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Community detection, link prediction, and layer interdependence in multilayer networks
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Complex systems are often characterized by distinct types of interactions between the same entities. These
can be described as a multilayer network where each layer represents one type of interaction. These layers may
be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we
present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform
inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping
communities that are common between the layers, while allowing these communities to affect each layer in
a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives
us a mathematically principled way to define the interdependence between layers, by measuring how much
information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers
together to compress redundant information and identify small groups of layers which suffice to predict the
remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer
networks, one representing social support relationships among villagers in South India and the other representing
shared genetic substring material between genes of the malaria parasite.
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I. INTRODUCTION

Networks that describe real-world relationships often have
different types of links that connect their nodes. For ex-
ample, links in a social network may represent friendships,
marriages, or collaborations, while links in a transportation
network may represent planes, trains, or automobiles. Such
networks are called multitype or multilayer networks since
each type of link can be separated into its own layer, thereby
connecting the same set of nodes in multiple ways. However,
understanding the large-scale structure of multilayer networks
is made difficult by the fact that the patterns of one type
of link may be similar to, uncorrelated with, or different
from the patterns of another type of link. These differences
from layer to layer may exist at the level of individual
links, connectivity patterns among groups of nodes, or even
the hidden groups themselves to which each node belongs.
Therefore, finding community structure in multilayer networks
requires simultaneously considering three related problems:
(i) the multilayer community detection problem, in which
we seek a description of the network that divides the nodes
according to groups hidden in the link patterns of multiple
layers; (ii) the layer interdependence problem, in which we
seek a description of the relationships between the layers
containing different types of links; and (iii) the link prediction
problem, in which we seek to accurately predict missing link
data by making use of all relevant layers of the network.

These three problems are fundamentally intertwined. Mul-
tilayer community detection requires knowing which layers
have related structure and which layers are unrelated, since
redundant information across layers may provide stronger evi-
dence for clear communities than each layer would on its own.
However, measuring layer interdependence requires a working
definition of interdependence and a method to measure it. The
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performance of a model or algorithm on the link prediction
task provides exactly such a measure: specifically, whether it
is possible to integrate information across layers, using links of
one type to help predict those of another type. Thus, in settings
where data are well represented as a multilayer network, as is
relevant in inferring genetic and protein-protein interactions
in cells [1], characterizing interdependent infrastructures [2],
and understanding the impact of different social ties in human
relationships [3,4], we desire a model capable of recognizing
interdependencies between layers, integrating and merging
information between them, and using this information both
to classify nodes and to predict links.

In this paper we propose an approach that performs all three
of these tasks. We define a generative model for multilayer
community detection that is applicable to both directed
and undirected networks, as well as networks with integer-
weighted links. We provide a highly scalable expectation-
maximization algorithm that fits this model to data, taking
as its input a multilayer network and yielding a “mixed-
membership” partition: nodes are divided into communities or
groups, but each node may belong to some extent to multiple
groups. While this partition is shared by all the layers, the
model allows for different connectivity patterns in each layer,
including arbitrary mixtures of assortative, disassortative, and
directed structure.

In addition to classifying nodes, our model also makes link
prediction possible: given an incomplete data set where not
all links are known, it assigns probabilities to each pair of
nodes that they have an unobserved link of each type. Finally,
by sequentially fitting the model to single layers and multiple
layers, we show how to determine whether the information
provided by additional layers improves link prediction perfor-
mance, thereby quantifying layer interdependence. We show
how to use this method to identify which layers of the network
are redundant, and which provide independent information.
For instance, we can identify small sets of layers which
together capture most of the information about the network.
This may be useful in contexts where gathering layers requires
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an investment of limited resources in the laboratory or the
field—for instance, if a social scientist can ask their subjects a
limited number of questions, identifying a limited number of
types of social relationships.

Community detection is a fundamental element of network
science, yet most community detection algorithms have been
developed for single-layer networks. We can use these methods
to analyze multilayer networks, either by aggregating all
layers to create a single-layer network [5,6] or by analyzing
each layer independently. Multilayer-specific methods that
maximize community quality functions such as modularity [7]
provide nonoverlapping partitions but inherit the issues of their
single-layer counterparts, namely, a dependence on proper
choice of a null model [8,9]. Moreover, these methods do not
typically provide a framework to perform link prediction, since
without additional assumptions they do not assign probabilities
to the presence or absence of a link.

More recent methods for multilayer community detection
are based on fitting various generative models via Bayesian
inference or maximum-likelihood estimation [10–15]. Our
algorithm falls into this category, but differs from most
of these models by not assuming a priori any specific
network structure. Many network models assume assortative
or homophilic community structure, meaning that nodes are
more likely to be connected to others in the same community.
This assumption is often incorrect in food webs, technological
networks, and social networks where links consist of nom-
inations, for instance, of a trustworthy or powerful person
that they might ask for advice, help, or work. Our model
avoids this assumption: while it looks for an (overlapping)
community structure that is consistent with every layer, it
deals happily with networks where some layers are assortative,
others are disassortative, yet others have core-periphery or
directed structure, and so on. In the case of directed links, it
also recognizes that nodes might play different roles, and thus
effectively belong to different groups, when forming incoming
or outgoing links.

By measuring the extent to which one layer helps us predict
links in another layer, our method also gives a mathematically
principled way to measure the relationships between the layers
of a multilayer network, including identifying layers which
are redundant with others or highly independent from them.
This problem arises even in naive algorithms that aggregate
layers into a single-layer network. For instance, the multilayer
versions of eigenvector centrality or modularity [7,16] use
weighted averages over layers, requiring them to infer or
choose a weight for each layer. A number of recent works have
taken a compression approach, aggregating layers with similar
structure [17,18]; in particular, Ref. [18] uses a generative
model that jointly assigns community memberships to nodes
and groups of layers, which they call strata. This is similar
in spirit to our approach, but our model handles overlapping
communities, directed networks, and weighted networks in a
unified way.

In Sec. II we describe our model and in Sec. III give an
efficient algorithm that fits its parameters to network data.
In Sec. IV, we provide performance results on synthetic
benchmarks and compare with other algorithms, and in Sec. V
we discuss how to perform link prediction and measure
layer interdependencies. We then apply these concepts to two

real-world networks, drawn from anthropology and biology,
and discuss the results in Sec. VI before concluding.

II. THE MULTILAYER MIXED-MEMBERSHIP
STOCHASTIC BLOCK MODEL

In this section we describe our model and fix our notation.
The network consists of N nodes and has L layers. Each layer
has an adjacency matrix A(α), where A

(α)
ij is the number of

edges from i to j of type α; alternatively, we can think of A

as an N × N × L tensor. Our model generates these networks
probabilistically, assuming an underlying structure consisting
of K overlapping groups.

Each node belongs to each group to an extent described by
a K-dimensional vector. Since we are interested in directed
networks, we give each node i two membership vectors, ui

and vi , which determine how i forms outgoing and incoming
links, respectively. (When modeling undirected networks, we
set u = v.) Each layer α has a K × K affinity matrix w(α)

describing the density of edges between each pair of groups.
The expected number of edges in layer α from i to j is then
given by a bilinear form,

M
(α)
ij =

K∑
k,�=1

uik vj� w
(α)
k� . (1)

Finally, for each i, j , and α, we choose A
(α)
ij independently

from the Poisson distribution with mean M
(α)
ij .

Note that while we assume that the membership vectors
have non-negative entries, we do not normalize them. This
allows us to account easily for heterogeneous degree distribu-
tions, since multiplying ui or vi by a constant increases the
expected out or in degree without changing the distribution of
neighbors to which a given one of i’s edges connects.

Note also that while this model supposes that nodes have the
same group membership in all layers, it allows the structure of
each layer to vary arbitrarily with respect to these groups.
For instance, some layers could be assortative and others
disassortative, with affinity matrices w(α) which are large on
or off the diagonal; other layers could have strongly directed
structure, with asymmetric w(α), or core-periphery structure,
where w(α) has one large entry on the diagonal.

For a single layer, our model is similar to existing
mixed-membership block models [19–25]. Some of these use
mixtures of Bernoulli random variables; we follow Ref. [22] in
using the Poisson distribution since it leads to a tractable and
efficient expectation-maximization algorithm. The Poisson
distribution also allows us to model multigraphs or integer-
weighted networks. However, in our applications here we
focus on the sparse case where M

(α)
ij is small, and assume

for simplicity that A
(α)
ij is zero or 1.

Our model also bears a close mathematical relationship
to topic models [26,27], which generate bipartite weighted
graphs of documents and words based on their relevance to
mixtures of topics. More generally, it can be viewed as a
variant of non-negative tensor factorization (see, e.g., Ref. [28]
for a review) and in particular of Poisson tensor factorization
[12,13,29–34]. However, the affinity matrices w(α), which
allow different layers to be assortative or disassortative,
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correspond to a kind of Tucker decomposition [35] of tensor
rank K2. This is more general than the parallel factor analysis
(PARAFAC) or canonical decomposition (CANDECOMP)
[36,37], which corresponds to the special case of our model
where w(α) is diagonal for each α. In the undirected case
where u = v, PARAFAC thus assumes a purely assortative
structure, where a link between two nodes can only exist if
their membership vectors overlap.

Various kinds of Poisson-Tucker decomposition for dy-
namic and multilayer networks have also been proposed very
recently in the machine learning community, particularly in
Refs. [12–14]. Indeed, our model is very nearly a special
case of that of Ref. [14], which has additional parameters
intended to model data sets with both multiple types of
links and multiple time steps. The main difference between
these works and our approach is that they impose priors
on the “core tensor” parameters (analogous to w

(α)
k� ) and

they use Monte Carlo sampling for Bayesian inference. In
contrast, we find point estimates of these parameters using
an expectation-maximization algorithm, detailed in the next
section. Below we compare our results to the algorithm of
Ref. [13], which is designed for the same kinds of data sets as
ours.

III. THE EXPECTATION-MAXIMIZATION ALGORITHM

Given an observed multilayer network with adjacency
tensor A, our goal is to simultaneously infer the nodes’
membership vectors and the affinity matrices for each layer.
In this section, we describe an efficient algorithm which does
this by the method of maximum likelihood.

Let � be shorthand for all 2NK + K2L model parameters,
i.e., the uik , vi�, and w

(α)
k� . Assuming that all � are equally

likely a priori, the probability of � given A is proportional to
the probability of A given �. Using the Poisson distribution
function gives

P (� | A) ∝ P (A | �) =
N∏

i,j=1

L∏
α=1

e−M
(α)
ij

(
M

(α)
ij

)A
(α)
ij

Aα
ij !

. (2)

(One could also impose a prior P (�) and perform maximum
a posteriori inference [13,31,32], but we have not done this
here.) The log likelihood is then

L(�) =
∑
i,j,α

[
A

(α)
ij log

∑
k�

uikvj�w
(α)
k� −

∑
k�

uikvj�w
(α)
k�

]
, (3)

where we omit the terms log A
(α)
ij ! since they depend only on

the data.
We wish to find the � that maximizes Eq. (3). This is

computationally difficult, but we can make it more tractable
with a classic variational approach. For each i,j,α with
A

(α)
ij = 1, consider a probability distribution ρ

(α)
ijk� over pairs of

groups k,�: this is our estimate of the probability that that edge
exists due to i and j belonging to groups k and �, respectively.
(If the network is a multigraph and i,j have multiple links of
the same type, we give each one its own distribution ρ; below
we assume for simplicity that this does not occur.) Jensen’s

inequality log x � log x then gives

log
∑
k�

uikvj�w
(α)
k� = log

∑
k�

ρ
(α)
ijk�

uikvj�w
(α)
k�

ρ
(α)
ijk�

�
∑
k�

ρ
(α)
ijk� log

uikvj�w
(α)
k�

ρ
(α)
ijk�

=
∑
k�

ρ
(α)
ijk� log uikvj�w

(α)
k�

−
∑
k�

ρ
(α)
ijk� log ρ

(α)
ijk�. (4)

Moreover, this holds with equality when

ρ
(α)
ijk� = uikvj�w

(α)
k�∑

k′�′ uik′vj�′w
(α)
k′�′

. (5)

Thus maximizing L(�) is equivalent to maximizing

L(�,ρ) =
∑

i,j,α,k,�

[
A

(α)
ij

(
ρ

(α)
ijk� log uikvj�w

(α)
k� − ρ

(α)
ijk� log ρ

(α)
ijk�

)

−uikvj�w
(α)
k�

]
(6)

with respect to both � and ρ.
The expert reader will recognize that this variational

argument is simply classical thermodynamics in disguise. Fix
the parameters � and consider a spin system where each edge,
i.e., each triple (i,j,α) with A

(α)
ij = 1, has a state consisting of

a pair of groups (k,�). Define the Hamiltonian as

H = −
∑

(i,j,α):A(α)
ij =1

log uik(i,j,α)vj�(i,j,α)w
(α)
k(i,j,α),�(i,j,α)

−
∑

i,j,α,k′,�′
uik′vj�′w

(α)
k′�′

(note that the second term is constant). Then the Boltzmann
distribution is a product distribution of the distributions ρ

(α)
ij

given by Eq. (5) on each edge. Moreover, −L(�,ρ) is the
free energy E − T S where T = 1, and we recover the familiar
fact that this is minimized by the Boltzmann distribution. In
this context, finding the maximum-likelihood estimate of the
parameters � corresponds to minimizing the free energy of
this spin system.

We can maximize L(�,ρ) by alternately updating ρ and �.
This general approach is called an expectation-maximization
(EM) algorithm: the expectation step computes the marginals
of the Boltzmann distribution for the current estimate of the
parameters, and the maximization step finds the most likely
value of the parameters given those marginals. The fact that
the Boltzmann distribution takes a simple product form makes
the expectation step especially simple, making the algorithm
highly efficient.

The update equations for � in the maximization step can be
can be derived by computing the partial derivative of L(�,ρ)
with respect to the various parameters. For instance,

∂L(A,ρ)

∂uik

=
∑
j,�,α

[
A

(α)
ij ρ

(α)
ijk�

uik

− vj�w
(α)
k�

]
. (7)
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Setting this to zero, and doing the same for the partial
derivatives with respect to vj� and w

(α)
k� , gives

uik =
∑

j,α A
(α)
ij

∑
� ρ

(α)
ijk�∑

�

( ∑
j vj�

)( ∑
α w

(α)
k�

) , (8)

vj� =
∑

i,α A
(α)
ij

∑
k ρ

(α)
ijk�∑

k

(∑
i uik

)( ∑
α w

(α)
k�

) , (9)

w
(α)
k� =

∑
ij A

(α)
ij ρ

(α)
ijk�( ∑

i uik

)(∑
j vj�

) . (10)

The EM algorithm thus consists of randomly initializing
the parameters �, and then repeatedly alternating between
updating ρ using Eq. (5) and updating � using Eqs. (8)–(10)
until it reaches a fixed point. This fixed point is a local
maximum of L(�,ρ), but it is not guaranteed to be the
global maximum. Therefore, we perform multiple runs of
the algorithm with different random initializations for �,
taking the fixed point with the largest value of L(�,ρ). The
computational complexity per iteration scales as O(MK2),
where M is the total number of edges summed over all layers
and K is the number of groups. In practice we find that our
algorithm converges within a fairly small number of iterations.
Thus it is highly scalable, with a total running time roughly
linear in the size of the data set.

Once we converge to a fixed point, we can assign nodes
to communities by normalizing the membership vectors to
ūi = ui/

∑
k uik , so that for each i we have

∑
k ūik = 1. This

approach was used in Ref. [22] as a method for classifying
nodes in overlapping communities; however, since we allow
ui and vi to be distinct, the “outgoing” and “incoming”
assignments of a node might differ. These are soft assignments,
meaning that nodes can belong to more than one community.
If one wishes to obtain a hard assignment, one can assign each
node to the single community corresponding to the maximum
entry of u or v, but the overlapping character of the community
structure is then lost.

We call our model and its associated algorithm MULTITEN-
SOR. A numerical implementation is available for use under an
open source license [38].

IV. RESULTS ON SYNTHETIC NETWORKS

We tested MULTITENSOR’s ability to detect community
structure synthetic networks using the multilayer benchmark
proposed in Ref. [8]. This model is somewhat different from
ours: rather than having mixed-membership vectors that are
the same in every layer, they use hard partitions where each
node belongs to a single group, but they allow these partitions
to vary from layer to layer. The partitions in different layers
are correlated by a so-called layer interdependence tensor. For
simplicity, we use a one-parameter version of this tensor with
dependency p ∈ [0,1]: when p = 0 the partitions between
layers are independent, and when p = 1 they are identical.
Once these partitions are chosen, they generate edges in each
layer according to a degree-corrected block model [39], with
a user-specified degree distribution and affinity matrix.

We used this benchmark to generate synthetic networks
with N = 300 nodes, L = 4 layers, and K = 5 communities.

For each layer we used a truncated power-law degree dis-
tribution with exponent γ = −3, minimum degree kmin = 3
and maximum degree kmax = 30. We varied the affinity matrix
of the block model according to a mixing parameter μ: if
μ = 0 all edges lie within communities, and if μ = 1 edges
are assigned regardless of the community structure.

We define our algorithm’s accuracy on these benchmarks in
terms of how well the inferred membership vectors match the
ground-truth distribution of memberships across layers. That
is, we hope that, after normalizing so that

∑
k ūik = 1, each

uik is close to the fraction of layers in which node i belongs
to group k, which we denote ū0

ik . We quantify the similarity
between these two distributions using two measures. The first
is their inner product, often called the cosine similarity (Scos),
averaged over all the nodes:

Scos = 1

N

N∑
i=1

ū0
i · ūi∣∣ū0
i

∣∣|ūi |
, (11)

where in the denominator |ū| denotes the Euclidean norm.
Here Scos = 1 corresponds to perfect accuracy. The second is
the L1 error between the two distributions, also known as their
statistical distance or total variation distance, averaged over all
the nodes:

L1 = 1

2N

N∑
i=1

‖ū0
i − ūi‖1 = 1

2N

N∑
i=1

K∑
k=1

∣∣ū0
ik − ūik

∣∣. (12)

The factor of 1/2 is used so that this distance ranges from zero
for identical distributions to 1 for distributions with disjoint
support. In both measures, we give ourselves the freedom to
permute the groups, so that the inferred groups of our model
correspond to the groups of the benchmark. Thus we maximize
the cosine similarity Scos, and minimize the L1 error, over all
K! permutations of the K groups.

For comparison, we use two other algorithms that infer
overlapping multilayer partitions. The first is the restricted
diagonal version of our model, which only allows diagonal
affinity matrices w(α); as discussed above, this is equivalent
to the Poisson version of PARAFAC tensor factorization [34]
and in the undirected case u = v this corresponds to assume an
assortative network structure. The second algorithm is a fully
Bayesian Poisson tensor factorization (BPTF) [13]. The main
differences between these two models are the prior information
and the optimization approach. The former considers a uniform
prior and calculates point estimates of the parameters using
an iterative algorithm similar to ours. The BPTF algorithm
instead assumes Gamma-distributed parameters and updates
the parameters of these distributions instead of the point
estimates; in the end it uses the geometric mean of these
distributions as its estimate of the parameters.

In Table I we report the best results in terms of co-
sine similarity and L1 error obtained by three algorithms:
MULTITENSOR, its diagonal special case (or Poisson
PARAFAC), and BPTF. By varying the layer interdependence
p and the mixing parameter μ, we range over cases where the
community structure is relatively easy to infer to those where it
is much harder. Specifically, inference is easier when p is large,
so that the layers are strongly correlated, and μ is small, so
that most links are within communities. For each pair (μ,p) we
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TABLE I. Performance in detecting overlapping partitions on synthetic networks, using our MULTITENSOR algorithm, the diagonal special
case which corresponds to the Poisson version of PARAFAC tensor decomposition [34], and Bayesian Poisson tensor factorization [13].
Benchmark networks were generated with the model of Ref. [8] with interdependence p and mixing parameter μ: the community structure
is stronger when p is large and μ is small. For each (μ,p) pair we measure the cosine similarity (Scos) and the average L1 error between
the planted and inferred structure averaged over 50 independently generated benchmark networks. We run each network 50 times with
independently random initializations, and use the parameters given by the highest-likelihood fixed point. Good performance corresponds to
high cosine similarly and low L1 error, and the best performance for each pair of parameter values is indicated by boldface. The errors σ are
the standard deviation over the 50 benchmarks.

p = 0.5 p = 0.8 p = 0.9

μ = 0.0 Scos σ L1 σ Scos σ L1 σ Scos σ L1 σ

MULTITENSOR 0.66 0.06 0.58 0.07 0.93 0.07 0.19 0.09 0.99 0.01 0.07 0.01
Diagonal 0.65 0.05 0.60 0.06 0.84 0.06 0.31 0.08 0.97 0.04 0.10 0.05
BPTF 0.66 0.06 0.57 0.06 0.89 0.07 0.24 0.08 0.96 0.03 0.10 0.04

p = 0.5 p = 0.8 p = 0.9

μ = 0.1 Scos σ L1 σ Scos σ L1 σ Scos σ L1 σ

MULTITENSOR 0.63 0.05 0.62 0.05 0.92 0.06 0.22 0.08 0.98 0.01 0.11 0.01
Diagonal 0.63 0.04 0.62 0.04 0.87 0.06 0.29 0.07 0.94 0.07 0.17 0.08
BPTF 0.62 0.06 0.61 0.05 0.84 0.07 0.32 0.08 0.93 0.06 0.18 0.07

p = 0.5 p = 0.8 p = 0.9

μ = 0.5 Scos σ L1 σ Scos σ L1 σ Scos σ L1 σ

MULTITENSOR 0.55 0.03 0.70 0.02 0.55 0.05 0.67 0.04 0.59 0.07 0.59 0.07
Diagonal 0.55 0.03 0.71 0.02 0.53 0.03 0.69 0.03 0.58 0.07 0.63 0.06
BPTF 0.52 0.03 0.69 0.03 0.49 0.05 0.68 0.04 0.59 0.07 0.58 0.06

generated 50 independent benchmark networks, and for each
network and each algorithm we performed 50 independent
runs with independently random initial conditions, taking the
fixed point with highest likelihood. We defined convergence
numerically by testing whether L(�,ρ) has not improved by
more than 0.1 for ten iterations.

In every case our algorithm achieves the highest cosine
similarity, and in the majority of the cases the smallest L1 error,
indicated in boldface. All three algorithms perform poorly in
the hard regime where one of the two parameters introduces a
high level of stochasticity in the network, i.e., when either μ =
0.5 or p = 0.5. In the other cases our algorithm is significantly
better according to both measures.

The benchmarks of [8] are assortative in every layer, and the
diagonal and BPTF algorithms work fairly well. To illustrate
the greater flexibility of our algorithm, we also generated
synthetic networks with different kinds of structure in different
layers. Specifically, we generated layers whose structures are
assortative (w11 = w22 > w12 = w21), disassortative (w11 =
w22 < w12 = w21), core periphery (w11 > w12 = w21 > w22),
and directed with a bias from the first group to the second one
(w12 > w11 = w22 > w21).

We considered three types of networks, all having K = 2
groups and N = 300 nodes, but with different numbers and
kinds of layers (see Table II). In each one the groups are
of equal size, with unmixed group memberships [i.e., ui =
vi = (0,1) or (1,0)]. The first type of network has L = 2
layers, one assortative and one disassortative; the second
network has L = 4, with two assortative and two disassortative
layers; the last one has L = 4, with one layer each with

assortative, disassortative, core-periphery, and biased directed
structure.

We generated ten independent samples of each of these
types of network and calculated the Scos and the L1 norm
between the inferred membership and the ground truth using
the maximum-likelihood fixed point over ten runs of each
algorithm with different random initial conditions. As shown
in Table III, MULTITENSOR achieves significantly greater
performance than the diagonal or BPTF algorithms in all
three cases, due to its flexibility in modeling mixtures of these
different types of structure.

TABLE II. Description of synthetic network structures. 〈E〉
is the average number of edges per layer; all networks have
N = 300 nodes. For networks G = 1,3 we used affinity matrices
Wa and Wd for the assortative and disassortative layers, respec-
tively, with entries wa

11 = wa
22 = wd

12 = wd
21 = 0.04 and wa

12 = wa
21 =

wd
11 = wd

22 = 0.004 so that 〈E〉 = 1980; for G = 2 the first two layers
(one assortative and one disassortative) have affinity matrices Wa and
Wb with entries wa

11 = wa
22 = wb

12 = wb
21 = 0.08 and wa

12 = wa
21 =

wb
11 = wb

22 = 0.008 so that 〈E〉 = 3960; the third and fourth (one core
periphery and one directed disassortative) have affinity matrices Wc

and Wd with entries wc
11 = wd

12 = 0.08, wc
12 = wc

21 = wd
11 = wd

22 =
0.008, and wc

22 = wd
21 = 0.004 so that 〈E〉 = 2250.

G K L 〈E〉 Structure

1 2 2 1980 {assort, disassort}
2 2 4 3960,2250 {assort, disassort, core-per, dir. disassort}
3 2 4 1980 {2 assort, 2 disassort}
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TABLE III. Cosine similarity and L1 norm for mixed structure synthetic networks. Scos as in Eq. (11) and L1 norm as in Eq. (12) are
calculated between membership vectors ū, v̄ of the inferred partitions and the ground truth [ū0 = v̄0 = (1,0), (0,1) for nodes in group 1 and
2, respectively]. Results are averages and standard deviations of the results on the two memberships over ten networks sampled from each
network type G, as described in Table II. The best performance is indicated in boldface.

G = 1 G = 2 G = 3

Scos σ L1 σ Scos σ L1 σ Scos σ L1 σ

MULTITENSOR 0.984 0.008 0.06 0.01 0.990 0.001 0.058 0.003 0.989 0.001 0.056 0.002
Diagonal 0.61 0.01 0.49 0.01 0.91 0.01 0.22 0.01 0.63 0.02 0.48 0.01
BPTF 0.60 0.02 0.48 0.01 0.90 0.03 0.21 0.05 0.63 0.03 0.48 0.01

V. LEARNING LAYER INTERDEPENDENCE VIA
LINK PREDICTION

Despite the fact that a network may have multiple layers,
there is no guarantee that the structure of one layer is
related to the structure of any other. In fact, depending on
the context, it may even be desirable that two layers are
entirely uncorrelated, since then they reveal different kinds
of information about the underlying structure. The layer
interdependence problem consists of identifying which sets
of layers are structurally related and quantifying the strengths
of those interrelationships.

We are not the first to provide a solution to the layer
interdependence problem. One intuitive approach is to in-
dependently infer the community structure of each layer
and then simply compute pairwise correlations between the
community partitions of each layer [40]. While this approach
is straightforward, it is unable to use the information in some
layers to assist with inference of structure in other layers,
since every layer is treated independently. Another approach
has been to cluster the inferred affinity matrices, analogous
to our w(α), during the parameter inference and estimation
procedures, thus gathering layers into “strata” [18].

However, while we also explore clustering the w(α) below,
neither of these methods captures the general kind of indepen-
dence we are interested in. For instance, if two layers use the
same group labels for the vertices, but one layer is assortative
while the other is disassortative, then knowing one of them
is very helpful in predicting the other. In this sense they are
closely related, even though they are statistically very different,
and indeed anticorrelated with each other.

Our proposal to capture this more general kind of in-
terdependence is based on the idea that two layers are
interdependent if and only if the structure of one layer
provides meaningful knowledge about the structure of the
other. Specifically, by performing link prediction in one layer
with or without information about another layer, we quantify
the extent to which these two layers are related.

Since our model is generative, it naturally includes a
framework to predict links given partially observed data:
simply use the known data to estimate the parameters, and
then use these estimated parameters to compute M

(α)
ij , i.e.,

the expected number of links of type α between each pair of
nodes i,j . We then rank each missing entry in the adjacency
tensor according to M

(α)
ij . The method succeeds to the extent

that true missing links are given a higher estimate of M
(α)
ij

than false ones. We follow [41] in defining the accuracy as the

area under the receiver-operator curve or AUC [42]. This is
the probability that a random true positive is ranked above a
random true negative; thus the AUC is 1 for perfect prediction,
and 1/2 for chance.

To test our ability to predict layer α, we perform experi-
ments with fivefold cross validation. That is, we hold out 20%
of its adjacency matrix A(α), hiding those entries from the
algorithm. We infer the model parameters using the remaining
80% as a training data set, with or without knowledge of
other layers of the network, and measure the inferred model’s
accuracy on the held-out entries in A(α). The independence of
the training and test data sets makes cross validation a robust
method against overfitting. Note that holding out 20% of a
layer does not mean removing 20% of the nodes or 20% of
the links, but rather hiding 20% of the entries of its adjacency
matrix, including both zeros and ones. This means that we just
the accuracy of our link prediction algorithm on both links and
nonlinks.

The final AUC is the average obtained over the fivefold
cross validations, each of which holds out a different subset
of 20%. Clearly this AUC depends both on the layer α we are
trying to predict, and on what set of other layers we give the
algorithm access to.

Given this framework, we can define the pairwise interde-
pendence between two layers α,β as follows. We perform link
prediction on layer α, with 20% of the entries of A(α) hidden;
but we do this first by giving the algorithm access only to the
rest of A(α), and then by giving it access to all of A(β) as well.
We then measure the difference in the AUC between these two
experiments, determining how much knowledge about layer
β helps us predict layer α. We call this the two-layer AUC.
Similarly, the three-layer AUC tells us how much knowledge
about two layers β and γ help us predict α, and so on. Notice
that if different layers have independent structure, without
common underlying communities, then including one in the
training set much actually decreases our ability to predict the
other, causing the AUC to go down.

Computing all �-layer AUCs would require us to try
(
L

�

)
subsets of the layers, which becomes computationally expen-
sive as � increases. To avoid this computational bottleneck, we
use a greedy bottom-up procedure in which we add one layer
at a time to the training data set, whichever one most increases
the AUC, until as many layers as desired have been added.
This allows us to find a small set of layers which together
make it possible to predict links accurately. While this greedy
procedure is not guaranteed to find the best possible subset of
a given size, it is computationally efficient.
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Alternatively, if the goal is to decide which layers are less
informative in predicting the others, in order for instance to
compress information by discarding less informative layers,
we can use a top-down procedure which starts with all L layers
then iteratively removes whichever one decreases the AUC the
least, until a small informative subset of layers remains. We
did not pursue this here.

In addition to this link prediction approach, we also cluster
the affinity matrices w(α) in a way similar to Ref. [18]. That
is, we treat the inferred w(α) as K2-dimensional vectors and
cluster them in K2-dimensional space using the k-means
algorithm. Results for both notions of layer interdependence
are shown in the following section.

VI. LINK PREDICTION AND LAYER
INTERDEPENDENCE IN REAL NETWORKS

To demonstrate our MULTITENSOR model and algorithm
beyond synthetic data, we apply it to two real-world multilayer
networks. In one network, the MULTITENSOR model finds that
many layers are interdependent, revealing a shared community
structure among them. However, in the other network, the
models finds the layers to be independent, concluding that
there exists no shared structure among them. Together, these
two different scenarios illustrate the concrete use of our method
in both positive result and negative result scenarios, both of
which are likely to arise when analyzing real-world data.

First, we analyze social support networks from two villages
in the Indian state of Tamil Nadu, which we call by the
pseudonyms [43]“Tenpat.t.i” and “Alakāpuram” [44,45]. As
part of a survey questionnaire, village residents were asked to
name those individuals who provided them with 12 different
types of support, ranging from lending them household
items to helping them navigate government bureaucracy.
The resulting directed networks have N = 362 and N = 420
nodes, respectively. Each type of support corresponds to a
layer in these networks, giving each of them L = 12 layers,
with average degrees ranging from 2.0 to 4.4.

Second, we analyze the patterns of shared genetic substrings
among a set of malaria parasite virulence genes [40]. Each
of the N = 307 nodes represents a single gene, and an edge
connects two genes if they share a substring of significant
length. Due to the fact that the same set of genes was
analyzed at nine different genetic loci (i.e., locations on the
genes themselves) which are called “highly variable regions”

TABLE IV. AUC for link prediction on real networks using our
MULTITENSOR model, the diagonal or PARAFAC algorithm, and
Bayesian Poisson tensor factorization (BPTF) [13]. Here we look
at the entire data set at once and define the AUC as the probability a
random link is ranked above a random nonlink. Results correspond
to the maximum-likelihood fixed point over 100 runs of each
algorithm with random initial conditions. The best performance for
each network is indicated by boldface. All three algorithms perform
quite well when shown all layers at once, although MULTITENSOR’s
performance is the best by a small margin.

Network K MULTITENSOR Diagonal BPTF

Tenpat.t.i Village 4 0.89 0.88 0.87

Alakāpuram Village 6 0.93 0.92 0.91
Malaria 3 0.83 0.82 0.82
Malaria 5 0.86 0.85 0.85
Malaria 8 0.88 0.88 0.88

(HVRs), this undirected network has L = 9 layers, with
average degrees ranging from 5.1 to 76.4.

The scientifically interesting questions for both networks
revolve around the mechanisms driving edge formation.
Hypothesized factors include kinship and caste in the Indian
social support networks, and upstream promotor sequence
or parasite origin in the malaria genetic networks. However,
addressing these questions is beyond the scope of this paper,
where we instead wish to evaluate the effectiveness of our
algorithm.

One option would be to use our algorithm to cluster the
nodes and compare the resulting group assignments with
metadata such as gender, caste, or geographical location.
Indeed, in Fig. 1 we show the community assignment for
Tenpat.t.i predicted by our model and compare it with the
division of individuals into castes. Although the figure suggests
that the partition might be correlated with caste membership,
we do not expect this to be the only type of metadata correlated
with the community structure, and we do not consider this
correlation to be a good measure of accuracy. Here we focus
instead on link prediction, and in particular on the extent to
which knowledge of some layers helps us predict links in
others, as described in the previous section.

As for the synthetic networks, our MULTITENSOR algorithm,
the diagonal or PARAFAC algorithm, and the BPTF algorithm
each provide a framework for link prediction. Table IV reports

FIG. 1. Tenpat.t.i Village community partition. On the left we show the division by caste membership. To the right we show the membership
in each of the four communities for each node (each figure represents one community), with color ranging from white if the normalized
outgoing membership uik = 0 to black if uik = 1. Values in between denote overlapping membership (grey). The fact that caste membership
partially overlaps with the communities identified by our algorithm suggests a relationship between topological structure and caste, a topic that
will be investigated in a future paper.
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FIG. 2. Layer interdependence in the Indian social support
networks. On the x axis are the layers’ labels used in the test data set,
and the y axis shows the AUC obtained through the cross-validation
schemes for measuring layer interdependence. Bold lines are for

Tenpat.t.i Village, dashed for Alakāpuram Village. L = 1 refers to
single-layer AUC, where the algorithm is only given access to that
layer. L = 2,3,12 show the increase in the AUC for that layer when
the algorithm is given access to L layers; for L = 2 and L = 3
we choose the best set of L − 1 additional layers using the greedy
procedure described in the previous section.

the AUC over each entire network and for each algorithm. The
algorithms’ performances are roughly similar, although our
algorithm has slightly higher performance. This suggests that
these networks are primarily assortative; this is certainly true
of the malaria network, since it is defined in terms of similarity.

To measure layer interdependence we implemented the
method described in the previous section, where we attempt
to predict the adjacency matrix of a given layer with 20% of
its entries held out, and give the algorithm access to a subset
of other layers as part of its training data set. Interestingly, we
obtain opposite results in these two cases, as shown in Figs. 2
and 3.

For the social networks, we find that increasing the number
of layers in the training data set does indeed improve link
prediction, with a performance that increases monotonically
with the number of additional layers. In Fig. 2 we show the
AUC for each layer as a function of the number of layers the
algorithm is given access to. We found that the best number of
groups for link prediction was K = 4 for the first village and
K = 6 for the second one.

Many layers viewed on their own (L = 1) are difficult to
predict, with AUCs just above 0.5, i.e., only slightly better
than chance. By giving the algorithm access to one more layer
(L = 2) the AUC typically improves by only about 0.05.
However, if we give it access to two additional layers (L = 3)
the AUC improves significantly for almost all of the layers,
and this is even more true when we give it access to the entire
data set. (For L = 2,3 we use the greedy procedure to choose
which L − 1 layers to add to the training data set.)

Thus in these social networks, the MULTITENSOR algorithm
is able to usefully apply knowledge from some layers to others.
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FIG. 3. Layer interdependence in the malaria network. Each of
the nine layers corresponds to a so-called highly variable region
(HVR) of the malaria parasite genes, indicated on the x axis, and the
y axis shows the AUC obtained through the cross-validation schemes
for measuring layer interdependence. L = 1 refers to single-layer
AUC, where the algorithm is only given access to that layer. L =
2,3,9 show the increase in the AUC for that layer when the algorithm
is given access to L layers; for L = 2 and L = 3 we choose the best set
of L − 1 additional layers using the greedy procedure described in the
previous section. Points and error bars are the average and standard
deviation over the fivefold cross validation. Unlike the social support
networks, we see that the accuracy of predicting one layer actually
decreases when we include others in the training set, indicating that
the different layers have independent structure.

Interestingly, we also see consistency between the two villages
with regard to which layers are the hardest to predict, and
which layers are the most helpful to include in the training
data set. In particular, the ImpIss layer (“Who do you discuss
important matters with?”) is helpful in predicting many layers,
while Position, Work, Loan, and Babysit are much less so, and
in some cases even decrease the AUC.

We can compare this with the clustering of the L affinity
matrices we obtained using standard clustering algorithms, in a
spirit similar to Ref. [18]. In Fig. 4 we use principal component
analysis [46] to visualize the L matrices w(α), projecting them
along two principal directions in K2-dimensional space, and
we give them cluster labels using the k-means algorithm
[47]. Indeed we see that Position, Work, Loan, and Babysit
are farther from the others, suggesting that these layers are
structurally quite different from the others; note also in Fig. 2
that these layers are among the hardest to predict. In contrast,
ImpIss is closer to the other layers, at least for the second
village, consistent with the fact that it often helps predict other
layers. We also find for L = 2 that the Borrow layer is the most
helpful when predicting the Talk layer in both villages, which
is consistent with the fact that these two layers are clustered
close together.

In contrast, for the malaria network we find that the
best performance is obtained when no other layer is added
to the data set, meaning that prediction actually worsens
monotonically as we increase the number of added layers,
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FIG. 4. Clusters of the affinity matrices in the layers of the Indian
village networks, for Tenpat.t.i on the left and Alakāpuram on the
right. Cluster labels were obtained using the k-means algorithm,
treating each w(α) as a K2-dimensional vector, and we use principal
component analysis to visualize them in two dimensions.

as shown in Fig. 3. This seems to corroborate past findings
[40] in an important way. Specifically, the standing hypothesis
about these genes is that they are maximally diverse in order
to most effectively evade the immune system. If there were
correlations between loci, which we would see here as the
ability of one layer to help in the link prediction of another
layer, then this would diminish these genes’ overall diversity.
This would diminish the amount of “immune evasion space”
that is spanned by the parasites and would therefore result in
an overall fitness decrease for the parasites.

VII. CONCLUSIONS

We have proposed a generative model for multilayer
networks that extends and generalizes the mixed-membership
stochastic block model. It assumes that the layers share a
common community structure but allows links in different
layers to be correlated with the community memberships
in different ways, such as assortative, disassortative, core-
periphery, or hierarchical structure, or arbitrary mixtures
thereof. It explicitly allows the communities to overlap and
can be applied to networks with directed, undirected, or
integer-weighted links. We showed that it can be fit to large
data sets using a scalable expectation-maximization algorithm,
whose running time per iteration is linear in the total size of
the data set and which converges quickly in practice. Due to
its ability to describe a wide variety of graph structures, it
performs well on synthetic and real data, in terms of both
community detection and link prediction.

In addition to performing community detection, the meth-
ods in this paper naturally incorporate a framework for
link prediction, which we use as a quantitative definition of
interdependency between the network’s layers. Namely, we
measure how much knowledge of one layer, or a set of layers,
improves the accuracy of link prediction in another layer.
This measure is quite general and goes beyond approaches
that cluster layers into strata with similar parameters (e.g.,
Ref. [18]); for instance, if two layers both depend strongly on

the underlying communities, they will be interdependent in this
sense even if one is assortative and the other is disassortative,
making their affinity matrices very different. In addition
to providing hints about causal or structural relationships
between the layers, this notion of interdependence may be
useful to choosing weights for multilayer versions of common
network measures, such as eigenvector centrality [16] and
modularity [7]. The same link prediction and cross-validation
framework used to quantify layer interdependence can also be
used to identify and avoid overfitting.

Beyond establishing high performance on synthetic data
sets, we also applied our methods to two real-world data sets.
We found patterns of interdependence between layers of social
networks from two Indian villages, indicating correlations
between different kinds of social ties, and confirmed that these
patterns are largely consistent between the two villages. In
contrast, when we applied our methods to a multilayer network
of sequence sharing among malaria’s virulence genes, we
found that the layers were essentially unrelated. This suggests
that similarities at different loci of the amino acid sequences are
evolving under uncorrelated constraints, rigorously confirming
a result based on independent analyses of each layer [40]. In
both cases, our MULTITENSOR approach provided information
not revealed in previous studies of these data sets and proved
to be useful in identifying not only the presence of meaningful
structure, but its absence as well.

The solution we provide for the layer interdependence
problem may find application beyond the analysis of extant
data sets. Because our method can be used to aggregate layers
into clusters, or to compress a data set by identifying especially
relevant or redundant layers, it can direct experimentalists or
field researchers in learning which data to collect or prioritize.
For example, if two layers of a social network are found by our
methods to be redundant during a pilot study, the redundant
layer need not be collected at scale. Particularly in cases
where data collection is labor intensive, expensive, or generally
difficult, robust solutions to the layer interdependence problem
can help maximize the impact of studies constrained by limited
resources in the laboratory or the field. On the other hand, when
layers are found to be independent of each other, our methods
provide justification for comprehensive data collection of the
relevant layers.
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