
1

Community Detection via Maximization of
Modularity and Its Variants

Mingming Chen, Konstantin Kuzmin, Student Member, IEEE,
and Boleslaw K. Szymanski, Fellow, IEEE

Abstract—In this paper, we first discuss the definition of modularity (Q) used as a metric for community quality and then we review the
modularity maximization approaches which were used for community detection in the last decade. Then, we discuss two opposite yet
coexisting problems of modularity optimization: in some cases, it tends to favor small communities over large ones while in others, large
communities over small ones (so called the resolution limit problem). Next, we overview several community quality metrics proposed to
solve the resolution limit problem and discuss Modularity Density (Qds) which simultaneously avoids the two problems of modularity.
Finally, we introduce two novel fine-tuned community detection algorithms that iteratively attempt to improve the community quality
measurements by splitting and merging the given network community structure. The first of them, referred to as Fine-tuned Q, is based
on modularity (Q) while the second one is based on Modularity Density (Qds) and denoted as Fine-tuned Qds. Then, we compare the
greedy algorithm of modularity maximization (denoted as Greedy Q), Fine-tuned Q, and Fine-tuned Qds on four real networks, and
also on the classical clique network and the LFR benchmark networks, each of which is instantiated by a wide range of parameters. The
results indicate that Fine-tuned Qds is the most effective among the three algorithms discussed. Moreover, we show that Fine-tuned
Qds can be applied to the communities detected by other algorithms to significantly improve their results.

Index Terms—Community Detection, Modularity, Maximization, Fine-tuned.

F

1 INTRODUCTION

MANY networks, including Internet, citation net-
works, transportation networks, email networks,

and social and biochemical networks, display commu-
nity structure which identifies groups of nodes within
which connections are denser than between them [1].
Detecting and characterizing such community structure,
which is known as community detection, is one of the
fundamental issues in the study of network systems.
Community detection has been shown to reveal latent
yet meaningful structure in networks such as groups
in online and contact-based social networks, functional
modules in protein-protein interaction networks, groups
of customers with similar interests in online retailer
user networks, groups of scientists in interdisciplinary
collaboration networks, etc. [2].

In the last decade, the most popular community de-
tection methods have been to maximize the quality
metric known as modularity [1], [3]–[5] over all possible
partitions of a network. Such modularity optimization
algorithms include greedy algorithms [6]–[9], spectral
methods [3], [10]–[15], extremal optimization [16], simu-
lated annealing [17]–[20], sampling technique [21], and
mathematical programming [22]. Modularity measures
the difference between the actual fraction of edges within
the community and such fraction expected in a random-
ized graph with the same number of nodes and the same
degree sequence. It is widely used as a measurement
of strength of the community structures detected by the
community detection algorithms. However, modularity
maximization has two opposite yet coexisting problems.

In some cases, it tends to split large communities into
two or more small communities [23], [24]. In other
cases, it tends to form large communities by merging
communities that are smaller than a certain threshold
which depends on the total number of edges in the
network and on the degree of inter-connectivity between
the communities. The latter problem is also known as the
resolution limit problem [23]–[25].

To solve these two issues of modularity, several com-
munity quality metrics were introduced, including Mod-
ularity Density (Qds) [23], [24] which simultaneously
avoids both of them. We then propose two novel fine-
tuned community detection algorithms that repeatedly
attempt to improve the quality measurements by split-
ting and merging the given community structure. We
denote the corresponding algorithm based on modulari-
ty (Q) as Fine-tuned Q while the one based on Modularity
Density (Qds) is referred to as Fine-tuned Qds. Finally,
we evaluate the greedy algorithm of modularity max-
imization (denoted as Greedy Q), Fine-tuned Q, and Fine-
tuned Qds by using seven community quality metrics
based on ground truth communities. These evaluations
are conducted on four real networks, and also on the
classical clique network and the LFR benchmark net-
works, each of which is instantiated by a wide range
of parameters. The results indicate that Fine-tuned Qds

is the most effective method and can also dramatically
improve the community detection results of other algo-
rithms. Further, all seven quality measurements based
on ground truth communities are consistent with Qds,
but not consistent with Q, which implies the superiority
of Modularity Density over the original modularity.

Bolek
Typewritten Text
IEEE Trans. Computation Social System, vol. 1(1):46-65, March 2014.

Bolek
Typewritten Text

Bolek
Typewritten Text

2

2 REVIEW OF MODULARITY RELATED LITER-
ATURE

In this section, we first review the definition of modu-
larity and the corresponding optimization approaches.
Then, we discuss the two opposite yet coexisting prob-
lems of modularity maximization. Finally, we overview
several community quality measurements proposed to
solve the resolution limit problem and then discuss
Modularity Density (Qds) [23], [24] which simultaneously
avoids these two problems.

2.1 Definition of Modularity

Comparing results of different network partitioning al-
gorithms can be challenging, especially when network
structure is not known beforehand. A concept of modu-
larity defined in [1] provides a measure of the quality
of a particular partitioning of a network. Modularity
(Q) quantifies the community strength by comparing
the fraction of edges within the community with such
fraction when random connections between the nodes
are made. The justification is that a community should
have more links between themselves than a random
gathering of people. Thus, the Q value close to 0 means
that the fraction of edges inside communities is no better
than the random case, and the value of 1 means that a
network community structure has the highest possible
strength.

Formally, modularity (Q) can be defined as [1]:

Q =
∑
ci∈C

∣∣Ein
ci

∣∣
|E|

−

(
2
∣∣Ein

ci

∣∣+ ∣∣Eout
ci

∣∣
2 |E|

)2
 , (1)

where C is the set of all the communities, ci is a specific
community in C,

∣∣Ein
ci

∣∣ is the number of edges between
nodes within community ci,

∣∣Eout
ci

∣∣ is the number of
edges from the nodes in community ci to the nodes
outside ci, and |E| is the total number of edges in the
network.

Modularity can also be expressed in the following
form [3]:

Q =
1

2|E|
∑
ij

[
Aij −

kikj
2|E|

]
δci,cj , (2)

where ki is the degree of node i, Aij is an element of the
adjacency matrix, δci,cj is the Kronecker delta symbol,
and ci is the label of the community to which node i is
assigned.

Since larger Q means a stronger community structure,
several algorithms which we will discuss in the next
section, are based on modularity optimization.

The modularity measure defined above is suitable only
for undirected and unweighted networks. However, this
definition can be naturally extended to apply to directed
networks as well as to weighted networks. Weighted
and directed networks contain more information than
undirected and unweighted ones and are therefore often

viewed as more valuable but also as more difficult to
analyze than their simpler counterparts.

The revised definition of modularity that works for
directed networks is as follows [4]:

Q =
1

|E|
∑
ij

[
Aij −

kini koutj

|E|

]
δci,cj , (3)

where kini and koutj are the in- and out- degrees.
Although many networks can be regarded as binary,

i.e. as either having an edge between a pair of nodes or
not having it, there are many other networks for which
it would be natural to treat edges as having a certain
degree of strength or weight.

The same general techniques that have been develope-
d for unweighted networks are applied to its weighted
counterparts in [5] by mapping weighted networks onto
multigraphs. For non-negative integer weights, an edge
with weight w in a weighted graph corresponds to w
parallel edges in a corresponding multigraph. Although
negative weights can arise in some applications they
are rarely useful in social networks, so for the sake of
brevity we will not discuss them here. It turns out that
an adjacency matrix of a weighted graph is equivalent
to that of a multigraph with unweighted edges. Since
the structure of adjacency matrix is independent of the
edge weights, it is possible to adjust all the methods
developed for unweighted networks to the weighted
ones.

It is necessary to point out that the notion of degree of
a node should also be extended for the weighted graphs.
In this case degree of a node is defined as the sum of
weights of all edges incident to this node.

It is shown in [5] that the same definitions of modulari-
ty that were given above hold for the weighted networks
as well if we treat Aij as the value that represents weight
of the connection and set |E| = 1

2

∑
ij

Aij .

2.2 Modularity Optimization Approaches

In the literature, a high value of modularity (Q) in-
dicates a good community structure and the partition
corresponding to the maximum value of modularity on
a given graph is supposed to have the highest quality,
or at least a very good one. Therefore, it is natural to
discover communities by maximizing modularity over
all possible partitions of a network. However, it is
computationally prohibitively expensive to exhaustively
search all such partitions for the optimal value of modu-
larity since modularity optimization is known to be NP-
hard [26]. However, many heuristic methods were intro-
duced to find high-modularity partitions in a reasonable
time. Those approaches include greedy algorithms [6]–
[9], spectral methods [3], [10]–[15], extremal optimization
[16], simulated annealing [17]–[20], sampling technique
[21], and mathematical programming [22]. In this section,
we will review those modularity optimization heuristics.

3

2.2.1 Greedy Algorithms
The first greedy algorithm was proposed by Newman
[6]. It is a agglomerative hierarchical clustering method.
Initially, every node belongs to its own community,
creating altogether |V | communities. Then, at each step,
the algorithm repeatedly merges pairs of communities
together and chooses the merger for which the resulting
modularity is the largest. The change in Q upon joining
two communities ci and cj is

∆Qci,cj = 2

(|Eci,cj |
2|E|

−
|Eci ||Ecj |
4|E|2

)
, (4)

where |Eci,cj | is the number of edges from community
ci to community cj and |Eci | = 2|Ein

ci | + |Eout
ci | is the

total degrees of nodes in community ci. ∆Qci,cj can be
calculated in constant time. The algorithm stops when
all the nodes in the network are in a single commu-
nity after (|V | − 1) steps of merging. Then, there are
totally |V | partitions, the first one defined by the initial
step and each subsequent one resulting from each of
the subsequent (|V | − 1) merging steps. The partition
with the largest value of modularity, approximating the
modularity maximum best, is the result of the algorithm.
At each merging step, the algorithm needs to compute
the change ∆Qci,cj of modularity resulting from joining
any two currently existing communities ci and cj in
order to choose the best merger. Since merging two
disconnected communities will not increase the value of
modularity, the algorithm checks only the merging of
connected pairs of communities and the number of such
pairs is at most |E| limiting the complexity of this part
to O(|E|). However, the rows and columns of adjacent
matrix corresponding to the two merged communities
must be updated, which takes O(|V |). Since there are
(|V |−1) iterations, the final complexity of the algorithm
is O((|E|+ |V |)|V |), or O(|V |2) for sparse networks.

Although Newman’s algorithm [6] is much faster
than the algorithm of Newman and Girvan [1] whose
complexity is O(|E|2|V |), Clauset et al. [7] pointed out
that the update of the adjacent matrix at each step
contains a large number of unnecessary operations when
the network is sparse and therefore its matrix has a
lot of zero entries. They introduced data structures for
sparse matrices to perform the updating operation more
efficiently. In their algorithm, instead of maintaining the
adjacent matrix and computing ∆Qci,cj , they maintained
and updated the matrix with entries being ∆Qci,cj for
the pairs of connected communities ci and cj . The au-
thors introduced three data structures to represent sparse
matrices efficiently: (1) each row of the matrix is stored
as a balanced binary tree in order to search and insert
elements in O(log|V |) time and also as a max-heap so as
to locate the largest element of each row in constant time;
(2) another max-heap stores the largest element of each
row of the matrix so as to locate the largest ∆Qci,cj in
constant time; (3) a vector is used to save |Eci | for each
community ci. Then, in each step, the largest ∆Qci,cj

can be found in constant time and the update of the

adjacent matrix after merging two communities ci and
cj takes O((kci + kcj)log|V |), where kci and kcj are the
numbers of neighboring communities of communities ci
and cj , respectively. Thus, the total running time is at
most O(log|V |) times the sum of the degrees of nodes
in the communities along the dendrogram created by
merging steps. This sum is in the worst case the depth of
the dendrogram times the sum of the degrees of nodes in
the network. Suppose the dendrogram has depth d, then
the running time is O(d|E|log|V |), or O(|V |log2|V |) when
the network is sparse and the dendrogram is almost
balanced (d ∼ log|V |).

However, Wakita and Tsurumi [8] observed that the
greedy algorithm proposed by Clauset et al. is not scal-
able to networks with sizes larger than 500, 000 nodes.
They found that the computational inefficiency arises
from merging communities in an unbalanced manner,
which yields very unbalanced dendrograms. In such
cases, the relation d ∼ log|V | does not hold any more,
causing the algorithm to run at its worst-case complexity.
To balance the merging of communities, the authors in-
troduced three types of consolidation ratios to measure the
balance of the community pairs and used it with mod-
ularity to perform the joining process of communities
without bias. This modification enables the algorithm to
scale to networks with sizes up to 10, 000, 000. It also
approximates the modularity maximum better than the
original algorithm.

Another type of greedy modularity optimization al-
gorithm different from those above was proposed by
Blondel et al., and it is usually referred to as Louvain [9].
It is divided into two phases that are repeated iteratively.
Initially, every node belongs to the community of itself,
so there are |V | communities. In this first phase, every
node, in a certain order, is considered for merging into
its neighboring communities and the merger with the
largest positive gain is selected. If all possible gains
associated with the merging of this node are negative,
then it stays in its original community. This merging
procedure repeats iteratively and stops when no increase
of Q can be achieved.

After the first phase, Louvain reaches a local maxi-
mum of Q. Then, the second phase of Louvain builds a
community network based on the communities discov-
ered in the first phase. The nodes in the new network are
the communities from the first phase and there is a edge
between two new nodes if there are edges between nodes
in the corresponding two communities. The weights of
those edges are the sum of the weights of the edges
between nodes in the corresponding two communities.
The edges between nodes of the same community of the
first phase result in a self-loop for this community node
in the new network. After the community network is
generated, the algorithm applies the first phase again on
this new network. The two phases repeat iteratively and
stop when there is no more change and consequently
a maximum modularity is obtained. The number of
iterations of this algorithm is usually very small and

4

most of computational time is spent in the first iteration.
Thus, the complexity of the algorithm grows like O(|E|).
Consequently, it is scalable to large networks with the
number of nodes up to a billion. However, the results of
Louvain are impacted by the order in which the nodes
in the first phase are considered for merging [27].

2.2.2 Spectral Methods

There are two categories of spectral algorithms for max-
imizing modularity: one is based on the modularity
matrix [3], [10], [11]; the other is based on the Laplacian
matrix of a network [12]–[14].

A. Modularity optimization using the eigenvalues
and eigenvectors of the modularity matrix [3], [10], [11].

Modularity (Q) can be expressed as [3]

Q =
1

4|E|
∑
ij

(
Aij −

kikj
2|E|

)
(sisj + 1)

=
1

4|E|
∑
ij

(
Aij −

kikj
2|E|

)
sisj =

1

4|E|
sTBs,

(5)

where Aij are the elements of adjacent matrix A and
s is the column vector representing any division of the
network into two groups. Its elements are defined as
si = +1 if node i belongs to the first group and si = −1
if it belongs to the second group. B is the modularity
matrix with elements

Bij = Aij −
kikj
2|E|

. (6)

Representing s as a linear combination of the normalized
eigenvectors ui of B: s =

∑|V |
i=1 aiui with ai = uT

i · s,
and then plugging the result into Equation (5) yield

Q =
1

4|E|
∑
i

aiu
T
i B

∑
j

ajuj =
1

4|E|
∑
i

a2iβi, (7)

where βi is the eigenvalue of B corresponding to eigen-
vector ui. To maximize Q above, Newman [3] pro-
posed a spectral approach to choose s proportional to
the leading eigenvector u1 corresponding to the largest
(most positive) eigenvalue β1. The choice assumes that
the eigenvalues are labeled in decreasing order β1 ≥
β2 ≥ ... ≥ β|V |. Nodes are then divided into two
communities according to the signs of the elements in
s with nodes corresponding to positive elements in
s assigned to one group and all remaining nodes to
another. Since the row and column sums of B are zero,
it always has an eigenvector (1, 1, 1, ...) with eigenvalue
zero. Therefore, if it has no positive eigenvalue, then the
leading eigenvector is (1, 1, 1, ...), which means that the
network is indivisible. Moreover, Newman [3] proposed
to divide network into more than two communities by
repeatedly dividing each of the communities obtained so
far into two until the additional contribution ∆Q to the

modularity made by the subdivision of a community c

∆Q =
1

2|E|

1
2

∑
i,j∈c

Bij(sisj + 1)−
∑
i,j∈c

Bij


=

1

4|E|
sTB(c)s

(8)

is equal to or less than 0. B(c) in the formula above is
the generalized modularity matrix. Its elements, indexed
by the labels i and j of nodes within community c, are

B
(c)
ij = Bij − δij

∑
k∈c

Bik. (9)

Then, the same spectral method can be applied to B(c) to
maximize ∆Q. The recursive subdivision process stops
when ∆Q ≤ 0, which means that there is no positive
eigenvalue of the matrix B(c). The overall complexity of
this algorithm is O((|E|+ |V |)|V |).

However, the spectral algorithm described above has
two drawbacks. First, it divides a network into more
than two communities by repeated division instead of
getting all the communities directly in a single step.
Second, it only uses the leading eigenvector of the
modularity matrix and ignores all the others, losing all
the useful information contained in those eigenvectors.
Newman later proposed to divide a network into a set
of communities C with |C| ≥ 2 directly using multiple
leading eigenvectors [10]. Let S = (sc) be an |V | × |C|
“community-assignment” matrix with one column for
each community c defined as

Si,c =

{
1 if node i belongs to community c,

0 otherwise.
(10)

then the modularity (Q) for this direct division of the
network is given by

Q =
1

2|E|

|V |∑
i,j=1

∑
c∈C

BijSi,cSj,c =
1

2|E|
Tr(STBS), (11)

where Tr(STBS) is the trace of matrix STBS. Defining
B = UΣUT , where U = (u1,u2, ...) is the matrix
of eigenvectors of B and Σ is the diagonal matrix of
eigenvalues Σii = βi, yields

Q =
1

2|E|

|V |∑
i=1

∑
c∈C

βi(u
T
i sc)

2. (12)

Then, obtaining |C| communities is equivalent to select-
ing |C| − 1 independent, mutually orthogonal columns
sc. Moreover, Q would be maximized by choosing the
columns sc proportional to the leading eigenvectors of
B. However, only the eigenvectors corresponding to
the positive eigenvalues will contribute positively to the
modularity. Thus, the number of positive eigenvalues,
plus 1, is the upper bound of |C|. More general modu-
larity maximization is to keep the leading p (1 ≤ p ≤ |V |)

5

eigenvectors. Q can be rewritten as

Q =
1

2|E|
(
|V |α+ Tr[STU(Σ− αI)UTS]

)
=

1

2|E|

|V |α+

|V |∑
j=1

∑
c∈C

(βj − α)

 |V |∑
i=1

UijSi,c

2
 ,

(13)

where α (α ≤ βp) is a constant related to the approx-
imation for Q obtained by only adopting the first p
leading eigenvectors. By selecting |V | node vectors ri
of dimension p whose jth component is

[ri]j =
√
βj − αUij , (14)

modularity can be approximated as

Q ≃ Q̃ =
1

2|E|

(
|V |α+

∑
c∈C

|Rc|2
)
, (15)

where Rc, c ∈ C, are the community vectors

Rc =
∑
i∈c

ri. (16)

Thus, the community detection problem is equivalent to
choosing such a division of nodes into |C| groups that
maximizes the magnitudes of the community vectors Rc

while requiring that Rc · ri > 0 if node i is assigned
to community c. Problems of this type are called vector
partitioning problems.

Although [10] explored using multiple leading eigen-
vectors of the modularity matrix, it did not pursue it
in detail beyond a two-eigenvector approach for bi-
partitioning [3], [10]. Richardson et al. [11] provided
a extension of these recursive bipartitioning methods
by considering the best two-way or three-way division
at each recursive step to more thoroughly explore the
promising partitions. To reduce the number of partitions
considered for the eigenvector-pair tripartitioning, the
authors adopted a divide-and-conquer method and as a
result yielded an efficient approach whose computation-
al complexity is competitive with the two-eigenvector
bipartitioning method.

B. Modularity optimization using the eigenvalues
and eigenvectors of the Laplacian matrix [12]–[14].

Given a partition C (a set of communities) and the cor-
responding “community-assignment” matrix S = (sc),
White and Smyth [12] rewrote modularity (Q) as follows:

Q ∝ Tr(ST (W − D̃)S) = −Tr(STLQS), (17)

where W = 2|E|A and the elements of D̃ are D̃ij = kikj .
The matrix LQ = D̃ − W is called the “Q-Laplacian”.
Finding the “community-assignment” matrix S that
maximizes Q above is NP-complete, but a good approx-
imation can be obtained by relaxing the discreteness
constraints of the elements of S and allowing them
to assume real values. Then, Q becomes a continuous
function of S and its extremes can be found by equating

its first derivative with respect to S to zero. This leads
to the eigenvalue equation:

LQS = SΛ, (18)

where Λ is the diagonal matrix of Lagrangian multi-
pliers. Thus, the modularity optimization problem is
transformed into the standard spectral graph partition-
ing problem. When the network is not too small, LQ

can be approximated well, up to constant factors, by the
transition matrix W̃ = D−1A obtained by normalizing
A so that all rows sum to one. D here is the diagonal
degree matrix of A. It can be shown that the eigenvalues
and eigenvectors of W̃ are precisely 1− λ and µ, where
λ and µ are the solutions to the generalized eigenvalue
problem Lµ = λDµ where L = D − A is the Laplacian
matrix. Thus, the underlying spectral algorithm here is
equivalent to the standard spectral graph partitioning
problem which uses the eigenvalues and eigenvectors of
the Laplacian matrix.

Based on the above analysis, White and Smyth pro-
posed two clustering algorithms, named “Algorithm
Spectral-1” and “Algorithm Spectral-2”, to search for a
partition C with size up to K predefined by an input
parameter. Both algorithms take the eigenvector matrix
UK = (u1,u2, ...,uK−1) with the leading K − 1 eigen-
vectors (excluding the trivial all-ones eigenvector) of the
transition matrix W̃ as input. Those K − 1 eigenvectors
can be efficiently computed with the Implicitly Restarted
Lanczos Method (IRLM) [28]. “Algorithm Spectral-1”
uses the first k− 1 (2 ≤ k ≤ K) columns of UK , denoted
as Uk−1, and clusters the row vectors of Uk−1 using k-
means to find a k-way partition, denoted as Ck. Then,
the Ck∗ with size k∗ that achieves the largest value of Q
is the final community structure.

“Algorithm Spectral-2” starts with a single community
(k = 1) and recursively splits each community c into two
smaller ones if the subdivision produces a higher value
of Q. The split is done by running k-means with two
clusters on the matrix Uk,c formed from Uk by keeping
only rows corresponding to nodes in c. The recursive
procedure stops when no more splits are possible or
when k = K communities have been found and then
the final community structure with the highest value of
Q is the detection result.

However, the two algorithms described above, es-
pecially “Algorithm Spectral-1”, scale poorly to large
networks because of running k-means partitioning up to
K times. Both approaches have a worst-case complexity
O(K2|V | + K|E|). In order to speed up the calculation
while retaining effectiveness in approximating the max-
imum of Q, Ruan and Zhang [13] proposed the Kcut
algorithm which recursively partitions the network to
optimize Q. At each recursive step, Kcut adopts a k-way
partition (k = 2, 3, ..., l) to the subnetwork induced by the
nodes and edges in each community using “Algorithm
Spectral-1” of White and Smyth [12]. Then, it selects the
k that achieves the highest Q. Empirically, Kcut with

6

l as small as 3 or 4 can significantly improve Q over
the standard bi-partitioning method and it also reduces
the computational cost to O((|V |+ |E|)log|C|) for a final
partition with |C| communities.

Ruan and Zhang later [14] proposed QCUT algorithm
that combines Kcut and local search to optimize Q.
The QCUT algorithm consists of two alternating stages:
partitioning and refinement. In the partitioning stage,
Kcut is used to recursively partition the network until
Q cannot be further improved. In the refinement stage,
a local search strategy repeatedly considers two opera-
tions. The first one is migration that moves a node from
its current community to another one and the second
one is the merge of two communities into one. Both
are applied to improve Q as much as possible. The
partitioning stage and refinement stage are alternating
until Q cannot be increased further. In order to solve
the resolution limit problem of modularity, the authors
proposed HQUCT which recursively applies QCUT to
divide the subnetwork, generated with the nodes and
edges in each community, into subcommunities. Further,
to avoid overpartitioning, they use a statistical test to
determine whether a community indeed has intrinsic
subcommunities.

C. Equivalence of two categories of spectral algo-
rithms for maximizing modularity [15].

Newman [15] showed that with hyperellipsoid relax-
ation, the spectral modularity maximization method us-
ing the eigenvalues and eigenvectors of the modularity
matrix can be formulated as the spectral algorithm that
relies on the eigenvalues and eigenvectors of Laplacian
matrix. This formulation indicates that the above two
kinds of modularity optimization approaches are equiv-
alent. Starting with Equation (5) for the division of a
network into two groups, first the discreteness of si is
relaxed onto a hyperellipsoid with the constraint∑

i

kis
2
i = 2|E|. (19)

Then, the relaxed modularity maximization problem can
be easily solved by setting the first derivative of Equa-
tion (5) with respect to si to zero. This leads to∑

j

Bijsj = λkisi, (20)

or in matrix notation

Bs = λDs, (21)

where λ is the eigenvalue. Plugging Equation (20) into
Equation (5) yields

Q =
1

4|E|
∑
ij

Bijsisj =
λ

4|E|
∑
i

kis
2
i =

λ

2
. (22)

Therefore, to achieve the highest value of Q, one should
chose λ to be the largest (most positive) eigenvalue of
Equation (21). Using Equation (6), Equation (20) can be

rewritten as∑
j

Aijsj = ki(λsi +
1

2|E|
∑
j

kjsj), (23)

or in matrix notion as

As = D

(
λs+

kTs

2|E|
1

)
, (24)

where k is the vector with element ki and 1 = (1, 1, 1, ...).
Then, multiplying the above equation by 1T results in
λkTs = 0. If there is a nontrivial eigenvalue λ > 0, then
the above equation simplifies to

As = λDs. (25)

Again, λ should be the most positive eigenvalue. How-
ever, the eigenvector corresponding to this eigenvalue
is the uniform vector 1 which fails to satisfy kTs = 0.
Thus, in this case, one can do the best by choosing λ
to be the second largest eigenvalue and having s pro-
portional to the corresponding eigenvector. In fact, this
eigenvector is precisely equal to the leading eigenvector
of Equation (21). Then, after defining a rescaled vector
u = D1/2s and plugging it into Equation (25), we get

(D−1/2AD−1/2)u = λu. (26)

The matrix L = D−1/2AD−1/2 is called the normalized
Laplacian matrix. (The normalized Laplacian is some-
times defined as L = I −D−1/2AD−1/2, but those two
differ only by a trivial transformation of their eigenval-
ues and eigenvectors.)

2.2.3 Extremal Optimization
Duch and Arenas [16] proposed a modularity opti-
mization algorithm based on the Extremal Optimization
(EO) [29]. EO optimizes a global variable by improving
extremal local variables. Here, the global variable is
modularity (Q). The contribution of an individual node
i to Q of the whole network with a certain community
structure is given by

qi = ki,c − ki
|Ec|
2|E|

, (27)

where ki,c is the number of edges that connect node
i to the nodes in its own community c. Notice that
Q = 1

2|E|
∑

i qi and qi can be normalized into the interval
[−1, 1] by diving it by ki

λi =
qi
ki

=
ki,c
ki

− |Ec|
2|E|

, (28)

where λi, called fitness, is the relative contribution of
node i to Q. Then, the fitness of each node is adopted
as the local variable.

The algorithm starts by randomly splitting the net-
work into two partitions of equal number of nodes,
where communities are the connected components in
each partition. Then, at each iteration, it moves the
node with the lowest fitness from its own community to

7

another community. The shift changes the community
structure, so the fitness of many other nodes needs
to be recomputed. The process repeats until it can-
not increase Q. After that, it generates sub-community
networks by deleting the inter-community edges and
proceeds recursively on each sub-community network
until Q cannot be improved. Although the procedure
is deterministic when given the initialization, its final
result in fact depends on the initialization and it is likely
to get trapped in local maxima. Thus, a probabilistic
selection called τ -EO [29] in which nodes are ranked
according to their fitness and a node of rank r is selected
with the probability P (r) ∝ r−τ is used to improve the
result. The computational complexity of this algorithm
is O(|V |2log2|V |).

2.2.4 Simulated Annealing
Simulated annealing (SA) [30] is a probabilistic proce-
dure for the global optimization problem of locating a
good approximation to the global optimum of a given
function in a large search space. This technique was
adopted in [17]–[20] to maximize modularity (Q). The
initial point for all those approaches can be arbitrary
partitioning of nodes into communities, even including
|V | communities in which each node belongs to its own
community. At each iteration, a node i and a community
c are chosen randomly. This community could be a
currently existing community or an empty community
introduced to increase the number of communities. Then,
node i is moved from its original community to this new
community c, which would change Q by ∆Q. If ∆Q is
greater than zero, this update is accepted, otherwise it
is accepted with probability eβ∆Q where β in [17]–[19]
represents the inverse of temperature T and β in [20]
is the reciprocal of pseudo temperature τ . In addition
in [20], there is one more condition for the move of
a node when c is not empty, shifting node i to c is
considered only if there are some edges between node i
and the nodes in c. To improve the performance and
to avoid getting trapped in local minima, collective
movements which involve moving multiple nodes at a
time [19], [20], merging two communities [17]–[19], and
splitting a community [17]–[19] are employed. Splits can
be carried out in a number of different schemes. The
best performance is achieved by treating a community
as an isolated subnetwork and partitioning it into two
and then performing a nested SA on these partitions
[17], [18]. Those methods stop when no new update is
accepted within a fixed number of iterations.

2.2.5 Sampling Techniques
Sales-Pardo et al. [21] proposed a “box-clustering”
method to extract the hierarchical organization of net-
works. This approach consists of two steps: (1) esti-
mating the similarity, called “node affinity”, between
nodes and forming the node affinity matrix; (2) deriving
hierarchical community structure from the affinity ma-
trix. The affinity between two nodes is the probability

that they are classified into the same community in the
local maxima partitions of modularity. The set of local
maxima partitions, called Pmax, includes those partitions
for which neither the moving of a node from its original
community to another, nor the merging of two commu-
nities will increase the value of modularity. The sample
Pmax is found by performing the simulated annealing
based modularity optimization algorithm of Guimerá
and Amaral [17], [18]. More specifically, the algorithm
first randomly divides the nodes into communities and
then performs the hill-climbing search until a sample
with local maximum of modularity is reached. Then, the
affinity matrix is updated based on the obtained sample.

The sample generation procedure is repeated until the
affinity matrix has converged to its asymptotic value.
Empirically, the total number of samples needed is pro-
portional to the size of the network. Before proceeding
to the second step, the algorithm assesses whether the
network has a significant community structure or not.
It is done by computing the z-score of the average
modularity of the partitions in Pmax with respect to
the average modularity of the partitions with the local
modularity maxima of the equivalent ensemble of null
model networks. The equivalent null model is obtained
by randomly rewiring the edges of the original net-
work while retaining the degree sequence. Large z-score
indicates that the network has a meaningful internal
community structure. If the network indeed has a sig-
nificant community structure, the algorithm advances
to the second step to group nodes with large affinity
close to each other. The goal is to bring the form of
the affinity matrix as close as possible to block-diagonal
structure by minimizing the cost function representing
the average distance of matrix elements to the diagonal.
Then, the communities corresponds to the “best” set
of boxes obtained by least-squares fitting of the block-
diagonal structure to the affinity matrix. The procedure
described above can be recursively performed to sub-
networks induced by communities to identify the low
level structure of each community until no subnetwork
is found to have significant intrinsic structure.

2.2.6 Mathematical Programming
Agarwal and Kempe [22] formulated the modularity
maximization problem as a linear program and vector
program which have the advantage of providing a pos-
teriori performance guarantees. First, modularity maxi-
mization can be transformed into the integer program

Maximize
1

2|E|
∑
ij

Bij(1− xij)

subject to xik ≤ xij + xjk for all i, j, k
xij ∈ {0, 1} for all i, j,

(29)

where B is the modularity matrix and the objective
function is linear in the variable xij . When xij = 0, i and
j belong to the same community and xij = 1 indicates
that they are in different communities. The restriction

8

xik ≤ xij + xjk requires that i and k are in the same
community if and only if i, j, and k are in the same
community. Solving the above integer program is NP-
hard, but relaxing the last constraint that xij is a integer
from {0, 1} to allow xij be a real number in the interval
[0, 1] reduces the integer program to a linear program
which can be solved in polynomial time [31]. However,
the solution does not correspond to a partition when
any of xij is fractional. To get the communities from xij ,
a rounding step is needed. The value of xij is treated
as the distance between i and j and these distances
are used repeatedly to form communities of “nearby”
nodes. Moreover, optimizing modularity by dividing a
network into two communities can be considered as a
strict quadratic program

Maximize
1

4|E|
∑
ij

Bij(1 + sisj)

subject to s2i = 1 for all i,
(30)

where the objective function is the same as Equation (5)
defined by Newman [3]. Note that the constraint s2i = 1
ensures that si = ±1 which implies that node i belongs
either to the first or the second community. Quadratic
programming is NP-complete, but it could be relaxed to
a vector program by replacing each variable si with |V |-
dimensional vector s and replacing the scalar product
with the inner vector product. The solution to vector
program is one location per node on the surface of a |V |-
dimensional hypersphere. To obtain a bipartition from
these node locations, a rounding step is needed which
chooses any random (|V | − 1)-dimensional hyperplane
passing through the origin and uses this hyperplane
to cut the hypersphere into two halves and as a result
separate the node vectors into two parts. Multiple ran-
dom hyperplanes can be chosen and the one that gets
the community structure with the highest modularity
provides a solution. The same vector program is then re-
cursively applied to subnetworks generated with nodes
and edges in discovered communities to get hierarchical
communities until Q cannot be increased. Following
the linear program and vector program, Agarwal and
Kempe also adopted a post-processing step similar to
the local search strategy proposed by Newman [3] to
further improve the results.

2.3 Resolution limit
Since its inception, the modularity has been used exten-
sively as the measure of the quality of partitions pro-
duced by community detection algorithms. In fact, if we
adopt modularity as a quality measure of communities,
the task of discovering communities is essentially turned
into the task of finding the network partitioning with an
optimal value of modularity.

However as properties of the modularity were stud-
ied, it was discovered that in some cases it fails to detect
small communities. There is a certain threshold [25],
such that a community of the size below it will not be

detected even if it is a complete subgraph connected to
the rest of the graph with a single edge. This property
of modularity has become known as the resolution limit.

Although the resolution limit prevents detection of
small communities, the actual value of the threshold
depends on the total number of edges in the network
and on the degree of interconnectedness between com-
munities. In fact, the resolution limit can reach the values
comparable to the size of the entire network causing
formation of a few giant communities (or even a single
community) and failing to detect smaller communities
within them. It makes interpreting the results of com-
munity detection very difficult because it is impossible
to tell beforehand whether a community is well-formed
or if it can be further split into subcommunities.

Considering modularity as a function of the total num-
ber of edges, |E|, and the number of communities, m,
makes it possible to find the values of m and |E| which
maximize this function. It turns out that setting m =√

|E| yields the absolute maximal value of modularity.
Consequently, modularity has a resolution limit of order√

|E| which bounds the number and size of communities
[25]. In fact, if for a certain community the number of

edges inside it is smaller than
√

|E|
2 , such community

cannot be resolved through the modularity optimization.
It is also possible for modularity optimization to fail
to detect communities of larger size if they have more
edges in common with the rest of the network. Therefore,
by finding the optimal value of the modularity we are
generally not obtaining the best possible structure of
communities.

The above arguments can also be applied to weighted
networks. In this case, |E| is the sum of the weights of all
the edges in the network, |Ein

ci | is the sum of the weights
of the edges between nodes within community ci, and
|Eout

ci | is the sum of the weights of the edges from the
nodes in community ci to the nodes outside ci.

By introducing an additional parameter, ϵ, which rep-
resents the weight of inter-community edges, Berry et al.
showed in [32] that the number of communities in the
optimal solution is

m =

√
|E|
ϵ
. (31)

Correspondingly, any community for which its size

|ci| <
√

|E|ϵ
2

− ϵ (32)

may not be resolved.
Introduction of ϵ brings some interesting opportuni-

ties. If we can make ϵ arbitrarily small, then we can
expect maximum weighted modularity to produce any
desired number of communities. In other words, given
a proper weighting, a much better modularity resolu-
tion can be achieved than without weighting. Howev-
er, in practice, finding a way to set edge weights to

9

achieve small values of ϵ can be challenging. An algo-
rithm for lowering ϵ proposed by Berry et al. requires
O(m|V | log |V |) time.

2.4 Resolving the resolution limit problem
There have been extensive studies done on how to miti-
gate the consequences of the modularity resolution limit.
The main approaches followed are described below.

Localized modularity measure (LQ) [33] is based on
the observation that the resolution limit problem is
caused by modularity being a global measure since it as-
sumes that edges between any pairs of nodes are equally
likely, including connectivity between the communities.
However, in many networks, the majority of commu-
nities have edges to only a few other communities, i.e.
exhibit a local community connectivity.

Thus, a local version of the modularity measure for a
directed network is defined as:

LQ =
∑
ci∈C

 ∣∣Ein
ci

∣∣∣∣∣Eneighb
ci

∣∣∣ −
∣∣Ein

ci

∣∣+ ∣∣Eout
ci

∣∣∣∣∣Eneighb
ci

∣∣∣
2
 , (33)

where
∣∣Eneighb

ci

∣∣ is the total number of edges in the
neighboring communities of ci, i.e. in the communities
to which all neighbors of ci belong.

Unlike traditional modularity (Q), the local version of
modularity (LQ) is not bounded above by 1. The more
locally connected communities a network has, the bigger
its LQ can grow. In a network where all communities
are connected to each other, LQ yields the same value
as Q. LQ considers individual communities and their
neighbors, and therefore provides a measure of commu-
nity quality that is not dependent on other parts of the
network. The local connectivity approach can be applied
not only to the nearest neighboring communities, but
also to the second or higher neighbors as well.

Arenas et al. proposed a multiple resolution method
[34] which is based on the idea that it might be possible
to look at the detected community structure at different
scales. From this perspective, the modularity resolution
limit is not a problem but a feature. It allows choosing a
desired resolution level to achieve the required granular-
ity of the output community structure using the original
definition of modularity.

The multiple resolution method is based on the defini-
tion of modularity given by Equation (1). The modular-
ity resolution limit depends on the total weight 2 |E|.
By varying the total weight, it is possible to control
the resolution limit, effectively performing community
detection at different granularity levels. Changing the
sum of weights of edges adjacent to every node by
some value r results in rescaling topology by a factor
of r. Since the resolution limit is proportional to

√
r, the

growth of the resolution limit is slower than that of r.
Consequently, it would be possible to achieve a scale at
which all required communities would be visible to the
modularity optimization problem.

Caution should be exercised when altering the weights
of edges in the network to avoid changing its topolog-
ical characteristics. To ensure this, a rescaled adjacency
matrix can be defined as:

Ar = A+ rI, (34)

where A is the adjacency matrix and I is the identity ma-
trix. Since the original edge weights are not altered, Ar

preserves all common features of the network: distribu-
tion of sum of weights, weighted clustering coefficient,
eigenvectors, etc. Essentially, introducing r results in a
self-loop of weight r being added to every node in the
network.

Optimizing the modularity for the rescaled topology
Ar is performed by using the modularity at scale r as
the new quality function:

Qr =
∑
ci∈C

[
2
∣∣Ein

ci

∣∣+ r |ci|
2 |E|+ r |V |

−
(
|Eci |+ r |ci|
2 |E|+ r |V |

)2
]
, (35)

where |ci| is the number of nodes in community ci and
|Eci | = 2|Ein

ci | + |Eout
ci |. It yields larger communities for

smaller values of r and smaller communities for larger
values of r. By performing modularity optimization
for different values of r, it is possible to analyze the
community structure at different scales.

Parameter r can also be thought of as representing
resistance of a node to become part of a community.
If r is positive, we can obtain a network community
structure that is more granular than what was possible
to achieve with the original definition of modularity (Q)
which corresponds to r being zero. Making r negative
zooms out of the network and provides a view of super
communities.

Further studies of the multiple resolution approach
revealed that it suffers from two major issues outlined
in [35]. First, when the value of the resolution parameter
r is low it tends to group together small communi-
ties. Second, when the resolution is high, it splits large
communities. These trends are opposite for networks
with a large variation of community sizes. Hence, it is
impossible to select a value of the resolution parameter
such that neither smaller nor larger communities are
adversely affected by the resolution limit. A network can
be tested for susceptibility to the resolution problem by
examining its clustering coefficient, i.e. a degree to which
nodes tend to form communities. If the clustering coeffi-
cient has sharp changes, it indicates that communities of
substantially different scales exist in this network. The
result is that when the value of r is sufficiently large,
bigger communities get broken up before smaller com-
munities are found. This applies also to other multiple
resolution methods and seems to be a general problem
of the methods that are trying to optimize some global
measure.

The hierarchical multiresolution method proposed by
Granell et al. in [36] overcomes the limitations of the

10

multiple resolution method on networks with very dif-
ferent scales of communities. It achieves that by intro-
ducing a new hierarchical multiresolution scheme that
works even in cases of community detection near the
modularity resolution limit. The main idea underlying
this method is based on performing multiple resolution
community detection on essential parts of the network,
thus analyzing each part independently.

The method operates iteratively by first placing all
nodes in a singe community. Then, it finds the minimum
value of the resistance parameter r which produces a
community structure with the optimal value of modu-
larity. Finally, it runs the same algorithm on each com-
munity that was found. The method terminates when no
more split of communities is necessary, which usually
takes just a few steps.

Another approach to leveraging the results of modu-
larity optimization has been introduced by Chakraborty
et al. in [27]. It is based on the observation that a simple
change to the order of nodes in a network can significant-
ly affect the community structure. However, a closer ex-
amination of the communities produced in different runs
of a certain community detection algorithm reveals that
for many networks the same invariant groups of nodes
are consistently assigned to the same communities. Such
groups of nodes are called constant communities. The
percentage of constant communities varies depending
on the network. Constant communities are detected by
trying different node permutations while preserving the
degree sequence of the nodes. For networks that have
strong community structure, the constant communities
detected can be adopted as a pre-processing step before
performing modularity optimization. This can lead to
higher modularity values and lower variability in re-
sults, thus improving the overall quality of community
detection.

In the study [37] by Li, Zhang et al., a new quanti-
tative measure for community detection is introduced.
It offers several improvements over the modularity (Q),
including elimination of the resolution limit and ability
to detect the number of communities. The new measure
called modularity density (D) is based on the average
degree of the community structure. It is given by:

D =
∑
ci∈C

2
∣∣Ein

ci

∣∣− ∣∣Eout
ci

∣∣
|ci|

. (36)

The quality of the communities found is then described
by the value of the modularity density (D). The larger
the value of D, the stronger the community structure is.

The modularity density (D) does not divide a clique
into two parts, and it can resolve most modular networks
correctly. It can also detect communities of different
sizes. This second property can be used to quantitatively
determine the number of communities, since the maxi-
mum D value is achieved when the network is supposed
to correctly partitioned. Although as mentioned in [37]
finding an optimal value of modularity density (D) is

NP-hard, it is equivalent to an objective function of the
kernel k means clustering problem for which efficient
computational algorithms are known.

Traag et al. in [38] introduce a rigorous definition of
the resolution-limit-free method for which considering any
induced subgraph of the original graph does not cause
the detected community structure to change. In other
words, if there is an optimal partitioning of a network
(with respect to some objective function), and for each
subgraph induced by the partitioning it is also optimal,
then such objective function is called resolution-limit-
free. An objective function is called additive for a certain
partitioning if it is equal to the sum of the values of this
objective function for each of the subgraphs induced by
the partitioning.

Based on these two definitions it is proved that if an
objective function is additive and there are two optimal
partitions, then any combination of these partitions is
also optimal. In case of a complete graph, if an objective
function is resolution-limit-free, then an optimal parti-
tioning either contains all the nodes (i.e. there is only
one community which includes all nodes) or consists of
communities of size 1 (i.e. each node forms a community
of its own). A more general statement for arbitrary
objective functions is also true: if an objective function
has local weights (i.e. weights that do not change when
considering subgraphs) then it is resolution-limit-free.
Although the converse is not true, there is only a rela-
tively small number of special cases when methods with
non-local weights are resolution-limit-free.

The authors then analyze resolution-limit-free within the
framework of the first principle Potts model [39]:

H = −
∑
ij

(aijAij − bij (1−Aij)) δci,cj , (37)

where aij , bij ≥ 0 are some weights. The intuition behind
this formula is that a community should have more
edges inside it than edges which connect it to other
communities. Thus, it is necessary to reward existing
links inside a community and penalize links that are
missing from a community. The smaller the value of H is,
the more desirable the community structure is. However
the minimal value might not be unique.

Given the definition of H, it is possible to describe
various existing community detection methods with an
appropriate choice of parameters, as well as propose
alternative methods. The following models are shown
to fit into H: Reichardt and Bornholdt (RB), Arenas,
Fernándes, and Gómez (AFG), Ronhovde and Nussi-
nov (RN) as well as the label propagation method. RB
approach with a configuration null model also covers
the original definition of modularity. The authors also
propose a new method called constant Potts model
(CPM) by choosing aij = wij − bij and bij = γ where wij

is the weight of the edge between nodes i and j, and
γ is a constant. CPM is similar to RB and RN models
but is simpler and more intuitive. CPM and RN have

11

local weights and are consequently resolution-limit-free,
while RB, AFG, and modularity are not.

However, all of the above approaches are aimed at
solving only the resolution limit problem. Work done by
Chen et al. in [23], [24] adopts a different definition of
modularity density which simultaneously addresses two
problems of modularity. It is done by mixing two addi-
tional components, Split Penalty (SP) and the community
density, into the well-known definition of modularity.
Community density includes internal community densi-
ty and pair-wise community density. Split Penalty (SP)
is the fraction of edges that connect nodes of different
communities:

SP =
∑
ci∈C

∑
cj∈C
cj ̸=ci

|Eci,cj |
2|E|

 . (38)

The value of Split Penalty is subtracted from modularity,
while the value of the community density is added to
modularity and Split Penalty. Introducing Split Penal-
ty resolves the issue of favoring small communities.
Community density eliminates the problem of favoring
large communities (also known as the resolution limit
problem). The Modularity Density (Qds) is then given by:

Qds =
∑
ci∈C

[|Ein
ci |

|E|
dci −

(
2|Ein

ci |+ |Eout
ci |

2|E|
dci

)2

−
∑
cj∈C
cj ̸=ci

|Eci,cj |
2|E|

dci,cj

]
,

dci =
2|Ein

ci |
|ci|(|ci| − 1)

,

dci,cj =
|Eci,cj |
|ci||cj |

.

(39)

where dci is the internal density of community ci, dci,cj
is the pair-wise density between community ci and
community cj .

Modularity Density (Qds) avoids falling into the trap
of merging two or more consecutive cliques in the ring
of cliques network or dividing a clique into two or
more parts. It can also discover communities of different
sizes. Thus, using Qds solves both the resolution limit
problem of modularity and the problem of splitting
larger communities into smaller ones. Hence, Qds is an
very effective alternative to Q.

3 FINE-TUNED ALGORITHM

In our previous papers [23], [24], we have given the
definition of Modularity Density (Qds). With formal proofs
and experiments on two real dynamic datasets (Senate
dataset [40] and Reality Mining Bluetooth Scan data [41])
we demonstrated that Qds solves the two opposite yet
coexisting problems of modularity: the problem of favor-
ing small communities and the problem of favoring large
communities (also called the resolution limit problem).

Fig. 1. A simple network with two clique communities.
Each clique has four nodes and the two clique commu-
nities are connected to each other with one single edge.

Moreover, for a given community in Qds defined by
Equation (39), its internal and pair-wise densities and its
split penalty are local components, which is related to the
resolution-limit-free definition in [38]. Therefore, it is rea-
sonable to expect that maximizing Qds would discover
more meaningful community structure than maximizing
Q. In this section, we first illustrate why the greedy
agglomerative algorithm for increasing Qds cannot be
adopted for optimizing Qds. Then, we propose a fine-
tuned community detection algorithm that repeatedly at-
tempts to improve the community quality measurements
by splitting and merging the given network community
structure to maximize Qds.

3.1 Greedy Algorithm Fails to Optimize Qds

In this subsection, we show why the greedy agglomera-
tive algorithm increasing Qds fails to optimize it. At the
first step of the greedy algorithm for increasing Qds, each
node is treated as a single community. Then, Qds of each
node or community is Qds = −SP . Therefore, in order to
increase Qds the most, the greedy algorithm would first
merge the connected pair of nodes with the sum of their
degrees being the largest among all connected pairs.
However, it is very likely that those two nodes belong to
two different communities, which would finally result in
merging those two communities instead of keeping them
separate. This will result in a much lower value of Qds

for such a merged community compared to Qds for its
components, demonstrating the reason for greedy Qds

algorithm failure in optimizing Qds.
For example, in the network example in Figure 1, the

initial values of Qds for nodes 1, 2, 4, 6, 7, and 8 with
degree 3 are Qds = −SP = − 3

26 while the initial values
of Qds for nodes 3 and 5 with degree 4 are Qds = −SP =
− 4

26 . Then, greedy Qds algorithm would first merge node
3 and node 5, which would finally lead to a single
community of the whole eight nodes. However, the true
community structure contains two clique communities.
Accordingly, the Qds of the community structure with
two clique communities, 0.4183, is larger than that of the
community structure with one single large community,
0.2487. So, maximizing Qds properly should have the
ability to discover the true community structure.

12

3.2 Fine-tuned Algorithm

In this part, we describe a fine-tuned community de-
tection algorithm that iteratively improves a community
quality metric M by splitting and merging the given
network community structure. We denote the corre-
sponding algorithm based on modularity (Q) as Fine-
tuned Q and the one based on Modularity Density (Qds)
as Fine-tuned Qds. It consists of two alternating stages:
split stage and merging stage.

Algorithm 1 Split Communities(G, C)
1: Initialize comWeights[|C|][|C|], comEdges[|C|][|C|],

and comDensities[|C|][|C|] which respectively con-
tain #weights, #edges, and the density inside the
communities and between two communities by us-
ing the network G and the community list C;

2: //Get the metric value for each community.
3: Mes[|C|] = GetMetric(C,comWeights,comDensities);
4: for i = 0 to |C| − 1 do
5: c = C.get(i);
6: subnet = GenerateSubNetwork(c);
7: fiedlerVector[|c|] = LanczosMethod(subnet);
8: nodeIds[|c|] = sort(fiedlerVector, ’descend’);
9: //Form |c|+ 1 divisions and record the best one.

10: splitTwoCom.addAll(nodeIds);
11: for j = 0 to |c| − 1 do
12: splitOneCom.add(nodeIds[j]);
13: splitTwoCom.remove(nodeIds[j]);
14: Calculate M(split) for the split at j;
15: ∆M = M(split)−Mes[i];
16: if ∆M(best) < ∆M (or ∆M(best) > ∆M) then
17: ∆M(best) = ∆M ;
18: bestIdx = j;
19: end if
20: end for
21: if ∆M(best) > 0 (or ∆M(best) < 0) then
22: Clear splitOneCom and splitTwoCom;
23: splitOneCom.addAll(nodeIds[0:bestIdx]);
24: splitTwoCom.addAll(nodeIds[bestIdx+1:|c|−1);
25: newC.add(splitOneCom);
26: newC.add(splitTwoCom);
27: else
28: newC.add(c);
29: end if
30: end for
31: return newC

In the split stage, the algorithm will split a commu-
nity c into two subcommunities c1 and c2 based on
the ratio-cut method if the split improves the value of
the quality metric. The ratio-cut method [42] finds the
bisection that minimizes the ratio |Ec1,c2 |

|c1||c2| , where |Ec1,c2 |
is the cut size (namely, the number of edges between
communities c1 and c2), while |c1| and |c2| are sizes of
the two communities. This ratio penalizes situations in
which either of the two communities is small and thus
favors balanced divisions over unbalanced ones. How-

ever, graph partitioning based on the ratio-cut method
is a NP-complete problem. Thus, we approximate it by
using the Laplacian spectral bisection method for graph
partitioning introduced by Fiedler [43], [44].

First, we calculate the Fiedler vector which is the eigen-
vector of the network Laplacian matrix L = D − A
corresponding to the second smallest eigenvalue. Then,
we put the nodes corresponding to the positive values
of the Fiedler vector into one group and the nodes cor-
responding to the negative values into the other group.
The subnetwork of each community is generated with
the nodes and edges in that community. Although the
ratio-cut approximated with spectral bisection method
does allow some deviation for the sizes |c1| and |c2| to
vary around the middle value, the right partitioning may
not actually divide the community into two balanced or
nearly balanced ones. Thus, it is to some extent inappro-
priate and unrealistic for community detection problems.
We overcome this problem by using the following strate-
gies. First, we sort the elements of the Fiedler vector in
descending order, then cut them into two communities
in each of the |c| + 1 possible ways and calculate the
corresponding change of the metric values ∆M of all
the |c| + 1 divisions. Then, the one with the best value
(largest or smallest depending on the measurement)
of the quality metric ∆M(best) among all the |c| + 1
divisions is recorded. We adopt this best division to the
community c only when ∆M(best) > 0 (or ∆M(best) < 0
depending on the metric). For instance, we split the
community only when ∆Qds(best) is larger than zero.

The outline of the split stage is shown in Algorith-
m 1. The input is a network and a community list,
and the output is a list of communities after split-
ting. The initialization part has O(|E|) complexity. Com-
puting Fiedler vector using Lanczos method [28] needs
O(|E|Kh+ |V |K2h+K3h) steps, where K is the number
of eigenvectors needed and h is the number of iterations
required for the Lanczos method to converge. Here, K
is 2 and h is typically very small although the exact
number is not generally known. So, the complexity for
calculating Fiedler vector is O(|E|+|V |). Sorting the Fiedler
vector has the cost O(|V |log|V |). The search of the best
division from all the |c|+1 possible ones (per community
c) for all the communities is achieved in O(|E|) time.
For the |c|+1 possible divisions of a community c, each
one differs from the previous one by the movement of
just a single node from one group to the other. Thus,
the update of the total weights, the total number of
edges, and the densities inside those two split com-
munities and between those two communities to other
communities can be calculated in time proportional to
the degree of that node. Thus, all nodes can be moved
in time proportional to the sum of their degrees which is
equal to 2|E|. Moreover, for Fine-tuned Qds, computing
Qds(split) costs O(|C||V |) because all the communities
are traversed to update the Split Penalty for each of the
|c|+1 divisions of each community c. All the other parts
have complexity less than or at most O(|V |). Thus, the

13

computational complexity for the split stage of Fine-tuned
Q is O(|E| + |V |log|V |) while for Fine-tuned Qds it is
O(|E|+ |V |log|V |+ |C||V |).

Algorithm 2 Merge Communities(G, C)
1: Initialize comWeights[|C|][|C|], comEdges[|C|][|C|],

and comDensities[|C|][|C|];
2: //Get the metric value for each community.
3: Mes[|C|] = GetMetric(C,comWeights,comDensities);
4: for i = 0 to |C| − 1 do
5: for j = i+ 1 to |C| − 1 do
6: //Doesn’t consider disconnected communities.
7: if comWeights[i][j]==0 &&

comWeights[j][i]==0 then
8: continue;
9: end if

10: Calculate M(merge) for merging ci and cj ;
11: ∆M = M(merge)−Mes[i]−Mes[j];
12: //Record the merging information with |∆M |

descending in a red-black tree
13: if ∆M > 0 (or ∆M < 0) then
14: mergedInfos.put([|∆M |, i, j]);
15: end if
16: end for
17: end for
18: //Merge the community with the one that improves

the value of the quality metric the most
19: while mergedInfos.hasNext() do
20: [∆M , comId1, comId2]=mergedInfos.next();
21: if !mergedComs.containsKey(comId1) &&

!mergedComs.containsKey(comId2) then
22: mergedComs.put(comId1,comId2);
23: mergedComs.put(comId2,comId1);
24: end if
25: end while
26: for i = 0 to |C| − 1 do
27: ci=C.get(i);
28: if mergedComs.containsKey(i) then
29: comId2 = mergedComs.get(i);
30: if i < comId2 then
31: ci.addAll(C.get(comId2));
32: end if
33: end if
34: newC.add(ci);
35: end for
36: return newC;

In the merging stage, the algorithm will merge a
community to its connected communities if the merg-
ing improves the value of the quality metric. If there
are many mergers possible for a community, the one,
unmerged so far, which improves the quality metric
the most is chosen. Hence, each community will only
be merged at most once in each stage. The outline of
the merging stage is shown Algorithm 2. The input is
a network and a community list, and the output is a
list of communities after merging. The initialization part
has the complexity O(|E|). For Fine-tuned Q, the two

“for loops” for merging any two communities have the
complexity O(|C|2log|C|) because calculating Q(merge)
is O(1) and inserting an element into the red-black tree is
O(log|C|2) = O(2log|C|) ∼ O(log|C|) since the maximum
number of elements in the tree is |C|(|C|−1)

2 = O(|C|2).
For Fine-tuned Qds, the two “for loops” for merging any
two communities have the complexity O(|C|3) because
calculating Qds(merge) needs O(|C|) steps to traverse all
the communities to update the Split Penalty and inserting
an element into the red-black tree is O(log|C|) as well.
The other parts all have complexity at most O(|C|2).
Thus, the computational complexity for the merging
stage of Fine-tuned Q is O(|E| + |C|2log|C|) and for the
merging stage of Fine-tuned Qds is O(|E|+ |C|3).

Algorithm 3 Fine-tuned Algorithm(G, C)
1: comSize = |C|;
2: splitSize = 0;
3: mergeSize = 0;
4: while comSize!=splitSize ∥ comSize!=mergeSize do
5: comSize = |C|;
6: C = Split Communities(G, C);
7: splitSize = |C|;
8: C=Merge Communities(G, C);
9: mergeSize = |C|;

10: end while
11: return C

The fine-tuned algorithm repeatedly carries out those
two alternating stages until neither split nor merging can
improve the value of the quality metric or until the total
number of communities discovered does not change
after one full iteration. Algorithm 3 shows the outline
of the fine-tuned algorithm. It can detect the community
structure of a network by taking a list with a single
community of all the nodes in the network as the input.
It can also improve the community detection results of
other algorithms by taking a list with their communities
as the input. Let the number of iteration of the fine-tuned
algorithm be denoted as T . Then, the total complexity
for Fine-tuned Q is O(T (|E| + |V |log|V | + |C|2log|C|))
while for Fine-tuned Qds it is O(T (|E| + |V |log|V | +
|C||V | + |C|3)). Assuming that T and |C| are constants,
the complexity of the fine-tuned algorithms reduces to
O(|E| + |V |log|V |). The only part of the algorithm that
would generate a non-deterministic result is the Lanczos
method of calculating the Fiedler vector. The reason is that
Lanczos method adopts a randomly generated vector
as its starting vector. We solve this issue by choosing
a normalized vector of the size equal to the number of
nodes in the community as the starting vector for the
Lanczos method. Then, community detection results will
stay the same for different runs as long as the input
remains the same.

4 EXPERIMENTAL RESULTS
In this section, we first introduce several popular mea-
surements for evaluating the quality of the results of

14

community detection algorithms. Denoting the greedy
algorithm of modularity maximization proposed by
Newman [7] as Greedy Q, we then use the mentioned
above metrics to compare Greedy Q, Fine-tuned Q, and
Fine-tuned Qds. The comparison uses four real networks,
the classical clique network and the LFR benchmark
networks, each instance of which is defined with pa-
rameters each selected from a wide range of possible
values. The results indicate that Fine-tuned Qds is the
most effective method among the three, followed by
Fine-tuned Q. Moreover, we show that Fine-tuned Qds can
be applied to significantly improve the detection results
of other algorithms.

In Subsection 2.2.2, we have shown that the modu-
larity maximization approach using the eigenvectors of
the Laplacian matrix is equivalent to the one using the
eigenvectors of the modularity matrix. This implies that
the split stage of our Fine-tuned Q is actually equivalent
to the spectral methods. Therefore, Fine-tuned Q with one
additional merge operation at each iteration unquestion-
ably has better performance than the spectral algorithms.
Hence, we do not discuss them here.

4.1 Evaluation Metrics

The quality evaluation metrics we consider here can be
divided into three categories: Variation of Information (V I)
[45] and Normalized Mutual Information (NMI) [46] based
on information theory; F-measure [47] and Normalized Van
Dongen metric (NVD) [48] based on cluster matching;
Rand Index (RI) [49], Adjusted Rand Index (ARI) [50], and
Jaccard Index (JI) [51] based on pair counting.

4.1.1 Information Theory Based Metrics
Given partitions C and C ′, Variation of Information (V I)
[45] quantifies the “distance” between those two parti-
tions, while Normalized Mutual Information (NMI) [46]
measures the similarity between partitions C and C ′. V I
is defined as

V I(C,C ′) = H(C) +H(C ′)− 2I(C,C ′)

= H(C,C ′)− I(C,C ′),
(40)

where H(.) is the entropy function and I(C,C ′) =
H(C)+H(C ′)−H(C,C ′) is the Mutual Information. Then,
NMI is given by

NMI(C,C ′) =
2I(C,C ′)

H(C) +H(C ′)
. (41)

Using the definitions

H(C) = −
∑
ci∈C

p(ci) log p(ci) = −
∑
ci∈C

|ci|
|V |

log
|ci|
|V |

, (42)

H(C,C ′) = −
∑

ci∈C,c′
j
∈C′

p(ci, c
′
j) log p(ci, c

′
j)

= −
∑

ci∈C,c′
j
∈C′

|ci ∩ c′j |
|V |

log

(|ci ∩ c′j |
|V |

) (43)

we can express V I and NMI as a function of counts
only as follows:

V I(C,C ′) = − 1

|V |
∑

ci∈C,c′
j
∈C′

|ci ∩ c′j | log

(
|ci ∩ c′j |2

|ci||c′j |

)
,

(44)

NMI(C,C ′) =
−2
∑

ci∈C,c′
j
∈C′

|ci∩c′j |
|V | log

(
|ci∩c′j ||V |
|ci||c′j |

)
∑

ci∈C
|ci|
|V | log

|ci|
|V | +

∑
c′
j
∈C′

|c′
j
|

|V | log
|c′

j
|

|V |

,

(45)
where |ci| is the number of nodes in community ci of C
and |ci ∩ c′j | is the number of nodes both in community
ci of C and in community c′j of C ′.

4.1.2 Clustering Matching Based Metrics
Measurements based on clustering matching aim at find-
ing the largest overlaps between pairs of communities
of two partitions C and C ′. F-measure [47] measures
the similarity between two partitions, while Normalized
Van Dongen metric (NVD) [48] quantifies the “distance”
between partitions C and C ′. F-measure is defined as

F -measure(C,C ′) =
1

|V |
∑
ci∈C

|ci| max
c′
j
∈C′

2|ci ∩ c′j |
|ci|+ |c′j |

. (46)

NVD is given by

NVD(C,C ′) = 1− 1

2|V |

(∑
ci∈C

max
c′
j
∈C′

|ci ∩ c′j |

+
∑

c′
j
∈C′

max
ci∈C

|c′j ∩ ci|
)
.

(47)

4.1.3 Pair Counting Based Metrics
Metrics based on pair counting count the number of
pairs of nodes that are classified (in the same community
or in different communities) in two partitions C and C ′.
Let a11 indicate the number of pairs of nodes that are
in the same community in both partitions, a10 denote
the number of pairs of nodes that are in the same
community in partition C but in different communities
in C ′, a01 be the number of pairs of nodes which are in
different communities in C but in the same community
in C ′, a00 be the number of pairs of nodes which are in
different communities in both partitions. By definition,
A = a11+ a10+ a01+ a00 = |V |(|V |−1)

2 is the total number
of pairs of nodes in the network. Then, Rand Index (RI)
[49] which is the ratio of the number of node pairs placed
in the same way in both partitions to the total number
of pairs is given by

RI(C,C ′) =
a11 + a00

A
. (48)

Denote M = 1
A (a11 + a10)(a11 + a01). Then, RI’s corre-

sponding adjusted version, Adjusted Rand Index (ARI)
[50], is expressed as

ARI(C,C ′) =
a11 −M

1
2 [(a11 + a10) + (a11 + a01)]−M

. (49)

15

TABLE 1
Metric values of the community structures discovered by Greedy Q, Fine-tuned Q, and Fine-tuned Qds on Zachary’s

karate club network (red italic font denotes the best value for each metric).
Algorithm Q Qds V I NMI F -measure NV D RI ARI JI
Greedy Q 0.3807 0.1809 0.7677 0.6925 0.828 0.1471 0.8414 0.6803 0.6833

Fine-tuned Q 0.4198 0.2302 0.9078 0.6873 0.807 0.1618 0.7736 0.5414 0.5348
Fine-tuned Qds 0.4174 0.231 0.8729 0.6956 0.8275 0.1471 0.7861 0.5669 0.5604

��

(a) Ground truth communities. (b) Communities detected with Greedy Q.

(c) Communities detected with Fine-tuned Q. (d) Communities detected with Fine-tuned Qds.
Fig. 2. The community structures of the ground truth communities and those detected by Greedy Q, Fine-tuned Q,
and Fine-tuned Qds on Zachary’s karate club network.

The Jaccard Index (JI) [51] which is the ratio of the
number of node pairs placed in the same community
in both partitions to the number of node pairs that are
placed in the same group in at least one partition is
defined as

JI(C,C ′) =
a11

a11 + a10 + a01
. (50)

Each of these three metrics quantifies the similarity
between two partitions C and C ′.

4.2 Real Networks
In this subsection, we first evaluate the performance
of Greedy Q, Fine-tuned Q, and Fine-tuned Qds on two
small networks (Zachary’s karate club network [52] and
American college football network [53]) with ground
truth communities, and then on two large networks
(PGP network [54] and AS level Internet) but without
ground truth communities.

4.2.1 Zachary’s Karate Club Network
We first compare the performance of Greedy Q, Fine-
tuned Q, and Fine-tuned Qds on Zachary’s karate club
network [52]. It represents the friendships between 34

members of a karate club at a US university over a
period of 2 years. During the observation period, the
club split into two clubs as a result of a conflict within
the organization. The resulting two new clubs can be
treated as the ground truth communities whose structure
is shown in Figure 2(a) visualized with the opensource
software Gephi [55].

Table 1 presents the metric values of the communi-
ty structures detected by the three algorithms on this
network. It shows that Fine-tuned Q and Fine-tuned Qds

achieve the highest value of Q and Qds, respectively.
However, most of the seven metrics based on ground
truth communities imply that Greedy Q performs the best
with only NMI and NVD indicating that Fine-tuned Qds

has the best performance among the three algorithms.
Hence, it seems that a large Q or Qds may not necessary
mean a high quality of community structure, especially
for Q because Fine-tuned Q achieves the highest Q but
has the worst values of the seven metrics described in
Subsection 4.1. We argue that the ground truth com-
munities may not be so reasonable because Fine-tuned
Q and Fine-tuned Qds in fact discover more meaningful
communities than Greedy Q does. Figures 2(a)-2(d) show

16

TABLE 2
Metric values of the community structures detected by Greedy Q, Fine-tuned Q, and Fine-tuned Qds on American

college football network (red italic font denotes the best value for each metric).
Algorithm Q Qds V I NMI F -measure NV D RI ARI JI
Greedy Q 0.5773 0.3225 1.4797 0.7624 0.6759 0.2304 0.9005 0.5364 0.4142

Fine-tuned Q 0.5944 0.3986 0.9615 0.8553 0.8067 0.1348 0.9521 0.7279 0.6045
Fine-tuned Qds 0.6005 0.4909 0.5367 0.9242 0.9145 0.07391 0.9847 0.8967 0.8264

TABLE 3
Metric values of the community structures of Greedy Q and Fine-tuned Q improved with Fine-tuned Qds on

American college football network (blue italic font indicates improved score).
Algorithm Q Qds V I NMI F -measure NV D RI ARI JI

Greedy Q improved with Fine-tuned Qds 0.5839 0.4636 0.6986 0.9013 0.8961 0.0913 0.9793 0.8597 0.7714
Fine-tuned Q improved with Fine-tuned Qds 0.5974 0.4793 0.5096 0.9278 0.9166 0.06957 0.9837 0.8907 0.8174

the community structure of ground truth communities
and those detected by Greedy Q, Fine-tuned Q, and Fine-
tuned Qds, respectively. For results of Greedy Q shown
in Figure 2(b), we could observe that there are three
communities located at the left, the center, and the
right side of the network. The ground truth community
located on the right is subdivided into the central and
right communities, but the node 10 is misclassified as be-
longing to the central community, while in ground truth
network it belongs to community located on the left.
Figure 2(c) demonstrates that Fine-tuned Q subdivides
both the left and the right communities into two with
six nodes separated from the left community and five
nodes separated from the right community. Moreover,
Figure 2(c) shows that Fine-tuned Q discovers the same
number of communities for this network as algorithms
presented in [9], [16], [20], [22]. In fact, the community
structure it discovers is identical to those detected in
[16], [20], [22]. Figure 2(d) shows that the community
structure discovered by Fine-tuned Qds differs from that
of Fine-tuned Q only on node 24 which is placed in the
larger part of the left community. It is reasonable for it
has three connections to the larger part to which it has
more attraction than to the smaller part with which it
only has two connections.

In addition, analyzing the intermediate results of Fine-
tuned Q and Fine-tuned Qds reveals that the communities
at the first iteration are exactly the ground truth commu-
nities, which in another way implies their superiority
over Greedy Q. Moreover, NMI and NVD indicate that
Fine-tuned Qds is the best among the three and all the
metrics, except Q, show that Fine-tuned Qds performs bet-
ter than Fine-tuned Q, supporting the claim that a higher
Qds (but not Q) implies a better quality of community
structure.

4.2.2 American College Football Network
We apply the three algorithms also to the American
college football network [53] which represents the sched-
ule of games between college football teams in a sin-
gle season. The teams are divided into twelve “confer-
ences” with intra-conference games being more frequent
than inter-conference games. Those conferences could be

TABLE 4
The values of Q and Qds of the community structures
detected by Greedy Q, Fine-tuned Q, and Fine-tuned
Qds on PGP network (red italic font denotes the best

value for each metric).
Algorithm Q Qds

Greedy Q 0.8521 0.04492
Fine-tuned Q 0.8405 0.02206

Fine-tuned Qds 0.594 0.287

treated as the ground truth communities whose structure
is shown in Figure 3(a).

Table 2 presents the metric values of the community
structures detected by the three algorithms. It shows
that Fine-tuned Qds achieves the best values for all the
nine metrics. It implies that Fine-tuned Qds performs
best on this football network, followed by Fine-tuned
Q. Figures 3(a)-3(d) present the community structure
of ground truth communities and those discovered by
Greedy Q, Fine-tuned Q, and Fine-tuned Qds. Each color
in the figures represents a community. It can be seen
that there are twelve ground truth communities in total,
seven communities detected by Greedy Q, nine commu-
nities discovered by Fine-tuned Q, and exactly twelve
communities found by Fine-tuned Qds.

Moreover, we apply Fine-tuned Qds on the community
detection results of Greedy Q and Fine-tuned Q. The
metric values of these two community structures after
improvement with Fine-tuned Qds are shown in Table 3.
Compared with those of Greedy Q and Fine-tuned Q in
Table 2, we could observe that the metric values are
significantly improved with Fine-tuned Qds. Further, both
improved community structures contain exactly twelve
communities, the same number as the ground truth
communities.

4.2.3 PGP Network
We then apply the three algorithms on PGP network [54].
It is the giant component of the network of users of the
Pretty-Good-Privacy algorithm for secure information
interchange. It has 10680 nodes and 24316 edges.

Table 4 presents the metric values of the community
structures detected by the three algorithms. Since this

17

���������

�	�
���
����

�������
����

������

����������

����������� �� �

��	�!��"��	�

#������$ %� &��

�'('	�

)*�+���

,�	�����-��!

�.	��

/01�

�2�(�+�

/��!

�	�
���

��	�!0�	�2���
����

3�4�����5����

62�	�7�

����5����
8�"���0�22���

9:;<=>?@?=

8��2���A	���
����

)�"�,�	�����

8'BB�2�

*	��'"�

���!����

C �& � �

0���	�2���!����

D'	7'�

EFGHIJKLKMINOJ

A��	���-��!

PQRRSTUVTWU

X�"��	����!����

0�2�	�7�

Y�����Z�5����

6	�"��
����[!��
����

X�"�0�	�2���

�'.�

)�"!������

\]@^:

_���

`�'"���

D���"('	�!

a���

a�����

bMcNdNJGJeMGIMF

f�g � �����%�

f�g �h ���

a���g%4�

i;]]j=k=ll=<<==>?@?=

,��7�	(�2�

���+�[!��

�����"���

[����

���������
����

�'�!0�	�2���

m� �

n22����"

��""�""�oo�
����

��+o!�"

-����""��

���B�	7

)�"!������
����

-�+o2�

n���
����

��p�"�
����

��(�".�

5�g�����$ �� �� qq

k:j=]:

[.2�!�+�

��""�""�oo�

-'2���

-���"�r�

��s*

-���"X2D�"�

���	���+�

3 �t��%�

0���������

u���& �

vg�&���

��	�!0�	�2���

�	+*

w?@^>?@?=

$ ���g�

Y��x���

���!����
����

$ �x t��� Z�

-���"

$�������

f�g � ���5����

bMcNdNJGJbJyJzFHHF

-���"0!	�"����

0�2�B�	���

m��&��5����

��	*2��7

n�7����

m4����x�5����

#�4�t�����

`�����

3�4�����

3��{�x�� �x �&��x

(a) Ground truth communities.

���������

�	�
���
����

�������
����

������

����������

����������� �� �

��	�!��"��	�

#������$ %� &��

�'('	�

)*�+���

,�	�����-��!

�.	��

/01�

�2�(�+�

/��!

�	�
���

��	�!0�	�2���
����

3�4�����5����

62�	�7�

����5����

8�"���0�22���

9:;<=>?@?=

8��2���A	���
����

)�"�,�	�����

8'BB�2�

*	��'"�

���!����

C �& � �

0���	�2���!����

D'	7'�

EFGHIJKLKMINOJ

A��	���-��!

PQRRSTUV TWU

X�"��	����!����

0�2�	�7�

Y�����Z�5����6	�"��
����

[!��
����

X�"�0�	�2���

�'.�

)�"!������

\]@^:
_���

`�'"���

D���"('	�!

a���

a�����

bMcNdNJGJeMGIMF

f�g � �����%�

f�g �h ���

a���g%4�

i;]]j=k=ll=<<==>?@?=

,��7�	(�2�

���+�[!��

�����"���

[����

���������
����

�'�!0�	�2���

m� �

n22����"

��""�""�oo�
����

��+o!�"

-����""��

���B�	7

)�"!������
����

-�+o2�

n���
����

��p�"�
����

��(�".�

5�g�����$ �� �� qq

k:j=]:

[.2�!�+�

��""�""�oo�

-'2���

-���"�r�

��s*

-���"X2D�"�

���	���+�
3 �t��%�

0���������

u���& �

vg�&���

��	�!0�	�2���

�	+*

w?@^>?@?=

$ ���g�

Y��x���

���!����
����

$ �x t��� Z�

-���"

$�������

f�g � ���5����

bMcNdNJGJbJyJzFHHF

-���"0!	�"����

0�2�B�	���

m��&��5����

��	*2��7

n�7����

m4����x�5����

#�4�t�����

`�����

3�4�����

3��{�x�� �x �&��x

(b) Communities detected with Greedy Q.

���������

�	�
���
����

�������
����

������

����������

����������� �� �

��	�!��"��	�

#������$ %� &��

�'('	�

)*�+���

,�	�����-��!

�.	��

/01�

�2�(�+�

/��!

�	�
���

��	�!0�	�2���
����

3�4�����5����

62�	�7�

����5����
8�"���0�22���

9:;<=>?@?=

8��2���A	���
����

)�"�,�	�����

8'BB�2�

*	��'"�

���!����

C �& � �

0���	�2���!����

D'	7'�

EFGHIJKLKMINOJ

A��	���-��!

PQRRSTUVTWU

X�"��	����!����

0�2�	�7�

Y�����Z�5����

6	�"��
����

[!��
����

X�"�0�	�2���

�'.�

)�"!������

\]@^:

_���

`�'"���

D���"('	�!

a���

a�����

bMcNdNJGJeMGIMF f�g � �����%�

f�g �h ���

a���g%4�

i;]]j=k=ll=<<==>?@?=

,��7�	(�2�

���+�[!��

�����"���

[����

���������
����

�'�!0�	�2���

m� �

n22����"

��""�""�oo�
����
��+o!�"

-����""��

���B�	7

)�"!������
����

-�+o2�

n���
����

��p�"�
����

��(�".�

5�g�����$ �� �� qq

k:j=]:

[.2�!�+�

��""�""�oo�

-'2���

-���"�r�

��s*

-���"X2D�"�

���	���+�

3 �t��%�

0���������

u���& �

vg�&�����	�!0�	�2���

�	+*

w?@^>?@?=

$ ���g�

Y��x���

���!����
����

$ �x t��� Z�

-���"

$�������

f�g � ���5����

bMcNdNJGJbJyJzFHHF

-���"0!	�"����

0�2�B�	���

m��&��5����

��	*2��7

n�7����

m4����x�5����

#�4�t�����

`�����

3�4�����

3��{�x�� �x �&��x

(c) Communities detected with Fine-tuned Q.

��������

���	
����
��

�����������

����������

���
�!	��

"#$%&

'��!��

(��	
����
��

)*$%+*$*,

-�./��

01�23�425626�

7�282429�:4�;<324

=�:<�;�2

>���!
�-��

?�@�

A��B��C
�	

D
		�C��!

E�;6

F
�.
'
�

03��

F������B

G21�H�:��6

'@�� �.�

-�I����D���

-�I��
 �
�	
��

J�K��	�	�

-�I��LMF

N�����:�

O��4��;

P&Q,#&

(�R�

F
�
!���	�	�

N2:�32��

S
��

T���	��

-�I��

UVWXYXZ[ZUZ\Z]^__^

E2;�2�

5��63�:;N�������``�

-�����

L�
a����	�	�

���?
�!��	�	�
T�K�

�	��b��B

���
�!	���	�	�

���c����	�	�

(�C���@�

F
�����	�

J��
��
�

��
���	

J�B
���

(�	��?�.�

7�:H�:d�
(�KF�I
���	�	�

L�.�

e�:63�:;f���;���

(��	 K��	���

G��6�:;N�d3�<2;

L�C���

���.
�!

g
hL

L��C�.�

A
�!
�
�-��

L@���

i��	��
����!�

���	A
�!
�
�

j^[_kZlmlVkXnZ

���	���F
�
!��

UVWXYXZ[ZoV[kV^

������2;2p�d3

q���
B�

92��5626�

i�K�
�!>�����	�	�

i�bb���

F�./
�

-��������

F
��
��
//

r��:<�2

g	�

L�
a���

�����B�

O���:2s�5626�

F
�
!��

D��B��

q������	�	�

'
��	�	�

t�6<�:�

N�24�H��:�s2

(�KF�I
��

��
b���
�

0:�<�;5626�

92u��:

e�:63p�v2�

(��	
����
���	�	�

7:12;�2�5626�

w&xy,+*$*,

��	���F
�
!��

E�;6�d1u

���	
����
��

zx##Q,P,{{,yy,,+*$*,F
��
��
//
�	�	�

������2;25626�

7:12;�2�

(d) Communities detected with Fine-tuned Qds.
Fig. 3. The community structures of the ground truth communities and those detected by Greedy Q, Fine-tuned Q,
and Fine-tuned Qds on American college football network.

network does not have ground truth communities, we
only calculate Q and Qds of these discovered community
structures. The table shows that Greedy Q and Fine-tuned
Qds achieve the highest value of Q and Qds, respectively.
It is worth to mention that the Qds of Fine-tuned Qds

is much larger than that of Greedy Q and Fine-tuned Q,
which implies that Fine-tuned Qds performs best on PGP
network according to Qds, followed by Greedy Q.

4.2.4 AS Level Internet

The last real network dataset that is adopted to evaluate
the three algorithms is AS level Internet. It is a sym-
metrized snapshot of the structure of the Internet at the
level of autonomous systems, reconstructed from BGP
tables posted by the University of Oregon Route Views
Project. This snapshot was created by Mark Newman
from data for July 22, 2006 and has not been previously

18

TABLE 6
Metric values of the community structures detected by Greedy Q, Fine-tuned Q, and Fine-tuned Qds on the classical

clique network (red italic font denotes the best value for each metric).
Algorithm Q Qds V I NMI F -measure NV D RI ARI JI
Greedy Q 0.8871 0.46 0.9333 0.8949 0.6889 0.2333 0.9687 0.6175 0.4615

Fine-tuned Q 0.8871 0.46 0.9333 0.8949 0.6889 0.2333 0.9687 0.6175 0.4615
Fine-tuned Qds 0.8758 0.8721 0 1 1 0 1 1 1

TABLE 7
Metric values of the community structures of Greedy Q and Fine-tuned Q improved with Fine-tuned Qds on the

classical clique network (blue italic font indicates improved score).
Algorithm Q Qds V I NMI F -measure NV D RI ARI JI

Greedy Q improved with Fine-tuned Qds 0.8758 0.8721 0 1 1 0 1 1 1
Fine-tuned Q improved with Fine-tuned Qds 0.8758 0.8721 0 1 1 0 1 1 1

TABLE 5
The values of Q and Qds of the community structures
detected by Greedy Q, Fine-tuned Q, and Fine-tuned
Qds on AS level Internet (red italic font denotes the best

value for each metric).
Algorithm Q Qds

Greedy Q 0.6379 0.002946
Fine-tuned Q 0.6475 0.003123

Fine-tuned Qds 0.3437 0.03857

published. It has 22963 nodes and 48436 edges.
Table 5 presents the metric values of the community

structures detected by the three algorithms. Since this
network does not have ground truth communities either,
we only calculate Q and Qds. It can be seen from the
table that Fine-tuned Q and Fine-tuned Qds achieve the
highest value of Q and Qds, respectively. Moreover, the
Qds of Fine-tuned Qds is much larger than that of Greedy
Q and Fine-tuned Q, which indicates that Fine-tuned Qds

performs best on AS level Internet according to Qds,
followed by Fine-tuned Q.

4.3 Synthetic Networks
4.3.1 Clique Network
We now apply the three algorithms to the classical
network example [23]–[25], displayed in Figure 4, which
illustrates modularity (Q) has the resolution limit prob-
lem. It is a ring network comprised of thirty identical
cliques, each of which has five nodes and they are
connected by single edges. It is intuitively obvious that
each clique forms a single community.

Table 6 presents the metric values of the community
structures detected by the three algorithms. It shows that
Greedy Q and Fine-tuned Q have the same performance.
They both achieve the highest value of Q but get about
half of the value of Qds of what Fine-tuned Qds achieves.
In fact, Fine-tuned Qds finds exactly thirty communities
with each clique being a single community. In contrast,
Greedy Q and Fine-tuned Q discover only sixteen com-
munities with fourteen communities having two cliques
and the other two communities having a single clique.
Also, we take the community detection results of Greedy

Fig. 4. A ring network made out of thirty identical cliques,
each having five nodes and connected by single edges.

Q and Fine-tuned Q as the input to Fine-tuned Qds to
try to improve those results. The metric values of the
community structures after improvement with Fine-tuned
Qds are recorded in Table 7. This table shows that the
community structures discovered are identical to that of
Fine-tuned Qds, which means that the results of Greedy Q
and Fine-tuned Q are dramatically improved with Fine-
tuned Qds. Therefore, it can be concluded from Tables 6
and 7 that a larger value of Qds (but not Q) implies a
higher quality of the community structure. Moreover,
Qds solves the resolution limit problem of Q. Finally,
Fine-tuned Qds is effective in maximizing Qds and in
finding meaningful community structure.

4.3.2 LFR Benchmark Networks
To further compare the performance of Greedy Q, Fine-
tuned Q, and Fine-tuned Qds, we choose the LFR bench-
mark networks [56] which have become a standard in the
evaluation of the performance of community detection
algorithms and also have known ground truth commu-
nities. The LFR benchmark network that we used here
has 1000 nodes with average degree 15 and maximum
degree 50. The exponent γ for the degree sequence
varies from 2 to 3. The exponent β for the community
size distribution ranges from 1 to 2. Then, four pairs
of the exponents (γ, β) = (2, 1), (2, 2), (3, 1), and (3, 2)
are chosen in order to explore the widest spectrum
of graph structures. The mixing parameter µ is varied

19

TABLE 8
Metric values of the community structures of Greedy Q on the LFR benchmark networks with (γ, β) = (2, 1).

µ Q Qds V I NMI F -measure NV D RI ARI JI
0.05 0.9021 0.4481 0.2403 0.9767 0.9382 0.0399 0.9959 0.9308 0.8758
0.1 0.8461 0.3546 0.5213 0.9482 0.8539 0.0912 0.9882 0.821 0.7089

0.15 0.7862 0.2604 0.8537 0.9125 0.7604 0.1432 0.9776 0.7042 0.5573
0.2 0.7256 0.1934 1.3601 0.8579 0.6314 0.2173 0.9601 0.5445 0.3911

0.25 0.6612 0.1411 1.7713 0.8093 0.5477 0.2642 0.9444 0.4498 0.309
0.3 0.5959 0.09377 2.1758 0.7493 0.4745 0.3085 0.921 0.3779 0.255

0.35 0.545 0.07237 2.4599 0.7122 0.4182 0.3347 0.9045 0.3206 0.2134
0.4 0.4857 0.05521 2.7444 0.672 0.3745 0.3623 0.8874 0.2766 0.1836

0.45 0.4356 0.04133 3.0108 0.6289 0.327 0.3875 0.8617 0.2288 0.153
0.5 0.3803 0.03016 3.4296 0.5685 0.2874 0.4159 0.8386 0.1885 0.1282

TABLE 9
Metric values of the community structures of Fine-tuned Q on the LFR benchmark networks with (γ, β) = (2, 1).

µ Q Qds V I NMI F -measure NV D RI ARI JI
0.05 0.8411 0.3875 0.8674 0.8868 0.8137 0.1049 0.9404 0.7503 0.6673
0.1 0.8419 0.3837 0.5195 0.9481 0.8851 0.0695 0.9875 0.8333 0.7408
0.15 0.7886 0.3324 0.6453 0.9358 0.8664 0.0844 0.9858 0.801 0.6921
0.2 0.7221 0.2922 0.9615 0.9022 0.8056 0.1222 0.9725 0.7099 0.6061
0.25 0.6694 0.2502 1.11 0.8833 0.7831 0.137 0.9594 0.7045 0.5939
0.3 0.626 0.2022 1.0722 0.892 0.813 0.1265 0.9811 0.7317 0.5963
0.35 0.5479 0.1516 1.6786 0.8153 0.705 0.1942 0.949 0.5963 0.4629
0.4 0.5044 0.124 1.8382 0.8108 0.6935 0.2111 0.9646 0.5592 0.4118
0.45 0.4274 0.07865 2.5657 0.7274 0.5913 0.2863 0.9463 0.4419 0.3129
0.5 0.3766 0.05808 3.0333 0.675 0.5328 0.3375 0.9366 0.3721 0.2537

TABLE 10
Metric values of the community structures of Fine-tuned Qds on the LFR benchmark networks with (γ, β) = (2, 1).

µ Q Qds V I NMI F -measure NV D RI ARI JI
0.05 0.845 0.4257 0.8112 0.9186 0.8564 0.09585 0.9736 0.691 0.5717
0.1 0.7934 0.4144 0.5809 0.9447 0.9326 0.0625 0.9915 0.8566 0.7646
0.15 0.7426 0.3605 0.6769 0.9359 0.9172 0.0711 0.9902 0.8303 0.7225
0.2 0.6786 0.337 0.7824 0.9278 0.9195 0.0795 0.9908 0.8186 0.7037
0.25 0.6202 0.2891 1.0244 0.9046 0.8909 0.106 0.9868 0.7575 0.6253
0.3 0.5693 0.235 1.1347 0.8919 0.8874 0.1183 0.9845 0.7372 0.5983
0.35 0.5443 0.2244 0.9401 0.9123 0.9129 0.09585 0.989 0.7984 0.6783
0.4 0.505 0.1964 0.9444 0.9123 0.9091 0.0966 0.989 0.7929 0.668
0.45 0.4536 0.1632 1.1523 0.8925 0.8806 0.1196 0.9834 0.7337 0.6021
0.5 0.3563 0.1196 1.9677 0.8036 0.7489 0.2076 0.9213 0.4984 0.3813

from 0.05 to 0.5. It means that each node shares a
fraction (1 − µ) of its edges with the other nodes in its
community and shares a fraction µ of its edges with
the nodes outside its community. Thus, low mixing
parameters indicate strong community structure. Also,
we generate 10 network instances for each µ. Hence,
each metric value in Tables 8-12 represents the average
metric values of all 10 instances. Since the experimental
results are similar for all four pairs of exponents (γ, β) =
(2, 1), (2, 2), (3, 1), and (3, 2), for the sake of brevity, we
only present the results for (γ, β) = (2, 1) here.

Tables 8-10 show the metric values of the commu-
nity structures detected with Greedy Q, Fine-tuned Q,
and Fine-tuned Qds, respectively, on the LFR benchmark
networks with (γ, β) = (2, 1) and µ varying from 0.05
to 0.5. The red italic font in the table denotes that the
corresponding algorithm achieves the best value for a
certain quality metric among the three algorithms. The
results in these tables show that Greedy Q obtains the
best values for all the nine measurements when µ = 0.05,
while Fine-tuned Qds achieves the highest values of Qds

and the best values for almost all the seven metrics based
on ground truth communities when µ ranges from 0.1
to 0.5. Also, Fine-tuned Q gets the second best values for
Qds and almost all the seven metrics in the same range
of µ. However, for Q the best is Greedy Q, followed by
Fine-tuned Q, and Fine-tuned Qds is the last.

In summary, the seven measurements based on
ground truth communities are all consistent with Qds,
but not consistent with Q. This consistency indicates
the superiority of Qds over Q as a community quality
metric. In addition, Fine-tuned Qds performs best among
the three algorithms for µ > 0.05, which demonstrates
that it is very effective and does a very good job in
optimizing Qds.

We then take the community detection results of
Greedy Q and Fine-tuned Q as the input to Fine-tuned Qds

to improve those results. The measurement values of the
community structures after improvement with Fine-tuned
Qds are displayed in Tables 11 and 12. The blue italic font
in Table 11 and Table 12 implies that the metric value
in these two tables is improved compared to the one in

20

TABLE 11
Metric values of the community structures of Greedy Q improved with Fine-tuned Qds on the LFR benchmark

networks with (γ, β) = (2, 1).
µ Q Qds V I NMI F -measure NV D RI ARI JI

0.05 0.8743 0.4979 0.2131 0.98 0.9784 0.02195 0.997 0.943 0.895
0.1 0.8246 0.4522 0.2428 0.9773 0.9762 0.02395 0.9967 0.9379 0.8864
0.15 0.7716 0.4013 0.2972 0.9722 0.9719 0.0289 0.9962 0.9269 0.8674
0.2 0.7232 0.384 0.3503 0.9679 0.9664 0.03505 0.9959 0.9163 0.8496
0.25 0.6667 0.3347 0.4474 0.9592 0.9582 0.04485 0.9953 0.9011 0.8243
0.3 0.6094 0.2619 0.6061 0.9432 0.9457 0.05905 0.9934 0.876 0.7856
0.35 0.5584 0.2377 0.691 0.9364 0.94 0.0697 0.9931 0.8615 0.7626
0.4 0.5062 0.199 0.8285 0.9236 0.9247 0.0823 0.9916 0.8376 0.7281
0.45 0.4587 0.169 0.9016 0.9172 0.9222 0.0904 0.9914 0.8252 0.7099
0.5 0.4014 0.1385 1.2004 0.8906 0.8938 0.1215 0.9885 0.7686 0.6326

TABLE 12
Metric values of the community structures of Fine-tuned Q improved with Fine-tuned Qds on the LFR benchmark

networks with (γ, β) = (2, 1).
µ Q Qds V I NMI F -measure NV D RI ARI JI

0.05 0.8519 0.4463 0.5949 0.937 0.8954 0.0709 0.9781 0.8177 0.7377
0.1 0.8186 0.4397 0.3405 0.9679 0.9615 0.03415 0.9952 0.9125 0.8452
0.15 0.769 0.391 0.4285 0.9597 0.9533 0.0432 0.9946 0.8993 0.8231
0.2 0.7185 0.369 0.4654 0.9571 0.9479 0.04975 0.9943 0.8853 0.8014
0.25 0.6672 0.326 0.5667 0.9477 0.9365 0.05805 0.9936 0.8713 0.7785
0.3 0.6109 0.2598 0.6962 0.9346 0.9372 0.06505 0.9926 0.8609 0.762
0.35 0.5474 0.2297 0.9525 0.9108 0.9175 0.0961 0.9882 0.7963 0.6821
0.4 0.4966 0.1983 1.0601 0.9021 0.9118 0.1029 0.9896 0.7963 0.672
0.45 0.4284 0.1535 1.4754 0.8635 0.8694 0.1486 0.9831 0.6836 0.5362
0.5 0.3654 0.1258 1.9271 0.8192 0.8193 0.1987 0.968 0.5852 0.4423

Table 8 and that in Table 9, respectively. Then, compared
with those of Greedy Q shown in Table 8 and those of
Fine-tuned Q shown in Table 9, all measurements, except
in some cases for Q, are significantly improved with Fine-
tuned Qds. This again indicates that all the seven metrics
described in Subsection 4.1 are consistent with Qds, but
not consistent with Q. Interestingly, those results are
even better than those of Fine-tuned Qds itself presented
in Table 10. Thus, it can be concluded that Fine-tuned Qds

is very powerful in improving the community detection
results of other algorithms.

5 CONCLUSION
In this paper, we review the definition of modularity
and its corresponding maximization methods. Moreover,
we show that modularity optimization has two opposite
but coexisting issues. We also review several community
quality metrics proposed to solve the resolution limit
problem. We then discuss our Modularity Density (Qds)
metric which simultaneously avoids those two problems.
Finally, we propose an efficient and effective fine-tuned
algorithm to maximize Qds. This new algorithm can
actually be used to optimize any community quality
metric. We evaluate the three algorithms, Greedy Q, Fine-
tuned Q based on Q, and Fine-tuned Qds based on Qds,
with seven metrics based on ground truth communities.
These evaluations are done on four real networks, and
also on the classical clique network and the LFR bench-
mark networks, each instance of the last is defined with
parameters selected from wide range of their values.
The results demonstrate that Fine-tuned Qds performs

best among the three algorithms, followed by Fine-tuned
Q. The experiments also show that Fine-tuned Qds can
dramatically improve the community detection results of
other algorithms. In addition, all the seven quality met-
rics based on ground truth communities are consistent
with Qds, but not consistent with Q, which indicates the
superiority of Qds over Q as a community quality metric.

ACKNOWLEDGMENTS

This work was supported in part by the Army Re-
search Laboratory under Cooperative Agreement Num-
ber W911NF-09-2-0053 and by the the Office of Naval
Research Grant No. N00014-09-1-0607. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing
the official policies either expressed or implied of the
Army Research Laboratory or the U.S. Government.

REFERENCES

[1] M. E. J. Newman and M. Girvan, “Finding and evaluating com-
munity structure in networks,” Phys. Rev. E, vol. 69, p. 026113,
Feb 2004.

[2] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, pp. 75–174, 2010.

[3] M. E. J. Newman, “Modularity and community structure in
networks,” Proceedings of the National Academy of Sciences, vol. 103,
no. 23, pp. 8577–8582, 2006.

[4] E. A. Leicht and M. E. J. Newman, “Community structure in
directed networks,” Phys. Rev. Lett., vol. 100, p. 118703, Mar 2008.

[5] M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E,
vol. 70, p. 056131, Nov 2004.

[6] M. E. J. Newman, “Fast algorithm for detecting community
structure in networks,” Phys. Rev. E, vol. 69, p. 066133, Jun 2004.

21

[7] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Phys. Rev. E, vol. 70, p. 066111,
Dec 2004.

[8] K. Wakita and T. Tsurumi, “Finding community structure in
mega-scale social networks: [extended abstract],” in Proceedings
of the 16th international conference on World Wide Web, New York,
NY, USA, 2007, pp. 1275–1276.

[9] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, p.
P10008, 2008.

[10] M. E. J. Newman, “Finding community structure in networks
using the eigenvectors of matrices,” Phys. Rev. E, vol. 74, p. 036104,
Sep 2006.

[11] T. Richardson, P. J. Mucha, and M. A. Porter, “Spectral triparti-
tioning of networks,” Phys. Rev. E, vol. 80, p. 036111, Sep 2009.

[12] S. White and P. Smyth, “A spectral clustering approach to finding
communities in graph.” in SDM, 2005.

[13] J. Ruan and W. Zhang, “An efficient spectral algorithm for
network community discovery and its applications to biological
and social networks,” in Proceedings of the 2007 Seventh IEEE
International Conference on Data Mining, Washington, DC, USA,
2007, pp. 643–648.

[14] J. Ruan and W. Zhang, “Identifying network communities with a
high resolution,” Phys. Rev. E, vol. 77, p. 016104, Jan 2008.

[15] M. E. J. Newman, “Spectral methods for network community
detection and graph partitioning,” Phys. Rev. E, vol. 88, p. 042822,
2013.

[16] J. Duch and A. Arenas, “Community detection in complex net-
works using extremal optimization,” Phys. Rev. E, vol. 72, p.
027104, Aug 2005.

[17] R. Guimerà and L. A. N. Amaral, “Functional cartography of
complex metabolic networks,” Nature, vol. 433, pp. 895–900, Feb
2005.

[18] R. Guimerà and L. A. N. Amaral, “Cartography of complex
networks: modules and universal roles,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2005, no. 02, p. P02001, 2005.

[19] C. P. Massen and J. P. K. Doye, “Identifying communities within
energy landscapes,” Phys. Rev. E, vol. 71, p. 046101, Apr 2005.

[20] A. Medus, G. Acun̈a, and C. Dorso, “Detection of community
structures in networks via global optimization,” Physica A: Statis-
tical Mechanics and its Applications, vol. 358, no. 24, pp. 593 – 604,
2005.

[21] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. a. N. Amaral,
“Extracting the hierarchical organization of complex systems.”
Proceedings of the National Academy of Sciences of the United States
of America, vol. 104, no. 39, pp. 15 224–9, Sep. 2007.

[22] G. Agarwal and D. Kempe, “Modularity-maximizing graph com-
munities via mathematical programming,” The European Physical
Journal B, vol. 66, no. 3, pp. 409–418, 2008.

[23] M. Chen, T. Nguyen, and B. K. Szymanski, “On measuring the
quality of a network community structure,” in Proceedings of
ASE/IEEE International Conference on Social Computing, Washing-
ton, DC, USA, September 2013.

[24] M. Chen, T. Nguyen, and B. K. Szymanski, “A new metric for
quality of network community structure,” ASE Human Journal,
vol. 2, no. 4, pp. 226–240, 2013.

[25] S. Fortunato and M. Barthèlemy, “Resolution limit in community
detection,” Proceedings of the National Academy of Sciences, vol. 104,
no. 1, pp. 36–41, 2007.

[26] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “On modularity clustering,” Knowl-
edge and Data Engineering, IEEE Transactions on, vol. 20, no. 2, pp.
172–188, 2008.

[27] T. Chakraborty, S. Srinivasan, N. Ganguly, S. Bhowmick, and
A. Mukherjee, “Constant communities in complex networks,”
Scientific Reports, vol. 3, May 2013.

[28] J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates
for the solution of algebraic eigenvalue problems: a practical guide,
Z. Bai, Ed. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2000.

[29] S. Boettcher and A. G. Percus, “Optimization with extremal
dynamics,” Phys. Rev. Lett., vol. 86, pp. 5211–5214, Jun 2001.

[30] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[31] H. Karloff, Linear Programming. Birkhäuser Boston, 1991.

[32] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips,
“Tolerating the community detection resolution limit with edge
weighting,” Phys. Rev. E, vol. 83, p. 056119, May 2011.

[33] S. Muff, F. Rao, and A. Caflisch, “Local modularity measure
for network clusterizations,” Physical Review E, vol. 72, no. 5, p.
056107, 2005.

[34] A. Arenas, A. Fernandez, and S. Gomez, “Analysis of the structure
of complex networks at different resolution levels,” New Journal
of Physics, vol. 10, no. 5, p. 053039, 2008.

[35] A. Lancichinetti and S. Fortunato, “Limits of modularity max-
imization in community detection,” Physical Review E, vol. 84,
no. 6, p. 066122, 2011.

[36] C. Granell, S. Gomez, and A. Arenas, “Hierarchical multires-
olution method to overcome the resolution limit in complex
networks,” International Journal of Bifurcation and Chaos, vol. 22,
no. 07, 2012.

[37] Z. Li, S. Zhang, R.-S. Wang, X.-S. Zhang, and L. Chen, “Quantita-
tive function for community detection,” Physical Review E, vol. 77,
no. 3, p. 036109, 2008.

[38] V. A. Traag, P. Van Dooren, and Y. Nesterov, “Narrow scope
for resolution-limit-free community detection,” Physical Review E,
vol. 84, no. 1, p. 016114, 2011.

[39] J. Reichardt and S. Bornholdt, “Partitioning and modularity of
graphs with arbitrary degree distribution,” Phys. Rev. E, vol. 76,
p. 015102, Jul 2007.

[40] A. S. Waugh, L. Pei, J. H. Fowler, P. J. Mucha, and M. A. Porter,
“Party polarization in congress: A network science approach,”
arXiv:0907.3509, 2010.

[41] N. Eagle, A. Pentland, and D. Lazer, “Inferring social network
structure using mobile phone data,” Proceedings of the National
Academy of Sciences (PNAS), vol. 106, no. 36, pp. 15 274–15 278,
2009.

[42] Y.-C. Wei and C.-K. Cheng, “Towards efficient hierarchical designs
by ratio cut partitioning,” in IEEE International Conference on
Computer-Aided Design, 1989, pp. 298–301.

[43] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Math-
ematical Journal, vol. 23, pp. 298–305, 1973.

[44] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse
matrices with eigenvectors of graphs,” SIAM Journal on Matrix
Analysis and Applications, vol. 11, no. 3, pp. 430–452, May 1990.

[45] B. H. Good, Y.-A. de Montjoye, and A. Clauset, “Performance
of modularity maximization in practical contexts,” Phys. Rev. E,
vol. 81, p. 046106, Apr 2010.

[46] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identification,” Journal of Statistical Mechan-
ics: Theory and Experiment, vol. 2005, no. 09, p. P09008, 2005.

[47] S. Wagner and D. Wagner, “Comparing Clusterings – An
Overview,” Universität Karlsruhe (TH), Tech. Rep. 2006-04, 2007.

[48] S. Van Dongen, “Performance criteria for graph clustering and
markov cluster experiments,” National Research Institute for
Mathematics and Computer Science, Amsterdam, The Nether-
lands, Tech. Rep., 2000.

[49] W. M. Rand, “Objective criteria for the evaluation of clustering
methods,” Journal of the American Statistical Association, vol. 66,
no. 336, pp. pp. 846–850, 1971.

[50] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Clas-
sification, vol. 2, no. 1, pp. 193–218, 1985.

[51] A. Ben-Hur, A. Elisseeff, and I. Guyon, “A stability based method
for discovering structure in clustered data,” in BIOCOMPUTING
2002 Proceedings of the Pacific Symposium, 2001, pp. 6–17.

[52] W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of Anthropological Research, vol. 33, pp.
452–473, 1977.

[53] M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” Proceedings of the National Academy of
Sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[54] M. Boguñá, R. Pastor-Satorras, A. Dı́az-Guilera, and A. Arenas,
“Models of social networks based on social distance attachment,”
Phys. Rev. E, vol. 70, p. 056122, Nov 2004.

[55] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks.” in ICWSM.
The AAAI Press, 2009.

[56] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark
graphs for testing community detection algorithms,” Phys. Rev.
E, vol. 78, p. 046110, Oct 2008.

