Community Detection in Networks: The Leader-Follower Algorithm #### **Devavrat Shah and Tauhid Zaman*** Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 devavrat@mit.edu, zlisto@mit.edu #### **Abstract** Natural networks such as those between humans observed through their interactions or biological networks predicted based on various experimental measurements contain a wealth of information about the unobserved structure of the social or biological system. However, these networks are inherently noisy in the sense that they contain spurious connections making them seemingly dense. Therefore, identifying important, refined structures such as communities or clusters becomes quite challenging. Specifically, we find that the popular, traditional method of spectral clustering does not manage to learn refined community structure. The primary reason for this is that it is based upon *external* community connectivity properties such as graph-cuts. Motivated to overcome this limitation, we propose a community detection algorithm, called the leader-follower algorithm, based upon identifying the natural *internal* structure of the expected communities. The algorithm uses the notion of network centrality in a novel manner to differentiate *leaders* (nodes which connect different communities) from *loyal followers* (nodes which only have neighbors within a single community). Using this approach, it is able to learn the communities from the network structure. A salient feature of our algorithm is that, unlike the spectral clustering, it does not require knowledge of number of communities in the network; it learns it naturally. We show that our algorithm is quite effective. We prove that it detects all of the communities *exactly* for *any* network possessing communities with the natural internal structure expected in social networks. More importantly, we demonstrate its effectiveness in the context of various real networks ranging from social networks such as Facebook to biological networks such as an fMRI based human brain network. #### 1 Introduction Social networks often possess a structure which reflects the underlying communities which make up a population. These networks are very often unweighted, have a high edge density, and an unknown number of communities. This makes it challenging to detect the finer community structure with existing methods. Typically, only large scale, coarse community structure can be detected, while smaller communities go unseen. By not detecting this finer structure, we may lose valuable information about the network and the social interactions it represents. What we would like is a method which can find communities of any size in a network without requiring one to know the number of communities beforehand. #### **Prior work** Finding communities is essentially a data clustering problem, where the goal is to assign each node to a community or cluster in some reasonable manner. There has been much prior work on clustering and community detection in networks. Here we shall describe some of the relevant prior work. The most common method for community detection is spectral clustering which is based on optimizing graph-cuts [1],[2]. There are also other approaches which which use a statistical inference approach [3],[4],[5],[6] and hierarchical methods [7]. An interested reader is referred to detailed surveys [8] and [9]. Here we will focus on spectral clustering as it is one the most common and widely used clustering techniques. There are two types of graph cuts used in spectral clustering: RatioCut [1] and NCut [2]. These functions are minimized when the nodes are grouped into large communities with few inter-community edges. Minimizing graph-cuts is in general NP-hard, but an approximation can be found using spectral clustering. Here one finds the eigenvectors corresponding to the smallest k eigenvalues of the Laplacian matrix of the network and arranges these column vectors into an $n \times k$ matrix. One then treats the rows of this matrix as data points for each node in the network and clusters them using techniques such as k-means clustering. Spectral clustering requires one to specify the number of communities in the network. This is a major weakness of this method in situations where this information is not known beforehand. Also, as we will show in this work, spectral clustering is unable to resolve smaller communities in densely connected networks. #### **Our contributions** There are two key contributions of this work. First, using insights from social networks, we propose a certain natural internal structure for a community. Second, we provide an algorithm that uses this internal structure to find these communities. We prove that this algorithm, called *leader-follower*, is guaranteed to find communities with the proposed structure in any network in an efficient manner. It is non-parametric, does require one to know the number of communities beforehand, and has no resolution limit with regard to community size. We demonstrate the algorithm's effectiveness by means of various experiments on synthetic and real networks. We start by using intuition drawn from social networks to propose two structural properties one would expect a community to possess. First, everyone in a community should know each other, or more formally, the community should be a *clique*. Second, each community should possess distinguishing members. More formally, each community must have at least one *loyal follower*, which is a node in the community with no neighbors in any other community. Loyal followers are what provide the community with a distinguishable identity. These properties are essentially *internal* to the community, and are invariant to the density of intercommunity edges. We show that the performance of spectral clustering degrades as the intercommunity edge density increases. This is because spectral clustering is based on *external* community properties (graph-cut) which are dependent upon the inter-community edge density. To detect communities in a manner which is robust to the inter-community edge density, we propose the leader-follower algorithm, which is based upon internal community structure. The algorithm has roughly two stages. First, it detects "leaders" in the network, where a node is a "leader" if it is *not* a loyal follower for any community. This differentiation of leaders and loyal followers is accomplished through the novel use of a certain notion of network centrality. Second, the algorithm assigns the remaining "loyal followers" to the leaders in a specific manner in order to form the communities. The leader-follower algorithm is able to naturally learn the number and size of the communities using the network's structure. In addition, we are able to prove that for any network where the communities possess the proposed structure, the leader-follower algorithm will detect all of the communities exactly, independent of the inter-community edge density. To establish the performance improvement provided by the use of internal rather than external community structure, we conduct a variety of experiments on synthetic and real networks, comparing the leader-follower algorithm with the more common spectral clustering method. These networks range from social networks such as Facebook to biological networks such as the human brain. We find that in each network, the leader-follower algorithm can resolve a finer community structure than spectral clustering without needing to know the number of communities beforehand. ## 2 Community structure ## 2.1 Community structure When thinking about what defines a community in a social network, two natural properties come to mind. First, people in a community should know each other, or the community should have a high edge density. Second, each detectable community ought to have a unique identity. If everyone in a community also belonged to other communities, it would be difficult to distinguish the original community. Therefore, each community needs at least one *loyal* member or follower who is not a member of any other community. This loyal follower can be thought of as the detectable *signal* of a community. We formalize these properties in the following definition. **Definition 1** (Community Structure). Given a network graph G(V, E) with node set V and edge set E, a set of nodes $C \subseteq V$ is called a community if it satisfies the following properties: **Property 1: Strong Connectedness.** The induced subgraph of the set C is a clique. **Property 2: Loyal Follower.** There exists at least one node $f \in C$ such that f has no neighbors outside of C. We say that a network G(V, E) has a community structure satisfying Definition 1 if there exist disjoint subsets C_1, \ldots, C_k of V for some $k \ge 1$ such that each C_i , $1 \le i \le k$ satisfies the "Strong Connectedness" and "Loyal Follower" properties. ## 2.2 Internal vs. external community properties The above community properties are essentially *internal* and do not depend on the connections with the rest of the network. In contrast, spectral methods based on optimizing graph cuts use the external connectivity (the cut value) to identify communities. When this external connectivity is too dense, it is expected that spectral methods will not be able to correctly identify smaller scale community structure. To demonstrate this, consider the two networks shown in Figure 1. These networks each satisfy Definition 1 (communities are cliques and have at least one loyal follower). They each contain 104 nodes grouped into the same 10 communities with sizes chosen uniformly between 2 and 30. One network was sparse and contained 200 inter-community edges and the other was dense and contained 2000 inter-community edges. The resultant communities found by spectral clustering are shown in Figure 1. The true communities are indicated by color and grouped together. The erroneous clusters found with spectral clustering (with the true number of communities as input) are enclosed with white lines in the figure. Spectral clustering ends up combining smaller communities into larger communities in the denser network and leaves some single node communities. As a quantitative measure, we define an error function for the clustering as follows. For a network G(V, E) with N nodes and a set of k communities found by a community detection algorithm $C_1, C_2, ..., C_k$, let M_{ij} be 1 if nodes i and j are in the same true community and put in different communities by the algorithm or if they are in different true communities and put in the same community by the algorithm, and 0 otherwise. Then the error function is $$E(C_1, C_2, ..., C_k) = \sum_{i=1}^{N} \sum_{j=i}^{N} M_{ij}$$ (1) This function counts the number of distinct misclassified node pairs. The bar graph in Figure 1 shows the error of spectral clustering for the sparse and dense networks. As can be seen, the error increases as the graph becomes more dense. Detection using external community properties is no longer able to see the smaller communities because of these 'noisy' inter-community edges. However, we will see that if we use internal properties, we can detect fine community structure even in dense networks. Figure 1: Communities found in synthetic networks with (left) sparse and (middle) dense intercommunity connectivity. The true communities are indicated by color and grouped together. The clusters found with spectral clustering which are not the true communities are enclosed with white lines. (right) Bar chart showing the error of spectral clustering for the two networks. #### 2.3 Loyal followers and distance centrality In order to use internal properties to find communities, we must have a way to detect these internal properties. One of the properties was the notion of a loyal follower which gave the community its identity. If we could detect these loyal followers, we would be able to find the communities. One way to find loyal followers is to assign each node a score function which can differentiate loyal followers from the other nodes, which we will refer to as *leaders*. A good score function is the graph theoretic notion of **distance centrality** [10]. Distance centrality measures how close a node is to all other nodes in the network. Let d(u, v) denote the shortest path distance between nodes u and v in a network G. Then the distance centrality D(u) of $u \in V$ is $$D(u) = \sum_{v \in G} d(u, v). \tag{2}$$ Loyal followers should have higher distance centralities than leaders because they must pass through a leader to reach any node outside of their community. The problem is that the distance centrality of a loyal follower is dependent upon the size of its community. Therefore, on its own, distance centrality will not be able to single out loyal followers. This can be seen in Figure 2, where we plot the distance centrality for the nodes in the network shown. Different levels of distance centrality are seen which correspond to the communities of different size, but no clear loyal follower signal is evident. However, we note that within a community, the distance centrality of a loyal follower is always less than that of a leader [11]. This can be seen in the plot on the right of Figure 2, where we have grouped the nodes by their community membership. In the figure, one can see local spikes of distance centrality corresponding to the loyal followers. Thus, if the distance centrality of a node is greater than or equal to *all* of its neighbors, it will be a loyal follower. This differential measurement using distance centrality is how we will detect loyal followers. ### 3 Leader-follower algorithm Using the ideas developed thus far, we now present the leader-follower algorithm for detecting community structure in networks. Roughly speaking, there are two stages in the algorithm. First, we distinguish leaders from loyal followers in the network and second, we assign loyal followers to leaders in order to form the communities. We now describe these steps in more detail. #### 3.1 Leader and loyal follower detection We use the ideas from Section 2.3 to detect leaders and loyal followers. We first calculate the distance centrality of each node in the network. Then, leaders will be any node whose distance centrality is less than at least one of its neighbors, and the remaining nodes will be loyal followers. Figure 2: (left) An example of a network satisfying Definition 1. The communities are indicated by color and grouping and the loyal followers of each community are labeled. (middle) Plot of the distance centrality of the nodes in the network. (right) Plot of the distance centrality of the nodes in the network, with the nodes grouped by their community. This procedure will correctly identify leaders and loyal followers in any network satisfying the properties of Definition 1 [11]. #### Summary of leader and loyal follower detection step - 1. For each $v \in V$, calculate its distance centrality D(v). - 2. Define leader nodes as $$\mathcal{L} = \{ v \in V : \text{there exists } u \in V \text{ such that } (u, v) \in E \text{ and } D(v) < D(u) \}$$ and loyal follower nodes as $\mathcal{F} = V \setminus \mathcal{L}$. ## 3.2 Community assignment Once the leader and loyal follower sets have been detected, community assignment is the next step. We define a membership function $M:V\to V\cup\{\star\}$ that maps each $v\in V$ to a 'leader node', say $M(v)\in V$, who will identify a community to which v belongs: $C_v=\{u\in V:M(u)=v\}$. To start with, for each leader $v\in \mathcal{L}$, set M(v)=v; for each loyal follower $v\in \mathcal{F}=V\setminus \mathcal{L}$ set $M(v)=\star$. Sort the leaders in order of increasing distance centrality: let $\mathcal{L}=\{v_1,v_2,...,v_{|\mathcal{L}|}\}$ with $D(v_i)\leq D(v_{i+1})$ for $1\leq i<|\mathcal{L}|$. Now for each $u\in \mathcal{F}$ such that $(v_1,u)\in E$, set $M(u)=v_1$. After assigning loyal followers that are neighbors of v_1,\ldots,v_i , consider leader v_{i+1} . If $u\in \mathcal{F}$ such that $(u,v_{i+1})\in E$ and $M(u)=\star$, then assign $M(u)=v_{i+1}$. The purpose of this stage is to seed the communities using loyal followers. At the end of the first assignment step we may have additional spurious communities, which we remove next. It is likely that there are leader nodes which have no loyal followers assigned to them: for such a node $v \in \mathcal{L}$, M(v) = v and $M(u) \neq v$ for all $u \neq v$. For each such leader, say v, with no loyal followers, we look at all the loyal followers that neighbor it. We focus on loyal followers because they identify communities which have been seeded already. Let $u_1, \ldots, u_\ell \in \mathcal{F}$ be loyal followers such that $(u_j, v) \in E$ for $1 \leq j \leq \ell$. Find the 'community' (i.e. the leader node) to which a majority of these loyal followers are assigned (ties broken arbitrarily). Suppose v' is the leader that identifies this community, i.e. for a majority of u_j 's $M(u_j) = v'$. Then set M(v) = v'. This step helps remove the spurious communities. If G satisfies Definition 1, the above assignment step will result in all nodes being assigned to the proper communities [11]. However, in a general network, it may happen that a node only neighbors other leaders and no loyal followers. In this case, we assign the node to the community to which a majority of its neighbors belong, with ties being broken arbitrarily. We summarize the assignment step below. #### Summary of community assignment step - 1. Given leader set \mathcal{L} and loyal follower set $\mathcal{F} = V \setminus \mathcal{L}$. Let $\mathcal{N}(v) = \{u \in V : (u, v) \in E\}$. - 2. Let $\{v_1, v_2, ..., v_{|\mathcal{L}|}\}$ be ordering of nodes of \mathcal{L} as per increasing distance centrality. - 3. Define $M: V \to V \cup \{\star\}$ with M(v) = v for all $v \in \mathcal{L}$; $M(v) = \star$ for all $v \in \mathcal{F}$. - 4. For $i=1,2,...,|\mathcal{L}|$, in that order, do the following: define $F_{v_i}=\{v\in\mathcal{N}(v_i)\cap\mathcal{F}:\ M(v)=\star\};$ for all $v\in F_{v_i}$, set $M(v)=v_i$ and $C_{v_i}=\{v_i\}\cup F_{v_i}.$ - 5. For each $v_i \in \mathcal{L}$ with $C_{v_i} = \{v_i\}$ do the following: delete C_{v_i} , define multiset $H_{v_i} = \{M(v) : v \in \mathcal{N}(v_i) \cap \mathcal{F}\}$: - (a) If $H_{v_i} \neq \emptyset$, let u be the maximally repeated element in H_{v_i} (ties broken arbitrarily). Then, set $M(v_i) = u$ and $C_u = C_u \cup \{v_i\}$. - (b) If $H_{v_i} = \emptyset$, define multiset $I_{v_i} = \{M(v) : v \in \mathcal{N}(v_i)\}$ and let u be the maximally repeated element in I_{v_i} (ties broke arbitrarily). Then, set $M(v_i) = u$ and $C_u = C_u \cup \{v_i\}$. #### 3.3 Main result For any network satisfying Definition 1, somewhat surprisingly we find that the leader-follower algorithm can detect the communities exactly. We note that this type of strong theoretical guarantee cannot be provided for other more common techniques such as spectral clustering. The formal statement is as follows, whose proof can be found in [11]. **Theorem 1.** Given a network graph G(V, E) with a community structure satisfying Definition 1, the leader-follower algorithm will detect all of the communities exactly with O(|V||E|) operations. In general, a network may not satisfy Definition 1. However, the algorithm extends naturally for arbitrary networks and produces relevant communities. The experimental results presented in Section 4 confirm the effectiveness of the algorithm on real networks. #### 4 Empirical results In this section we compare the performance of the leader-follower algorithm with the more common spectral clustering based on RatioCut [1]. We use the number of communities found using the leader-follower algorithm as the input for the spectral clustering algorithm. The algorithms are tested on several synthetic and real networks. In each case, we find that the leader-follower algorithm can resolve a finer community structure than spectral clustering. ## 4.1 Synthetic networks We have already seen in Figure 1 that spectral clustering cannot correctly identify communities in networks satisfying Definition 1 which have dense inter-community connectivity. However, as stated in Theorem 1, the leader-follower algorithm will always correctly identify the communities in any network satisfying Definition 1, independent of the inter-community edge density. Also, it is important to note that unlike spectral clustering, the leader-follower algorithm does not need the number of communities as input. It learns this number naturally from the network structure. This is a strong advantage of the algorithm over spectral clustering. ## 4.2 Social networks: Facebook The leader-follower algorithm was applied to a Facebook network. This network is the subgraph induced by the friends of a single Facebook user, i.e., the friends of the user and all edges between these friends. The network data was anonymized due to submission requirements. The results of the algorithm were striking. We found 25 different communities in the user's network. By analyzing the membership of each of these communities, we found that they corresponded to real social groups to which the user belonged, with the labels in Figure 3 indicating the unifying theme of each group. The groups corresponded to members of college cultural groups, family friends, research groups, groups of friends from a specific country, friends from a different college, and high school friends. Some groups had no specific label, but were instead groups of people who the user met through a specific person (i.e. Friends 1, Friends 2, etc.). For comparison, the spectral clustering communities are also shown in Figure 3. As can be seen, spectral clustering ends up grouping several communities together into a large community and creates some communities consisting of single nodes. Spectral clustering is not able to resolve the finer community structure of the more densely connected communities, in contrast to the leader-follower algorithm. Also, we note that we did not need to specify beforehand the number of communities with the leader-follower algorithm. It detects this naturally from the structure of the network. ## 4.3 Biological networks: the human brain We applied the algorithms to the correlation network of a human brain obtained from fMRI data [12]. Edges in the network correspond to nodes whose correlation exceeded a threshold value. Many communities were detected and much to our surprise, the leader-follower algorithm was able to identify 3 of the larger communities with major lobes of the brain which are related to different types brain functions: the frontal lobe, the occipital lobe, and the temporal lobe. Figure 4 shows the labellings of the communities (lobes) we detected using the leader-follower algorithm. Spectral clustering was not able to resolve the temporal lobe in this network, but instead grouped it with the frontal lobe. Again, we see the leader-follower algorithm resolving finer structures than spectral clustering. This result indicates that the community structure we defined may apply to a broader class of networks beyond just social networks. ## 5 Discussion and conclusion We have presented a non-parametric algorithm for detecting community structure in networks known as the leader-follower algorithm. We based the algorithm upon the natural internal structure expected for a community in a social network. Because the leader-follower algorithm uses internal rather than external community properties, we expect it to be very effective in finding small scale community structure in dense networks. We proved that the algorithm is able to exactly detect communities which possess this structure. We applied the algorithm to different real networks ranging from social to biological networks, and found that it could detect relevant community structure in all of these networks. Because the leader-follower algorithm uses internal rather than external community properties, we found that it is able to detect small scale community structure that more common methods such as spectral clustering could not detect. Also, unlike spectral clustering, the leader-follower algorithm is able to learn the number of communities from the network structure and does not require it as an input. Figure 4: Lobes detected in a human brain network using (left) the leader-follower algorithm and (right) spectral clustering. Because of the wide range of applicability provided by the leader-follower algorithm, we would like to extend its theoretical guarantees to a larger class of communities. One strong property presented here is the requirement that the community be a clique. In reality communities are not always cliques, but rather just dense subgraphs. A question to ask is whether or not the leader-follower algorithm can provide provable guarantees when the requirement that a community be a clique is relaxed to allow subgraphs which are dense. Stated more precisely, if a community is required to not have an edge density of 1 (a clique), but rather an edge density of 1 (1) for some small 10, then for what values of 11 is correct community detection guaranteed? Based upon experimental results shown here, we feel that such a guarantee is possible for this type of model and that this is an interesting area for future research. #### References - [1] L. Hagen and A. B. Kahng, "New spectral methods for the ratio cut partitioning and clustering", *IEEE Trans. Computater Aided Design*, vol. 11, pp. 1074-1085, 1992. - [2] J. Shi and J. Malik, "Normalized cuts and image segmentation", *IEEE Trans. on Pattern Analysis and Machine Intelligence*, vol. 22, pp. 888-905, 2000. - [3] M. B. Hastings, "Community detection as an inference problem", *Phys. Rev. E*, 74:035102, 2006. - [4] M. E. J. Newman and E. A. Leicht, "Mixture models and exploratory analysis in networks", *Proc. Natl. Acad. of Sciences*, vol. 104, pp. 9564 9569, 2007. - [5] J. M. Hofman and C. H. Wiggins, "Bayesian approach to network modularity", *Phys. Rev. Lett.*, 100:258701, 2008. - [6] E. M. Airoldi, and D. M. Blei, S. E. Fienberg, and E. P. Xing, "Mixed membership stochastic blockmodels", *J. Mach. Learn. Res.*, vol. 9, pp. 1981 2014, 2008. - [7] M. E. J. Newman and M. Girvan, "Finding and evaluating community structure in networks", *Phys. Rev. E*, 69:026113, 2004. - [8] S. Fortunato, "Community detection in graphs", Phys. Reports, vol. 486, pp. 75-174, 2010. - [9] M. A. Porter, J. P. Onnela, and P. J. Mucha, "Communities in networks", *Notices of the Amer. Math. Soc.*, vol. 56, pp. 1082-1097, 2009. - [10] G. Sabidussi. "The centrality index of a graph", *Psychometrika*, vol. 31, pp. 581-603, 1966. - $[11]\ http://web.mit.edu/zlisto/www/Publications/nips2010_supp_material.pdf$ - [12] Private communication with Boon Thye Thomas Yeo and Bruce Fischl