesexactlyfor anynetwork possessing communities with the natural in-
ternal structure expected in social networks. More importantly, we demonstrate
its effectiveness in the context of various real networks ranging from social net-
works such as Facebook to biological networks such as an fMRIbased human
brain network.

1 Introduction

Social networks often possess a structure which reflects theunderlying communities which make
up a population. These networks are very often unweighted, have a high edge density, and an
unknown number of communities. This makes it challenging todetect the finer community structure
with existing methods. Typically, only large scale, coarsecommunity structure can be detected,
while smaller communities go unseen. By not detecting this finer structure, we may lose valuable
information about the network and the social interactions it represents. What we would like is a
method which can find communities of any size in a network without requiring one to know the
number of communities beforehand.
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Prior work

Finding communities is essentially a data clustering problem, where the goal is to assign each node
to a community or cluster in some reasonable manner. There has been much prior work on clustering
and community detection in networks. Here we shall describesome of the relevant prior work. The
most common method for community detection is spectral clustering which is based on optimizing
graph-cuts [1],[2]. There are also other approaches which which use a statistical inference approach
[3],[4],[5],[6] and hierarchical methods [7]. An interested reader is referred to detailed surveys [8]
and [9]. Here we will focus on spectral clustering as it is onethe most common and widely used
clustering techniques.

There are two types of graph cuts used in spectral clustering: RatioCut [1] and NCut [2]. These func-
tions are minimized when the nodes are grouped into large communities with few inter-community
edges. Minimizing graph-cuts is in general NP-hard, but an approximation can be found using spec-
tral clustering. Here one finds the eigenvectors corresponding to the smallestk eigenvalues of the
Laplacian matrix of the network and arranges these column vectors into ann × k matrix. One then
treats the rows of this matrix as data points for each node in the network and clusters them using
techniques such as k-means clustering.

Spectral clustering requires one to specify the number of communities in the network. This is a
major weakness of this method in situations where this information is not known beforehand. Also,
as we will show in this work, spectral clustering is unable toresolve smaller communities in densely
connected networks.

Our contributions

There are two key contributions of this work. First, using insights from social networks, we propose
a certain natural internal structure for a community. Second, we provide an algorithm that uses this
internal structure to find these communities. We prove that this algorithm, calledleader-follower, is
guaranteed to find communities with the proposed structure in any network in an efficient manner.
It is non-parametric, does require one to know the number of communities beforehand, and has no
resolution limit with regard to community size. We demonstrate the algorithm’s effectiveness by
means of various experiments on synthetic and real networks.

We start by using intuition drawn from social networks to propose two structural properties one
would expect a community to possess. First, everyone in a community should know each other,
or more formally, the community should be aclique. Second, each community should possess
distinguishing members. More formally, each community must have at least oneloyal follower,
which is a node in the community with no neighbors in any othercommunity. Loyal followers are
what provide the community with a distinguishable identity.

These properties are essentiallyinternal to the community, and are invariant to the density of inter-
community edges. We show that the performance of spectral clustering degrades as the inter-
community edge density increases. This is because spectralclustering is based onexternalcom-
munity properties (graph-cut) which are dependent upon theinter-community edge density.

To detect communities in a manner which is robust to the inter-community edge density, we propose
the leader-follower algorithm, which is based upon internal community structure. The algorithm
has roughly two stages. First, it detects “leaders” in the network, where a node is a “leader” if it
is not a loyal follower for any community. This differentiation ofleaders and loyal followers is
accomplished through the novel use of a certain notion of network centrality. Second, the algorithm
assigns the remaining “loyal followers” to the leaders in a specific manner in order to form the
communities.

The leader-follower algorithm is able to naturally learn the number and size of the communities
using the network’s structure. In addition, we are able to prove that for any network where the
communities possess the proposed structure, the leader-follower algorithm will detect all of the
communities exactly, independent of the inter-community edge density.

To establish the performance improvement provided by the use of internal rather than external com-
munity structure, we conduct a variety of experiments on synthetic and real networks, comparing
the leader-follower algorithm with the more common spectral clustering method. These networks
range from social networks such as Facebook to biological networks such as the human brain. We
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find that in each network, the leader-follower algorithm canresolve a finer community structure than
spectral clustering without needing to know the number of communities beforehand.

2 Community structure

2.1 Community structure

When thinking about what defines a community in a social network, two natural properties come to
mind. First, people in a community should know each other, orthe community should have a high
edge density. Second, each detectable community ought to have a unique identity. If everyone in
a community also belonged to other communities, it would be difficult to distinguish the original
community. Therefore, each community needs at least oneloyal member or follower who is not a
member of any other community. This loyal follower can be thought of as the detectablesignalof a
community. We formalize these properties in the following definition.

Definition 1 (Community Structure ). Given a network graphG(V, E) with node setV and edge
setE, a set of nodesC ⊆ V is called a community if it satisfies the following properties:

Property 1: Strong Connectedness. The induced subgraph of the setC is a clique.

Property 2: Loyal Follower. There exists at least one nodef ∈ C such thatf has no neighbors
outside ofC.

We say that a networkG(V, E) has a community structure satisfying Definition 1 if there exist
disjoint subsetsC1, . . . , Ck of V for somek ≥ 1 such that eachCi, 1 ≤ i ≤ k satisfies the “Strong
Connectedness” and “Loyal Follower” properties.

2.2 Internal vs. external community properties

The above community properties are essentiallyinternaland do not depend on the connections with
the rest of the network. In contrast, spectral methods basedon optimizing graph cuts use the external
connectivity (the cut value) to identify communities. Whenthis external connectivity is too dense,
it is expected that spectral methods will not be able to correctly identify smaller scale community
structure. To demonstrate this, consider the two networks shown in Figure 1. These networks
each satisfy Definition 1 (communities are cliques and have at least one loyal follower). They each
contain 104 nodes grouped into the same 10 communities with sizes chosen uniformly between 2
and 30. One network was sparse and contained 200 inter-community edges and the other was dense
and contained 2000 inter-community edges. The resultant communities found by spectral clustering
are shown in Figure 1. The true communities are indicated by color and grouped together. The
erroneous clusters found with spectral clustering (with the true number of communities as input) are
enclosed with white lines in the figure. Spectral clusteringends up combining smaller communities
into larger communities in the denser network and leaves some single node communities.

As a quantitative measure, we define an error function for theclustering as follows. For a network
G(V, E) with N nodes and a set ofk communities found by a community detection algorithm
C1, C2, ..., Ck, let Mij be 1 if nodesi andj are in the same true community and put in different
communities by the algorithm or if they are in different truecommunities and put in the same
community by the algorithm, and 0 otherwise. Then the error function is

E(C1, C2, ..., Ck) =
N

∑

i=1

N
∑

j=i

Mij (1)

This function counts the number of distinct misclassified node pairs. The bar graph in Figure 1 shows
the error of spectral clustering for the sparse and dense networks. As can be seen, the error increases
as the graph becomes more dense. Detection using external community properties is no longer able
to see the smaller communities because of these ’noisy’ inter-community edges. However, we will
see that if we use internal properties, we can detect fine community structure even in dense networks.
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Figure 1: Communities found in synthetic networks with (left) sparse and (middle) dense inter-
community connectivity. The true communities are indicated by color and grouped together. The
clusters found with spectral clustering which are not the true communities are enclosed with white
lines. (right) Bar chart showing the error of spectral clustering for the two networks.

2.3 Loyal followers and distance centrality

In order to use internal properties to find communities, we must have a way to detect these internal
properties. One of the properties was the notion of a loyal follower which gave the community its
identity. If we could detect these loyal followers, we wouldbe able to find the communities. One
way to find loyal followers is to assign each node a score function which can differentiate loyal
followers from the other nodes, which we will refer to asleaders. A good score function is the
graph theoretic notion ofdistance centrality [10]. Distance centrality measures how close a node
is to all other nodes in the network. Letd(u, v) denote the shortest path distance between nodesu
andv in a networkG. Then the distance centralityD(u) of u ∈ V is

D(u) =
∑

v∈G

d(u, v). (2)

Loyal followers should have higher distance centralities than leaders because they must pass through
a leader to reach any node outside of their community. The problem is that the distance centrality
of a loyal follower is dependent upon the size of its community. Therefore, on its own, distance
centrality will not be able to single out loyal followers. This can be seen in Figure 2, where we plot
the distance centrality for the nodes in the network shown. Different levels of distance centrality
are seen which correspond to the communities of different size, but no clear loyal follower signal
is evident. However, we note that within a community, the distance centrality of a loyal follower is
always less than that of a leader [11]. This can be seen in the plot on the right of Figure 2, where we
have grouped the nodes by their community membership. In thefigure, one can see local spikes of
distance centrality corresponding to the loyal followers.Thus, if the distance centrality of a node is
greater than or equal toall of its neighbors, it will be a loyal follower. This differential measurement
using distance centrality is how we will detect loyal followers.

3 Leader-follower algorithm

Using the ideas developed thus far, we now present the leader-follower algorithm for detecting
community structure in networks. Roughly speaking, there are two stages in the algorithm. First,
we distinguish leaders from loyal followers in the network and second, we assign loyal followers to
leaders in order to form the communities. We now describe these steps in more detail.

3.1 Leader and loyal follower detection

We use the ideas from Section 2.3 to detect leaders and loyal followers. We first calculate the
distance centrality of each node in the network. Then, leaders will be any node whose distance
centrality is less than at least one of its neighbors, and theremaining nodes will be loyal followers.
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Figure 2: (left) An example of a network satisfying Definition 1. The communities are indicated
by color and grouping and the loyal followers of each community are labeled. (middle) Plot of the
distance centrality of the nodes in the network. (right) Plot of the distance centrality of the nodes in
the network, with the nodes grouped by their community.

This procedure will correctly identify leaders and loyal followers in any network satisfying the
properties of Definition 1 [11].

Summary of leader and loyal follower detection step

1. For eachv ∈ V , calculate its distance centralityD(v).

2. Define leader nodes as

L = {v ∈ V : there existsu ∈ V such that(u, v) ∈ E andD(v) < D(u)}

and loyal follower nodes asF = V \L.

3.2 Community assignment

Once the leader and loyal follower sets have been detected, community assignment is the next step.
We define a membership functionM : V → V ∪ {⋆} that maps eachv ∈ V to a ‘leader node’,
sayM(v) ∈ V , who will identify a community to whichv belongs:Cv = {u ∈ V : M(u) = v}.
To start with, for each leaderv ∈ L, setM(v) = v; for each loyal followerv ∈ F=V \L set
M(v) = ⋆. Sort the leaders in order of increasing distance centrality: letL = {v1, v2, ..., v|L|} with
D(vi) ≤ D(vi+1) for 1 ≤ i < |L|. Now for eachu ∈ F such that(v1, u) ∈ E, setM(u) = v1.
After assigning loyal followers that are neighbors ofv1, . . . , vi, consider leadervi+1. If u ∈ F such
that(u, vi+1) ∈ E andM(u) = ⋆, then assignM(u) = vi+1. The purpose of this stage is to seed
the communities using loyal followers.

At the end of the first assignment step we may have additional spurious communities, which we
remove next. It is likely that there are leader nodes which have no loyal followers assigned to them:
for such a nodev ∈ L, M(v) = v andM(u) 6= v for all u 6= v. For each such leader, sayv, with
no loyal followers, we look at all the loyal followers that neighbor it. We focus on loyal followers
because they identify communities which have been seeded already. Letu1, . . . , uℓ ∈ F be loyal
followers such that(uj , v) ∈ E for 1 ≤ j ≤ ℓ. Find the ‘community’ (i.e. the leader node) to which
a majority of these loyal followers are assigned (ties broken arbitrarily). Supposev′ is the leader
that identifies this community, i.e. for a majority ofuj ’s M(uj) = v′. Then setM(v) = v′. This
step helps remove the spurious communities.

If G satisfies Definition 1, the above assignment step will resultin all nodes being assigned to the
proper communities [11]. However, in a general network, it may happen that a node only neighbors
other leaders and no loyal followers. In this case, we assignthe node to the community to which a
majority of its neighbors belong, with ties being broken arbitrarily. We summarize the assignment
step below.
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Summary of community assignment step

1. Given leader setL and loyal follower setF = V \L. LetN (v) = {u ∈ V : (u, v) ∈ E}.

2. Let
{

v1, v2, ..., v|L|

}

be ordering of nodes ofL as per increasing distance centrality.

3. DefineM : V → V ∪ {⋆} with M(v) = v for all v ∈ L; M(v) = ⋆ for all v ∈ F .

4. Fori = 1, 2, ..., |L|, in that order, do the following: defineFvi
= {v ∈ N (vi)∩F : M(v) = ⋆};

for all v ∈ Fvi
, setM(v) = vi andCvi

= {vi} ∪ Fvi
.

5. For eachvi ∈ L with Cvi
= {vi} do the following: deleteCvi

, define multisetHvi
= {M(v) :

v ∈ N (vi) ∩ F}:

(a) If Hvi
6= ∅, let u be the maximally repeated element inHvi

(ties broken arbitrarily). Then,
setM(vi) = u andCu = Cu ∪ {vi}.

(b) If Hvi
= ∅, define multisetIvi

= {M(v) : v ∈ N (vi)} and letu be the maximally repeated
element inIvi

(ties broke arbitrarily). Then, setM(vi) = u andCu = Cu ∪ {vi}.

3.3 Main result

For any network satisfying Definition 1, somewhat surprisingly we find that the leader-follower
algorithm can detect the communities exactly. We note that this type of strong theoretical guarantee
cannot be provided for other more common techniques such as spectral clustering. The formal
statement is as follows, whose proof can be found in [11].

Theorem 1. Given a network graphG(V, E) with a community structure satisfying Definition 1,
the leader-follower algorithm will detect all of the communities exactly withO(|V ||E|) operations.

In general, a network may not satisfy Definition 1. However, the algorithm extends naturally for ar-
bitrary networks and produces relevant communities. The experimental results presented in Section
4 confirm the effectiveness of the algorithm on real networks.

4 Empirical results

In this section we compare the performance of the leader-follower algorithm with the more common
spectral clustering based on RatioCut [1]. We use the numberof communities found using the leader-
follower algorithm as the input for the spectral clusteringalgorithm. The algorithms are tested on
several synthetic and real networks. In each case, we find that the leader-follower algorithm can
resolve a finer community structure than spectral clustering.

4.1 Synthetic networks

We have already seen in Figure 1 that spectral clustering cannot correctly identify communities
in networks satisfying Definition 1 which have dense inter-community connectivity. However, as
stated in Theorem 1, the leader-follower algorithm will always correctly identify the communities
in any network satisfying Definition 1, independent of the inter-community edge density. Also, it
is important to note that unlike spectral clustering, the leader-follower algorithm does not need the
number of communities as input. It learns this number naturally from the network structure. This is
a strong advantage of the algorithm over spectral clustering.

4.2 Social networks: Facebook

The leader-follower algorithm was applied to a Facebook network. This network is the subgraph
induced by the friends of a single Facebook user, i.e., the friends of the user and all edges between
these friends. The network data was anonymized due to submission requirements. The results of the
algorithm were striking. We found 25 different communitiesin the user’s network. By analyzing the
membership of each of these communities, we found that they corresponded to real social groups to
which the user belonged, with the labels in Figure 3 indicating the unifying theme of each group.
The groups corresponded to members of college cultural groups, family friends, research groups,
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Figure 3: (left) Communities detected in a Facebook networkusing the leader-follower algorithm
and their corresponding labels. The leader-follower communities are indicated by color and grouped
together. (right) Communities detected using spectral clustering. The clusters found with spectral
clustering which are not leader-follower communities are enclosed with white lines.

groups of friends from a specific country, friends from a different college, and high school friends.
Some groups had no specific label, but were instead groups of people who the user met through a
specific person (i.e. Friends 1, Friends 2, etc.).

For comparison, the spectral clustering communities are also shown in Figure 3. As can be seen,
spectral clustering ends up grouping several communities together into a large community and cre-
ates some communities consisting of single nodes. Spectralclustering is not able to resolve the finer
community structure of the more densely connected communities, in contrast to the leader-follower
algorithm. Also, we note that we did not need to specify beforehand the number of communities
with the leader-follower algorithm. It detects this naturally from the structure of the network.

4.3 Biological networks: the human brain

We applied the algorithms to the correlation network of a human brain obtained from fMRI data
[12]. Edges in the network correspond to nodes whose correlation exceeded a threshold value.
Many communities were detected and much to our surprise, theleader-follower algorithm was able
to identify 3 of the larger communities with major lobes of the brain which are related to different
types brain functions: the frontal lobe, the occipital lobe, and the temporal lobe. Figure 4 shows the
labellings of the communities (lobes) we detected using theleader-follower algorithm.

Spectral clustering was not able to resolve the temporal lobe in this network, but instead grouped
it with the frontal lobe. Again, we see the leader-follower algorithm resolving finer structures than
spectral clustering. This result indicates that the community structure we defined may apply to a
broader class of networks beyond just social networks.

5 Discussion and conclusion

We have presented a non-parametric algorithm for detectingcommunity structure in networks known
as the leader-follower algorithm. We based the algorithm upon the natural internal structure expected
for a community in a social network. Because the leader-follower algorithm uses internal rather than
external community properties, we expect it to be very effective in finding small scale community
structure in dense networks. We proved that the algorithm isable to exactly detect communities
which possess this structure. We applied the algorithm to different real networks ranging from
social to biological networks, and found that it could detect relevant community structure in all of
these networks. Because the leader-follower algorithm uses internal rather than external community
properties, we found that it is able to detect small scale community structure that more common
methods such as spectral clustering could not detect. Also,unlike spectral clustering, the leader-
follower algorithm is able to learn the number of communities from the network structure and does
not require it as an input.
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Figure 4: Lobes detected in a human brain network using (left) the leader-follower algorithm and
(right) spectral clustering.

Because of the wide range of applicability provided by the leader-follower algorithm, we would like
to extend its theoretical guarantees to a larger class of communities. One strong property presented
here is the requirement that the community be a clique. In reality communities are not always
cliques, but rather just dense subgraphs. A question to ask is whether or not the leader-follower
algorithm can provide provable guarantees when the requirement that a community be a clique is
relaxed to allow subgraphs which are dense. Stated more precisely, if a community is required to
not have an edge density of 1 (a clique), but rather an edge density of (1 − ǫ) for some smallǫ,
then for what values ofǫ is correct community detection guaranteed? Based upon experimental
results shown here, we feel that such a guarantee is possiblefor this type of model and that this is
an interesting area for future research.
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