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This work aims at discovering community structure in rich media social networks through analysis of time-
varying, multi-relational data. Community structure represents the latent social context of user actions. It has 
important applications such as search and recommendation. The problem is particularly useful in the enterprise 
domain where extracting emergent community structure on enterprise social media can help in forming new 
collaborative teams, in expertise discovery, and in the long term reorganization of enterprises based on 
collaboration patterns. There are several unique challenges: (a) In social media, the context of user actions is 
constantly changing and co-evolving; hence the social context contains time-evolving multi-dimensional 
relations. (b) The social context is determined by the available system features and is unique in each social 
media platform; hence the analysis of such data needs to flexibly incorporate various system features. In this 
article we propose MetaFac (MetaGraph Factorization), a framework that extracts community structures from 
dynamic, multi-dimensional social contexts and interactions. Our work has three key contributions: (1) 
metagraph, a novel relational hypergraph representation for modeling multi-relational and multi-dimensional 
social data; (2) an efficient multi-relational factorization method for community extraction on a given 
metagraph; (3) an on-line method to handle time-varying relations through incremental metagraph factorization. 
Extensive experiments on real-world social data collected from an enterprise and the public Digg social media 
website suggest that our technique is scalable and is able to extract meaningful communities per social media 
contexts. We illustrate the usefulness of our framework through two prediction tasks: (1) in the enterprise 
dataset, the task is to predict users’ future interests on tag usage, and (2) in the Digg dataset, the task is to 
predict users’ future interests on voting and commenting Digg stories. Our prediction significantly outperforms 
baseline methods (including aspect model and tensor analysis), indicating the promising direction of using 
metagraphs for handling time-varying social relational contexts. 
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H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Information filtering; H.3.5 
[Information Storage and Retrieval]: Online Information Services---Web-based services; I.5.3 [Pattern 

Recognition]: Clustering; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics 
General Terms: Experimentation, Measurement, Algorithms, Theory, Human Factors 
Additional Key Words and Phrases: MetaFac, metagraph factorization, relational hypergraph, non-negative 
tensor factorization, community discovery, dynamic social network analysis 

________________________________________________________________________ 
 

1. INTRODUCTION  

This work aims at discovering community structure in rich media social networks 

through analysis of the time-varying multi-relational data. Today, users routinely produce 
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and consume media (e.g. blogs, YouTube, Digg) as well as interact with each other on 

social media platforms (e.g. Flickr, Facebook). These platforms allow a wide array of 

actions for managing and sharing media objects such as uploading photos, submitting and 

commenting on news stories, bookmarking and tagging, posting documents and creating 

web-links. These social media websites additionally support actions for interacting 

directly and indirectly with others, for example by sharing media and links with friends 

or commenting on photos uploaded by other users. These sites enable rich interactions 

between media and users, as well as complex social interactions among users. Some of 

the interactions can be implicit – two users may share similar tags, be interested in the 

same media themes, or even read a common member’s posts. Understanding the context 

of these interactions – how they relate to other actions, users and media objects, can lead 

to improved functionality of the social media platforms as well as provide insight into the 

design of future online collaborative services for system developers. 

As a motivating application, let us consider the use of social media in enterprises, 

which have increasingly embraced social media applications in an attempt to promote 

workplace collaboration. Such social media, including wikis, blogs, bookmark sharing, 

instant messaging, emails and calendar sharing can foster dynamic collaboration patterns 

that deviate from the formal organizational structure (e.g. cooperate departments, 

geographical places, etc.). As illustrated in Figure 1, people who are close in the formal 

organizational structure might be far apart in the instant messaging network (e.g. Sen and 

Moore). On the other hand, users’ document access patterns might be related to their 

corporate roles as well as personal interests. The complex and dynamic interplay of 

various social relations and interactions in an enterprise reflects the day-to-day practice of 

collaboration. This process requires consideration of multiple aspects including how 

Figure 1: An example of various social relations in an enterprise: (a) formal 
organizational structure, (b) network of instant messaging, and (c) network of 
document sharing via bookmarking system. 

(a) (c) (b) 
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people assemble to tackle a task, how ideas are shared, what communication means are 

deployed, how task experts are identified, or how relevant information is found. 

Understanding the latent community structure in an enterprise can have significant 

impact. For example: 

 Context-sensitive document search and recommendation: Communities can reflect 

clustering phenomena in the dynamic heterogeneous social relations involving 

people and different types of information pieces, e.g. engineers may routinely access 

technical documents, while sales people may frequently read news about competitors. 

The clustering structures can be augmented in a search or recommendation system, 

e.g. when recommending a document, the document’s rank can be boosted if the 

document has been recently viewed by people working closely with the given user.  

 Context-sensitive expert identification: A main challenge in organizational learning 

is to leverage the expertise across organizational or even divisional boundaries, in an 

accurate and timely fashion [Monge and Contractor 2001; Powell et al. 1996]. This 

requires one to be able to find someone who has relevant expertise and can be easily 

reached, e.g. through various effective communication channels [Borgatti and Cross 

2003]. The community structure extracted by our method, from multi-relational data 

such as organizational structure, daily communications and document access, can 

help identify experts located within the community of the information seeker. 

 Organizational study and reform: Human organizations have been studied 

extensively through qualitative fieldwork (e.g. interviews) and quantitative 

participant surveys [Scandura and Williams 2000; Simsek and Veiga 2000; Stanton 

and Rogelberg 2001]. In such studies, the data is expensive to collect and the self-

reported information may be inaccurate or biased by the participants’ perception. In 

data-driven community discovery, the data is collected from social media, which 

capture more fine-grained human interactions and temporal information. Hence, the 

detected structures can be considered as patterns naturally arising from day-to-day 

communication means. These patterns can be used to simplify the amount of data in 

the heterogeneous social relations, for further organizational analysis including the 

functions and performance of sub-organizations. Such analysis can guide enterprise 

reorganization consistent with collaboration practice. 

Discovering community structure from social media data has several challenges. First, 

in social media, the context of user actions is constantly changing and co-evolving with 
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respect to other users’ actions, emergent concepts and users’ historic preferences. Hence 

the social context contains time-evolving multi-dimensional relations. Second, the social 

context is determined by the available system features that allow interactions on media 

objects and among people. Hence the social context is unique in each social media and 

the analysis of such data needs to flexibly incorporate various system features. When 

dealing with social media networks, there are very few studies (e.g. [Banerjee et al. 2007; 

Kemp et al. 2006]) that consider such data characteristics arising from social media. 

In the following subsection, we give an overview of the problem and our solution 

approach. 

1.1 Overview of the Problem 

We are interested in the problem of discovering latent community structure in time-

varying multi-relational social network data, which has three technical challenges: 

(1) Relational learning adaptable to different social media contexts: A user’s social 

media context is determined by the available system features that allow interactions 

on media objects and among people. The system features can vary across social 

media platforms (e.g. Digg vs. Facebook) or change with time, which requires the 

analysis of social media data to flexibly incorporate various combinations of 

relations. Most social network studies only consider fixed network modes, e.g. an 

author-paper network. 

(2) Evolutionary characterization of communities in time-varying social networks: 

Given the time-varying network data, the extracted community structure needs to be 

able to explain the longitudinal human interaction patterns as well as the significant 

changes at certain times. Community evolution and dynamic social networks have 

not been studied in depth until recently (e.g. [Chi et al. 2007; Lin et al. 2008; 

Tantipathananandh et al. 2007; Yang et al. 2009]). 

(3) Analysis of multi-dimensional data: Social media platforms usually archive action 

records consisting of different types of objects, e.g. a bookmarking record contains a 

user, a bookmarked URL, one or more tags, and a timestamp. Such records can be 

used to infer implicit interactions among people, provided the analysis can deal with 

multi-dimensional networked data. Existing high dimensional data mining 

techniques are usually computational intensive and not suitable for dealing with large 

scale social networked data.  

Notions of community. There are different notions of a community. At the 

conceptual level, examples include communities of scientists working on similar areas of 
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research [Girvan and Newman 2002] or authors of home pages who have some common 

interests [Adamic and Adar 2003]. At the operational level, community detection 

considers identifying the modular structure of a network where nodes represent 

individuals and links represent the interaction or similarity between individuals. Modules 

or communities are subset of nodes within which the links are dense, and between which 

the links are sparse. Based on such a definition, many community detection algorithms 

have been proposed (see section 2.1 for a brief survey). 

We note that the prior definitions of a community are often too restrictive for 

analyzing rich-context social networks. First, people are observed as related to each other 

explicitly (e.g. direct collaborations or emails between people) and implicitly (e.g. having 

access to common web pages) at the same time. With multiple relations, it is unlikely to 

completely partition people into non-overlapping subsets. In this work, a community 

refers to a group of people who interact with objects (e.g. bookmarks) as well as with 

each other in a coherent manner – community members (including people and objects) 

are more likely to link to nodes also linked to by members within the community, and the 

links represent multiple relations. The main distinction between our definition and 

previous notions is that, in prior work, community identifications are based on a specific 

characteristic and rely on structures existing in a single type of relation (either interaction, 

common interests or similarity between individuals, e.g. [Adamic and Adar 2003; Girvan 

and Newman 2002]), while in our work, communities are identified based on structures 

across multiple types of relations. Our definition is motivated by social embeddedness 

[Granovetter 1985] which indicates the choices of individuals depend on how they are 

integrated in dense clusters or multiplex relations of social networks.  

Our goal is to discover such communities from time-varying multi-relational social 

data. Based on the technical challenges discussed above, we identify three research 

questions addressed in this work: 

(1) How to model such multi-relational social data? 

(2) How to reveal the underlying communities that are consistent across multiple 

relations? 

(3) How to track those communities over time? 

1.2 Our Approach 

We propose MetaGraph Factorization (MetaFac), a framework that extracts latent 

community structures from various social interactions. There are three key ideas in our 

framework: 
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(1) We propose metagraph (ref. Figure 2), a novel relational hypergraph representation 

for modeling multi-relational and multi-dimensional social data. A metagraph is a 

multi-relational hypergraph where each vertex represents a facet (i.e. a set of objects 

or entities of the same type), and each hyperedge represents the relation among 

facets. We use a metagraph to configure the relational context (a particular 

combination of facets and relations), which is the key to making our community 

analysis adaptable to various social contexts. 

(2) We propose an efficient multi-relational factorization method for latent community 

extraction on a given metagraph. Given a social context, we represent multi-

relational data as multiple conjunct data tensors where the conjunction is defined by 

a metagraph (e.g. based on the metagraph shown in Figure 2(b), the data tensor 

representing the ―bookmark‖ relation is in conjunction with another data tensor 

representing the ―join-project‖ relation due to the shared user facet). We formalize 

the latent community extraction as an optimization problem where the goal is to 

factorize the conjunct data tensors into a nonnegative superdiagonal core tensor 

multiplied by a nonnegative factor matrix along each facet. The optimization 

objective is defined as a function of the metagraph and the metagraph defines a 

combination of generalized KL-divergences, each of which corresponds to a relation 

represented by a data tensor on the given metagraph. The latent communities are 

determined by the factorization where the core tensor indicates the prior probability 

of each community and the factor matrices indicate the probability of each facet 

element given a community. We provide an efficient iterative algorithm that 

guarantees convergence to a local optimal solution, with the time complexity per 

iteration linear in the number of non-zero elements in all data tensors. 

(3) We provide an on-line method to handle time-varying relations through incremental 

metagraph factorization. We incorporate an evolutionary clustering criterion in our 

metagraph-based optimization function so that the new community structure (of time 

t) to be extracted is consistent with prior community structure (of time t-1) and new 

observations (of time t). We introduce an additional cost to indicate how the new 

community structure deviates from the previous structure in terms of the generalized 

KL-divergence, and we provide an efficient iterative algorithm to search new 

community structures that do not significantly deviate from prior community 

structures. 
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We have conducted extensive experiments on real-world social media data collected 

from an enterprise (denoted as ―ENTERPRISE‖ data) and the public Digg social media 

website. The results suggest that our technique is scalable and is able to extract 

meaningful communities based on the given social media context. We have found 

meaningful communities from the ENTERPRISE dataset. The communities exhibit 

distinct behavior corresponding to the engineering and sales subcultures within the 

enterprise. From the Digg data, we have found communities with distinct topical interests 

(e.g. gaming industry news, election news, world news, etc.) and their evolution 

corresponds to significant world or political events, such as the 2008 Summer Olympics 

and the Russia-Georgia conflict. 

We further illustrate the usefulness of our framework through prediction tasks – to 

predict users’ future interests in using specific bookmarking tags, as well as voting and 

commenting on Digg stories. The prediction performance is evaluated in terms of P@10 

(the precision of the top 10 results) and NDCG (Normalized Discount Cumulative Gain), 

and we compare the prediction given by our community discovery framework with 

several baseline methods suitable for individual prediction tasks, including a widely-

adopted collective filtering method (the probabilistic latent semantic analysis [Hofmann 

1999] or pLSA) and a higher-order tensor decomposition method (PARAFAC). Our tag 

Figure 2: We propose a metagraph representation to model various social contexts – 
(a) users and related objects in an collaborative environment; (b) a metagraph 
representation for (a); (c) latent community structure in (a), where C1 and C2 are two 
clusters we want to discover. 

(a) 

(b) (c) 
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prediction in the ENTERPRISE dataset outperforms the baseline methods by 43-81% 

(P@10) or 27-72% (NDCG) on the average. We found that by leveraging cooperative 

relations (the department and directory of an employee), 19.46% of the users’ future 

interests can be predicted by our method. Our voting and commenting prediction results 

in the Digg data outperforms the baseline methods by an order of magnitude. Specifically, 

our method outperforms the best baseline by 43% (P@10), 45% (NDCG), and 73% 

(P@10), 89% (NDCG), respectively. We further show that our prediction in both datasets 

can be further improved by incorporating historic community structure through 

incremental metagraph factorization and leveraging other relations through a metagraph. 

Although the experiment results indicate predicting users' future interests based on 

historic data is non-trivial, these results still suggest the utility of leveraging metagraphs 

to handle time-varying social relational contexts.  

This article is a significant extension of our prior work [Lin et al. 2009b] and is our 

first comprehensive discussion on this subject. In this article, we include new 

experimental results, detailed algorithms and proofs. In particular there are several major 

extensions over prior work [Lin et al. 2009b]. 

(1) Extended discussion on the problem: In section 1, we use the proliferation of social 

media in enterprises to motivate the problem – how new collaborative structures can 

emerge through the use of social media and why extracting the emergent latent 

structures is important and challenging. In the problem formulation (section 4), we 

use an extended enterprise example to illustrate how diverse social contexts are 

modeled through the metagraph representation.  

(2) Details and proof of the algorithms: In section 5, we formulate the community 

discovery on metagraph (metagraph factorization) as an optimization problem and 

provide an example to explain the formulation. We provide an iterative algorithm for 

solving the metagraph factorization problem and provide the proof of the 

convergence of this algorithm. In addition, we provide a pictorial view for 

illustrating the steps of finding a solution to the example problem and further discuss 

the probability interpretation of the solution. 

(3) New and extensive experiment results: In section 7, we provide more experimental 

results from a real world enterprise dataset. We examine the effectiveness of our 

method on this dataset by using case studies and a prediction task. We further 

employ a forward-feature selection approach to select the best combination of 
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relations for prediction. The results suggest the applicability of our algorithm for 

extracting latent collaborative structures from dynamic social contexts. 

This work is also related to our recent published work [Lin et al. 2009a], in which we 

propose the first generative model to extract communities based on both observed 

networked data and historic community structure. This work adopts a similar 

evolutionary clustering criterion to develop an on-line algorithm for extracting smoothly 

evolving community structures. The novel idea in this work is that we leverage the social 

embeddedness theory [Granovetter 1985] in sociology and develop a framework to deal 

with multiplex relations of social networks, which results in richer analytics and 

applications. Specifically, this work extends the prior work [Lin et al. 2009a] in three 

new aspects: (a) Multi-relations: Unlike our prior work [Lin et al. 2009a] that focuses on 

the pairwise relations between entities, this work considers a more general multi-

relational networked data observed in rich-context social media. By introducing the 

metagraph representation, the algorithms proposed in this work can deal with multiple 

relations when they share the same set of entities. (b) Multi-dimensions: By using tensor 

(multilinear) algebra rather than matrix representation, the algorithms proposed in this 

work can handle arbitrarily many dimensions in a relation. (c) Rich analytics: Instead of 

using a symmetric matrix factorization, we extract community structures as a core tensor 

and a set of facet factor matrices which summarize communities from various dimensions 

(such as users, tags, feeds and comments) via different facet factors. The facet factors 

obtained across time can be used to detect community changes in different dimensions. 

They also allow an estimation of interactions between data entities in any two dimensions. 

We have employed this feature to predict users’ potential interests in media objects such 

as tags and stories. 

The experiments of this work focus on examining the proposed method in multi-

relational network cases. Detecting communities in dynamic, uni-relational networks has 

been extensively discussed in our prior work [Lin et al. 2009a], where, by using synthetic 

datasets, we illustrate that our algorithm is capable of assigning meaningful community 

membership to a node to indicate the level of the node belonging to a community. We 

compare our algorithm with non-evolutionary as well as evolutionary algorithms in 

different noise conditions and show that our algorithm clearly outperforms baseline 

algorithms. For more results in uni-relational networks, we refer readers to our prior work 

[Lin et al. 2009a]. 
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The rest of the paper is organized as follows. Section 2 reviews the related work. 

Section 3 introduces preliminaries and section 4 formalizes the problem. Sections 5 and 6 

present our community extraction method on both static and dynamic multi-relational 

data. Section 7 describes experiments. Section 8 discusses the open issues of the 

presented approach and section 9 concludes. 

2. RELATED WORK 

Community discovery in rich media social networks deals with a constantly changing 

―mishmash‖ of interrelated users and media objects, which involves three aspects: (1) 

evolutionary characterization of communities in time-varying social networks (section 

2.1), (2) analysis of multi-dimensional data (section 2.2), and (3) relational learning 

adaptable to different social contexts (section 2.3). To the best of our knowledge, our 

work is the first unified attempt to address all three aspects within a single problem. 

2.1 Evolutionary Community Characterization 

Communities in static networks. Community discovery has been extensively studied in 

social network analysis and other research areas. Many approaches, such as clique-based, 

degree-based and matrix-perturbation-based, have been proposed to extract cohesive 

subgroups from social networks [Wasserman and Faust 1994]. Recently, many effective 

algorithms have been proposed to find clustering structures from networked data, 

including spectral clustering algorithms [Chung 1997; Shi and Malik 2000] based on the 

eigenvectors of certain normalized similarity matrices. Newman and Girvan [2004] 

propose community extraction algorithms based on a modularity measure that quantifies 

the strength of community structure in a network. Yu et al. [2005] propose a soft 

clustering algorithm on graphs where the cluster memberships are assigned in a 

probabilistic way. This algorithm is closely related to the mixture model proposed by 

Newman and Leicht [2007] and the stochastic block model proposed by Holland et al. 

[1981]. Researchers have extended the stochastic block model in different ways. Airoldi 

et al. [2008] propose a mixed-membership stochastic block model. Kemp et al. [2004] 

propose a model that allows an unbounded number of clusters. Hofman et al. [2008] 

propose a Bayesian approach based on the stochastic block model to infer module 

assignments and to identify the optimal number of modules. Besides monopartite graphs, 

there is a growing body of work on community detection in bipartite graphs [Barber et al. 

2008; Grujic et al. 2009; Harada et al. 2007]. A comprehensive review on community 

detection has been provided by Fortunato [Fortunato 2010].  
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Evolutionary Communities. Recent research based on the statistical properties of 

online social networks provides important insight regarding the structure and evolution of 

social behavior [Backstrom et al. 2006; Leskovec et al. 2008]. The structure of social 

interactions among people have been studied through unipartite or bipartite graphs, in 

which the community structure can be characterized by clustering methods [Sun et al. 

2007] or a latent space model [Sarkar and Moore 2005], and the evolution of community 

structure is captured in terms of various criteria.  

Kumar et al. [2006] study the evolution of the blogosphere in terms of the change of 

graph statistics and the ―burstiness‖ of extracted communities. Aggarwal and Yu [2005] 

discuss an online approach to detect community changes in the graph streams based on 

the changes of edges (surrounding a set of seeded nodes) over a pre-defined time period. 

Berger-Wolf and Saia [2006] propose ―metagroup statistics‖ to quantify the dynamics of 

social network structures based on interactions between groups of nodes over time. 

Spiliopoulou et al. [2006] propose a framework, MONIC, to monitor cluster transitions 

over time. They define a set of external transitions such as survive, split and disappear, to 

model transactions among different clusters and a set of internal transitions such as size 

and location transitions, to model changes within a community. Asur et al. [2007] 

introduce a family of events on both communities and individuals to characterize 

evolution of communities. The work of Palla et al. [2007] and Falkowski et al. [2006] use 

a two-step approach that extracts groups per time slice and then quantifies their evolution 

based on membership differences.  

Sarkar and Moore [2005] propose a method that embeds nodes into latent spaces 

where the node coordinates at consecutive timesteps are regularized to avoid dramatic 

changes. Sun et al. [2007] use the Minimum Description Length principle to extract 

communities and to detect their changes. Tantipathananandh et al. [2007] propose an 

optimization-based approach for modeling dynamic community structure such that 

individuals do not change their ―home community‖ too frequently and tend to interact 

with the home community most of the time, with a condition that only transitive 

interactions (across time) are allowed. Chi et al. [2007] use an evolutionary clustering 

criterion [Chakrabarti et al. 2006] and propose the first evolutionary spectral clustering 

algorithms for extracting clusters that smoothly evolving over time. They used graph cut 

as a metric for measuring community structures and community evolutions. Lin et al. 

[2009b] use a similar idea to extract community structures based on both observed 

networked data and historic community structure. They propose the first generative 
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model to extract communities and their evolutions in a unified process. Yang et al. [2009] 

extend the generative model in the work of Lin et al. [2009b] and model the changes in 

community memberships over time explicitly by transition parameters, and a Bayesian 

treatment of parameter estimation is employed to improve point estimation results. 

All these works restrict themselves to pair-wise relations between entities (e.g. user-

user or user-document). In rich-context online social media, networked data consists of 

multiple co-evolving dimensions, e.g. users, tags, feeds, comments, etc. Collapsing such 

multi-way networks into pairwise networks results in the loss of valuable information, 

and the analysis of temporal correlation among multi-dimensions is difficult. 

2.2 Multi-dimensional Mining 

Existing techniques include tensor based analysis [Bader et al. 2006; Chi et al. 2008; Sun 

et al. 2007] or multi-graph mining [Zhu et al. 2007]. Tensor factorization is a generalized 

approach for analyzing multi-way interactions among entities. Note that a tensor 

represents complete interactions among all involved entities, which is a very strong 

assumption in social media since there might be events involving some but not all 

dimensions. Multi-graph mining considers joint factorization over two or more matrices. 

The combination of such matrices is domain-specific, e.g. in text mining, Zhu et al. [2007] 

propose a joint matrix factorization combining both linkage and document-term matrices 

to improve the hypertext classification. In social media, relations depend on the system 

features, which might consist of heterogeneous relations. Moreover, these relations may 

change over time in a social media website, which requires a more flexible relational 

model. 

2.3 Relational Learning 

Relational techniques such as Probabilistic Relational Models (PRMs) [Friedman et al. 

1999] or Relational Markov Networks (RMNs) [Taskar et al. 2002] extend graph models 

to deal with various combinations of probabilistic dependency among entities. Such 

techniques can be computationally expensive, and may not scale to the large amount of 

data present in social media platforms. There have been relational learning techniques 

through pairwise relationships among entities [Bekkerman et al. 2005; Long et al. 2007; 

Singh and Gordon 2008; Tang et al. 2008; Wang et al. 2006]. For example, Singh and 

Gordon [2008] present a collective matrix factorization model that simultaneously factors 

several matrices with sharing factor parameters for entities participating in multiple 

pairwise relations. It shows that the collective matrix factorization, by exploiting the 

correlations between relations, can achieve higher prediction accuracy than factoring 
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each matrix separately. The idea of exploiting correlation among multiple relations is 

similar to our work. However, one issue in their model is that each data matrix is 

factorized by two factors shared among relations. The stochastic constraint that each row 

of the factor matrices sums to one, usually leads to inconsistent interpretation for the 

cluster posterior derived from the shared factors of matrix factorization (i.e. the same 

factor may be interpreted as prior or posterior probability depending on whether it is the 

left or right factor of a matrix). In contrast, consistent cluster posterior can be derived 

from our model in a straightforward manner. Another common issue in such matrix 

factorization approach is that, when data has higher-order interactions, transforming the 

data into matrices incurs loss of information. Our work shares the same advantages as 

Kemp et al. [2006] and Banerjee et al. [2007], which can handle multiple higher order 

relations via tensor algebra, but their settings are different from ours. 

Our unique contribution. In sum, social media analysis requires a flexible and 

scalable framework that exploits relational context defined by the system features of 

individual social media platforms. Such relational context is multi-dimensional, sparse 

(not all dimensions are involved in an event), and evolving over time. We propose the 

first graph-based tensor factorization algorithm to analyze the dynamics of heterogeneous 

social networks. Our method involves a novel ―metagraph‖ representation based on 

hypergraphs [Berge 1976].  

A hypergraph [Berge 1976] is a graph in which more than two vertices are linked by 

the same edge, and hence allowing for the manipulation of "sets of different types of 

objects." The theory of hypergraphs has been used to analyze data structures in several 

areas [Rugg 1984; Seidman 1981]. Specifically, the term ―metagraph‖ has been used in a 

different context [Basu and Blanning 2007]. Basu and Blanning [2007] introduce 

metagraphs to depict the process of decision support systems and workflow management 

systems. The principal difference between their definition of a metagraph and ours is that 

their metagraph is defined to be a set of elements, along with a set of pairwise directed 

edges, and the manipulation of their metagraph is based on matrix algebra. By our 

definition, a metagraph is a hypergraph (with undirected hyperedges; see section 4.2 for a 

precise definition) and the formulation is based on tensor algebra. We use the term 

metagraph because of the following reason. In our metagraph, nodes are facets, and 

hyperedges refer to relations between the facets. In the traditional use of the term 

hypergraph, a hyperedge refers to a relation between specific instances (nodes refer to a 

certain facet instance, not a facet). So in our metagraph, there can be a hyperedge 
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amongst, e.g., users, locations and jobs, whereas in a familiar hypergraph use, there is an 

edge amongst something specific, e.g., john, New York and secretary. 

In the next section, we provide background on tensors. 

3. PRELIMINARIES ON TENSORS 

This section provides notations and essential background on tensors (section 3.1) and 

some basic operations (section 3.2). Tensor notations and operations provide a compact 

language that allows us to derive a formal representation of the heterogeneous social 

networks. For a more comprehensive discussion on tensors, we refer readers to Bader and 

Kolda’s review [2006]. 

3.1 Tensors 

A tensor is a mathematical representation of a multi-way array. The order of a tensor is 

the number of modes (or ways). A first-order tensor is a vector, a second-order tensor is a 

matrix, and a higher-order tensor has three or more modes. We use x as a vector, X as a 

matrix, and  as a tensor. The dimensionality of a mode is the number of elements in that 

mode. We use Iq to denote the dimensionality of mode q. E.g., the tensor 1 2 3 
I I I

X has 

3 modes with dimensionalities of I1, I2 and I3, respectively. + indicates that all elements 

of the tensor  have nonnegative values, which is usually the case for a data tensor. The 

(i1,i2,i3)-element of a third-order tensor is denoted by 
1 2 3i i ix . Indices range from 1 to their 

capital version, e.g. i1=1,…,I1. 

3.2 Basic Operations 

Mode-d matricization or unfolding: Matricization is the process of reordering the 

elements of an M-way array into a matrix. The mode-d matricization of a tensor 

1  MI IX  is denoted by X(d), i.e. {1,.., },

( )( , )  
  d qq M q d

I I

dunfold d XX . Unfolding a 

tensor on mode d results in a matrix with height Id and its width is the product of 

dimensionalities of all other modes. 

The inverse operation is denoted as 1
( )( )    MI I

dfold XX . 

In general the unfolding operation can be defined on multiple modes. For example, 

we can define mode-(c,d) unfolding as 
   {1,.., }, ,

( , )( ,( , ))  
   c d qq M q c d

I I I

c dunfold c dX X . 

Unfolding a tensor on two modes c and d results in a three-way tensor. Similarly, we can 

define a vectorization operation x=vec(), which linearizes the tensor into a vector. 
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Mode-d product: The mode-d matrix product of a tensor 1  MI IX  with a matrix 

 dJ I
U  is denoted by dU and results in a tensor of size I1…Id-1J Id+1…IM. 

Elementwise, we have 
1 1 1 1 21

( )
  

  d

d d M M dd

I

d i i ji i i i i jii
x uUX . 

Mode-d accumulation: A mode-d accumulation or summation is defined as 

( )( , )   dI

dacc d X 1X . The operation sums up all entries across all modes except for 

mode d, which results in a vector of length Id. Accumulating a tensor on mode d can be 

obtained by unfolding the tensor on mode d into a matrix and then multiplying the matrix 

with an all-one vector. Like the unfolding operation, accumulation can be defined on 

multiple modes, e.g. a mode-(c,d) accumulation ( , ) 3( ,( , ))    c dI I

c dacc c d 1X X , which 

will result in a matrix of size IcId. 

The Kronecker product of matrices AIJ and BKL is denoted by AB. The 

result is a matrix of size (IK)(JL) and defined by 

11 12 1

21 22 2

1 2

 
 
  
 
 
 

J

J

I I IJ

a a a

a a a

a a a

B B B

B B B
A B

B B B

. 

The Khatri-Rao product is the ―matching columnwise‖ Kronecker product. The 

Khatri-Rao product of matrices AIK and BJK is denoted by AB and defined by 

 1 1 2 2    K KA B a b a b a b , where ak and bk are the kth column vectors of A 

and B respectively. 

Tensor decomposition or factorization decomposes a tensor into a core tensor 

multiplied by a matrix along each mode. Thus, in the three-way case where IJK, we 

have 1A2B3C, which means each element of the tensor  is the product of the 

corresponding matrix elements multiplied by weight zpqr, i.e. 

1 1 1  
  P Q R

ijk pqr ip jq krp q r
x z a b c . Here, AIP, BJQ and CKR are called factor 

matrices or factors. The tensor PQR is called the core tensor and its elements show 

the level of interaction between different components. A special case of tensor 

decomposition is referred as CP/PARAFAC decomposition [Carroll and Chang 1970; 

Harshman 1970; Hitchcock 1927], where the core tensor is superdiagonal and P=Q=R. 

(A tensor 1  MI IX  is called superdiagonal if 
1

0
Mi ix  only if i1=…=iM.) The CP 



16 
 

decomposition of a third-order tensor is then simplified as 
1

R

ijk r ir jr krr
x z a b c , as 

illustrated in Figure 3. We use [z] to denote a superdiagonal tensor, where the operation [⋅] 
transforms a vector z to a superdiagonal tensor by setting tensor element zk…k=zk and 

other elements as 0. Thus the CP decomposition of a three-way tensor can be written as 

[z]1A2B3C. 

4. PROBLEM FORMULATION 

This section defines the problem of discovering latent community structure that 

represents the context of user actions in social networks. We discuss the community 

discovery problem and the issues involved in section 4.1. In section 4.2, we propose 

metagraph – a representation of multi-relational social context. In section 4.3, we 

formally state the technical problems of community discovery from multi-relational 

social data represented by a metagraph. 

4.1 Community Discovery 

We formalize the community discovery problem as latent space extraction from multi-

relational social data. Our goal is to discover latent community structures that represent 

the context of user actions in social media networks. We are interested in clusters of 

people who interact with each other in a coherent manner. Some of the interaction can be 

implicit, as when two users bookmark the same document, and the interactions can be 

further enhanced by other interactions. Hence we consider a community as a latent space 

of consistent interactions or relations among users and objects. In other words, 

interactions most likely occur when the involved users or objects belong to the same 

community. 

As discussed in section 1.1, there are several issues involved in community discovery: 

(1) how to represent multi-relational social data, (2) how to reveal the latent communities 

consistently across multiple relations, and (3) how to track the communities over time. 

We address the first issue in the next subsection. The second and the third issues will be 

Figure 3: CP decomposition of a three-way tensor. 
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formalized as optimization problems (section 4.3) and the solutions are given in section 5 

and 6, respectively. 

4.2 Metagraph Representation 

We introduce metagraph, a relational hypergraph for representing multi-relational and 

multi-dimensional social data. We use a metagraph to configure the relational context – 

this is the key that makes our community analysis adaptable to various social contexts, 

for example, an enterprise or a social media platform like Digg. We shall use an 

enterprise example to illustrate three concepts: facet, relation, and relational hypergraph. 

As illustrated in Figure 4(a), assume we observe a set of users in an enterprise. These 

users might collaborate through different working projects, e.g. user u1 and u2 work for a 

project j1, and user u2 belongs to two projects, j1 and j2 at the same time. Collaboration 

can occur implicitly with the aid of social media. For example, these users can interact 

with each other through instant messenger or email, e.g. user u3 frequently ―IMs‖ with u1 

and u2.  
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Some of them might use a bookmarking system to share information (webpages or 

Figure 4: (a) A toy example that shows users and related objects in an enterprise. (b) 
Different types of objects interact with one another through different relationship. (c) 
A metagraph that represents the enterprise social context. (d) A hyperedge indicates 
that the incident facets are involved simultaneously. 

(a) 
 

(b) 
 

(c) (d) 
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documents) that is relevant to their work. A typical bookmarking system allows a user to 

annotate shared documents with tags. A bookmarking activity involves a user, a 

document and one or more tags simultaneously, and it can be described as a tuple, e.g. u1, 

r1, x4 represents a user u1 bookmarks a document r1 with a tag x4. 

To represent such social context, let us assemble the same type of objects or entities, 

as in Figure 4 (b). We denote a set of objects or entities of the same type as a facet, e.g. a 

user facet is a set of users, a project facet is a set of projects. We denote the interactions 

among facets as a relation; a relation can involve two (i.e. binary relation) or more facets, 

e.g. the ―join-project‖ relation involves two facets user, project, and the ―bookmark‖ 

relation involves three facets user, document, tag. A facet may be removed from a 

metagraph if the facet entities do not interact with other facets, e.g. the set of bookmark 

entities might be omitted due to no interaction with other facets. 

Formally, we denote the q-th facet as v
(q) and the set of all facets as V. A set of 

instantiations of an M-way relation e on facets v(1), v(2),…, v(M) is a subset of the Cartesian 

product v(1)…v
(M). We denote a particular relation by e(r) where r is the relation index. 

The observation of an M-way relation e(r) is represented as an M-way data tensor (r). 

Now we introduce a multi-relational hypergraph, denoted as metagraph, as shown in 

Figure 4 (c), to describe the combination of relations and facets in a specific social 

context. A hypergraph is a graph where edges, called hyperedges, connect to any number 

of vertices. The idea is to draw a hypergraph such that each vertex represents a facet, and 

an M-way hyperedge represents the set of interactions of M facets. Such a hypergraph is a 

―graph about graphs‖ because a hyperedge on a metagraph represents many instance 

hyperedges and a vertex on a metagraph represents many data entities in the observed 

networks. By using a metagraph, we can represent a diverse set of relational contexts in 

social networks. Note that a metagraph defines a particular structure of interactions 

among facets, as opposed to specific interactions among facet elements. 

Formally, for a set of facets V={v
(q)} and a set of relations E={e

(r)}, we construct a 

metagraph G=(V,E). To reduce notational complexity, V and E also represent the set of 

all vertex and edge indices respectively. A hyperedge/relation e(r) is a tuple consisting of 

vertices as its elements; e(r) is said to be incident to a facet/vertex v(q) if v(q) is an element 

in e
(r), which is represented by v

(q)~e
(r) or e

(r)~v
(q). E.g., in Figure 4 (c), the vertex v

(1) 

represents the user facet, and the hyperedge e(1)=v(1),v(2),v(3) represents the ―bookmark‖ 

relation. Note that the three-way hyperedge e(1) implies interactions between any two of 
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the three facets, as shown in Figure 4(d). However, the hyperedge representation is more 

informative than a complete subgraph (i.e. a clique), e.g. the triangle in Figure 4 (d), as it 

indicates all incident facets are involved in the corresponding relation simultaneously. We 

summarize our notations in Table 1. 

Symbol Description 

x a vector (boldface lower-case letter) 
X a matrix (boldface capital letter) 

 a tensor (boldface Euler script letter) 

I1,…,IM the dimensionality of mode 1, …, M 
  

v
(q)

 a vertex v(q)V represents the facet v(q) 
e

(r)
 a hyperedge e(r)V represents the relation e(r) 

V the set of all facets V={v
(q)}, or the set of all vertex indices  

E the set of all relations E={e
(r)}, or the set of all hyperedge indices 

G 
a metagraph G=(V,E), where V is a set of facets and E is a set of 
relations 

K, L Constants 
Table 1: Description of notations. 

The concepts involved in a metagraph may also be related to the Entity-Relationship 

models (ERMs) [Chen 1976], which are abstract representations of data for database 

modeling. The commonality is that both metagraphs and ERMs are used to represent the 

mathematical concepts about M-way relations. Although we could consider a facet in a 

metagraph as an entity set, and a relation in a metagraph as a relationship set in an ERM, 

a range of notions used in the ERM modeling, such as attributes and key constraints, do 

not have corresponding semantics in our mathematical representation.  To prevent 

misconceptions, we propose using a metagraph as a succinct representation of our model 

instead of deriving terminologies from the ERMs. Besides, the metagraph representation 

has a corresponding probabilistic interpretation about event spaces, which will be 

discussed in section 5.2. 

4.3 Community Discovery using Metagraphs 

We assume consistent interactions in a community (ref. section 4.1). Therefore, the 

interaction between any two entities (users or media objects) i and j in a community k, 

written as xij, can be viewed as a function of the relationships between community k with 

entity i, and k with entity j. The function can be considered to be stochastic. By letting 

pki indicate how likely an interaction in the k-th community involves the i-th entity and 

pk be the probability of an interaction in the k-th community, we can express xij by xijk 

pkpkipkj. Figure 5(a) illustrates how the interactions in a user-document network are 
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captured by two communities. In Figure 5 (a), the interaction between user u7 and 

document r6 is captured by community C1 and C2 in terms of 

7 6 7 6C1 C1 C1 C2 C2 C2       u r u rp p p p p p , where pC1 and pC2 represent the probability of an 

interaction in C1 or C2 (visually indicated by the ellipse sizes), and where 

7 6 7 6C1 C1 C2 C2,  ,  ,     u r u rp p p p represent how likely the two communities involves user u7 and 

document r6, respectively (visually indicated by the thickness of the links connected to 

communities C1 and C2). 

(a) 

(b) 
 

(c) 
 

Figure 5: (a) An illustration of how two communities capture consistent interactions in 
a user-document network, e.g. the interaction between user u7 and document r6 are 
captured by community C1 and C2 in terms of their relationship with C1 and C2. (b) 
An illustration of how two communities capture the three-way interaction among users, 
documents and tags. (c) We seek to find communities that capture all the relations 
shown in Figure 4. 
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Likewise, 
1 2 3i i ix is a three-way interaction among entities i1, i2 and i3 and is factorized 

as follows:
1 2 3 1 2 3     i i i k k i k i k ik

x p p p p . Figure 5 (b) illustrates how the three-way 

interaction among users, documents and tags is captured by two communities, e.g. the 

interaction among user u7, document r6 and tag x4 is captured by C1 and C2 in terms of 

7 6 4 7 6 4C1 C1 C1 C1 C2 C2 C2 C2           u r x u r xp p p p p p p p . A set of such interactions among 

entities in facet v(1), v(2) and v(3) can be written as follows: 

3
(1) (2) (3) ( )

1 1

[ ] ,
 

   
K

m

k k k k m

k m

p u u u z UX [     <1> 

where, 1 2 3 
I I I

X  is the data tensor representing the observed three-way interactions 

among facets v(1), v(2) and v(3), [z] is a nonnegative superdiagonal core tensor, and where 

 qk ip  is written as an (iq,k)-element of U(q) for q=1,2,3. U(q) is a IqK matrix, where Iq is 

the size of v
(q). The probabilities of communities are elements of z, i.e. pk=zk. This is 

similar to the CP decomposition of a tensor (ref. section 3.2), except that the core tensor 

[z] and the factor matrices {U
(q)} are constrained to contain nonnegative probability 

values. Under the nonnegative constraints and each column of {U
(q)} must sum to one, 

the 3-way tensor factorization is equivalent to the three-way aspect model in a three-

dimensional co-occurrence data [Popescul et al. 2001]. 

The nonnegative tensor decomposition can be viewed as community discovery in a 

single relation. The interactions in social media networks are more complex – usually 

involving multiple two- or multi-way relations. In the enterprise example, we seek to find 

communities that capture all the relations shown in Figure 4, as illustrated in Figure 5 (c). 

By using metagraphs, we represent a diverse set of relational contexts in the same form 

and define the community discovery problem on a metagraph, with the following two 

technical issues.  

The first issue is how to extract community structure as coherent interaction latent 

spaces from observed social data defined on a metagraph, which is formally stated as 

follows. 

Problem (Metagraph Factorization, or MF): given a metagraph G=(V,E) and a set 

of observed data tensors {(r)}rE defined on G, find a nonnegative superdiagonal core 
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tensor [z] and factors {U
(q)}qV for corresponding facets V={v

(q)} so as to explain the 

distribution of the observed data.1 

The second issue concerns the dynamic nature of human activities – those interactions 

might be consistent during a short time period but are unlikely to be stable all the time. 

The problem, how to extract community structure as coherent interaction latent spaces 

from time evolving data given a metagraph, is defined below. 

Problem (Metagraph Factorization for Time evolving data, or MFT): given a 

metagraph G=(V,E) and a sequential set of observed data tensors {t
(r)}rE defined on G 

for time t=1,2,…, find a nonnegative core tensor [zt] and factors {Ut
(q)}qV corresponding 

to facets V={v
(q)} for each time t so as to explain the distribution of the observed data. 

We will present our method in two steps: (1) present a solution to MF (section 5.1); (2) 

extend the solution to solve MFT (section 5.2). 

5. METAGRAPH FACTORIZATION 

This section presents our solution to the metagraph factorization problem (MF). Our 

method relies on formulating MF as an optimization problem (section 5.1). We then 

provide an algorithm to find a solution to the optimization objective and discuss its 

computational complexity (section 5.2). 

5.1 Optimization Objective 

The MF problem can be stated in terms of optimization. Let us first consider a toy 

example. Assume we are given a metagraph G=(V,E) with three vertices V={v
(1), v(2), v(3)} 

and two 2-way hyperedges E={e
(a),e(b)} that describe the interactions among these three 

facets, as shown in Figure 6. The observed data corresponding to the hyperedges are two 

second-order data tensors (i.e. matrices) {(a),(b)} with facets {v
(1), v(2)} and {v

(2), v(3)} 

respectively. The facet v(2) is shared by both tensors.  

The goal is to extract community structure from data tensors, through finding a 

nonnegative core tensor [z] and factors {U
(1), U(2), U(3)} corresponding to the three facets. 

The core tensor and factors need to consistently explain the data, i.e. we can 

approximately express the data by (a)[z]1U
(1)2U

(2) and (b)[z]2U
(2)3U

(3), as in 

eq<1>. The core tensor [z] and facet U(2) are shared by the two approximations, and the 

                                                           
1 Since E also represents the set of all edge indices, the notations rE and e(r)E are 
interchangeable. Likewise, qV and v(q)V are interchangeable. 
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length of z is determined by the number of latent spaces (communities) to be extracted. 

Since both the left- and the right-hand side of the approximation are probability 

distributions, it is natural to use the KL-divergence (denoted as D(||)) as a measure of 

approximation cost. To simultaneously reduce two approximation costs we can define a 

cost function as: 

 ( ) (1) (2) ( ) (2) (3)
1 2 2 3( || [ ] ) ( || [ ] )    a b

D Dz U U z U UX X ,    <2> 

where D(||)=i (ai log ai/bi – ai + bi) is the generalized KL-divergence (also called I-

divergence) between tensor  and  and a = vec(), b = vec(), i ai = i bi =1. 

The solution to eq.<2> will be an MF solution for the metagraph in Figure 6. We 

observe three things in this example: In eq.<2>, each D(||) corresponds to a hyperedge, 

each tensor product operation corresponds to how facets are incident to a hyperedge, and 

the summation operation corresponds to all hyperedges on the graph. We then generalize 

eq.<2> to any metagraph G, as follows. 

Given a metagraph G=(V,E), the objective is to factorize all data tensors such that all 

tensors can be approximated by a common nonnegative superdiagonal core tensor [z] and 

a shared set of nonnegative factors {U
(q)}, i.e., to minimize the following cost function: 

( ) ( )

( ) ( )

: ~

1 ( ) ( )

( ) ( || [ ] )

.  ,  , 1 




 

 

     

 


m r

q

r m

m

r E m v e

I KK q q

iki

J G D

s t q q k

z U

z U U

X
    <3> 

where K is the number of communities, and D(||) is the generalized KL-divergence as 

described above. The constraint that each column of {U
(q)} must sum to one is added due 

Figure 6: A toy example of the metagraph factorization (MF). Given observed data 

tensors {(a),(b)} and a metagraph G that describes the interaction among facets {v
(1), 

v
(2), v

(3)}, find consistent community structure expressed by core tensor [z] and facet 
factors {U

(1), U(2), U(3)}. 
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to the conditionally independent assumption, that is, the probability of an occurrence of a 

relation on an entity is independent of other entities in a community.   

Without loss of generality, we have assumed the elements in each of the data tensors 

are nonnegative and sum to one such that each data tensor represents a distribution over 

all possible co-occurrences of elements in incident facets. With this normalization, we 

can balance different types of relations in the objective, since the amount of data in each 

relation can vary. Eq.<3> can be easily extended to incorporate weights on relations (to 

encode the importance of different relations). 

5.2 Algorithm 

We now present an algorithm for identifying K communities from data tensors by finding 

a solution to the objective function defined in eq.<3> above. From eq.<3>, it is difficult 

to guarantee a global minimum solution2, as eq.<3> is not convex in all variables. In the 

following we derive a local minimum solution to eq.<3> by employing the concavity of 

the log function in the generalized KL-divergence.  

Theorem 1. The cost defined in eq.<3> is non-increasing under the following update 

rules and therefore converges to a (local) optimal solution to the MF problem: 

1 1

1

( ) ( )
... ...

...

1 


   M Mr r

Mr

r r

k i i i i k

r E i iL
z X ,      <4>

1 1
( ) ( )

1 1 1

( ) ( ) ( )
... ...

... ...: ~

( )

1
,

  ,


 

  q M Ml l
l q

q q Ml

q l l

i k i i i i k

i i i il e vq

q

L

then normlize such that each column of sum to one

U

U

X
   <5> 

where z is a length K vector, L=|E| denotes the total number of hyperedges on G, 

Lq=|{l:e(l)~v
(q)}| denotes the number of hyperedges incident to v(q), and 

( )

( ) ( )

1
( ) ( )

1

( ) : ~
( )

: ~
([ ] )

 





m

m r
m

Mr
m r

Mr

k i kr m v e
i i k m

m i im v e

z U

z U
.     <6> 

The proof of Theorem 1 is provided in the appendix. Because of the column 

normalization step of U(q), we can omit dividing by Lq in eq.<5>. The initial values of z 

and {U
(q)} can be drawn from a uniform distribution. This iterative update algorithm is a 

generalization of the algorithm proposed by Lee and Seung [2001] for solving the single 

nonnegative matrix factorization problem. In metagraph factorization, the update for the 

                                                           
2 The NP-hardness results for nonnegative matrix factorization established by Vavasis 
[Vavasis 2007] suggest that solving the nonnegative tensor factorization to optimality 
may also be a difficult problem. 
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core tensor [z] depends on all hyperedges on the metagraph, and the update for each facet 

factor U(q) depends on the hyperedges incident to the facet. 

The computation in eq.<4>–<6> can be time-consuming due to the high 

dimensionalities of tensors. We now discuss an efficient implementation of the update 

rules. In eq.<4>–<6>,
1

( )
Mr

r

i i k  is an element of a 1  
rMI I K  tensor. Let (r) 

+ 

denote this tensor, where  denotes the dimensionalities 1  
rMI I K in short. Because 

(r) is expensive to compute and operate, we want to reduce computation that involves 

(r). By observing the shared part for updating the core tensor and all facet factors in 

eq.<4> and <5>, we can use the following strategy to achieve efficient computation: 

Instead of computing (r) explicitly, we compute an intermediate tensor (r) of the same 

dimensionalities as (r). (r) will save the repeating part of multiplication of (r) with 

{U
(q)} and z in eq.<4> and <5>. Thus, the above update rules can be rewritten as follows: 

Figure 7: A pictorial view of MF algorithm for solving the problem shown in Figure 6. 
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First, for each e(r), compute a tensor (r) 
+ by: 

( ) ( )

( ) ( ) ( )

: ~
( ([ ] ))  m r

r r m

mm v e
vecμ z UX %      <7>

( )( ) ( ) (1) T( ( ) )    rMr r
fold μ z U US z      <8> 

where  denotes the element-wise division, and  denotes the Khatri-Rao product. 

The second step is to update z and {U
(q)} by: 

( )1
( , 1)



  r

r

r E

acc M
L

z S       <9> 

( ) ( )

( ) ( )

: ~

( ,( , 1)) 
l q

q l

l

l e v

acc q MU S       <10> 

where Mr+1 is the last mode of (r). The multiplication of (r) and (r) in eq.<4> and 

<5> is now pre-computed in eq.<7> and <8> by utilizing the Khatri-Rao product. To 

obtain z and {U
(q)}, we only need to accumulate (r) on the corresponding modes. {U

(q)} 

obtained from eq.<10> will be equivalent to those from eq.<5> after normalization. 

Eq.<7>–<10> yield exactly the same results as eq.<4>–<6>. The algorithm shares the 

same form of the expectation-maximization algorithm, where eq.<7> and <8> correspond 

to the E-step and  eq.<9> and <10> correspond to the M-step. Note that the information 

contained in each data tensor with respect to a hyperedge is aggregated through the E-

step and is shared by the core tensor and all facet factors in the M-step, thus the extracted 

communities will be coherent latent spaces. Table 2 summarizes the whole process to 

solve an MF problem. We illustrate the process in Figure 7 for solving the problem 

shown in Figure 6. 

Algorithm: MF 

Input:        metagraph G = (V,E) and data tensors {(r)} on G 

Output:     z and {U
(q)} 

 
Method:     
                 Initialize z, {U

(q)} 
  Repeat until convergence 

          For each rE, compute (r) by eq.<7> and <8> 

          update z by eq. <9> 
          For each qV, update U(q) by eq. <10> 

Table 2: The MF (metagraph factorization) algorithm. 

Probability interpretation. The solution core tensor [z] and facet matrices {U
(q)} 

uniquely define the clustering structure. We refer to z, {U
(q)} as a community model, 

from which we infer the probabilistic or soft membership of entities in each facet. The 
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soft membership assumes that an entity (such as a user or a tag) can belong to multiple 

communities, with membership weights that sum to one, indicating how likely the entity 

belongs to those communities. As described in section 4.3, each element zk of z is p(k) 

(i.e. pk, the probability of an interaction in community k), which can be considered as 

popularity of the k-th community, and each (i,k)-element of a facet matrix U is p(i|k) (i.e. 

pki, how likely an interaction in the community k involves entity i), which can be 

considered as the contribution of entity i in the k-th community. We determine the the 

soft membership of entity i with respect to community k as p(k|i), the conditional 

probability of a community given the entity i, which is computed by p(i|k)p(k)/p(i), where 

p(i)=k’p(i|k’)p(k’) is the marginal probability of an interaction involving entity i. 

The proposed community model can be interpreted as a generalization of mixed event 

space models [Schein et al. 2001] which encode a generative process consisting of 

multiple types of events. An example of a three-space model based on Figure 4(c) is 

depicted in Figure 8(a) where ℰ(1), ℰ(2) and ℰ(3) denote the ―bookmark‖, ―joint-project‖ 

and ―instant-message‖ event space. A random variable R determines the type of event 

r∈R that will be generated. In the generative process we pick r and the latent variable k 

independently. Each entity participating in a tuple is assumed independent of other 

entities given the knowledge of k. For example, in the ―joint-project‖ ℰ(2), a user u 

chooses a latent variable k, which in turn determines the project j to join. Each event 

space ℰ(r) corresponds to a hyperedge e(r) in a metagraph. The generalized representation 

is shown in Figure 8(b). Once r is chosen, an entity in each of the incident facets of the 

hyperedge e
(r) is chosen according to the distribution of the facet. In the example of 

Figure 8(a), if r=1, a user u∈v
(1) , a tag x∈v

(2), and a document d∈v
(3) are chosen based on 

p(u|k), p(x|k), and p(d|k), respectively. If r=2, a user u∈v
(1) and a project j∈v

(4) are chosen 

based on p(u|k) and p(j|k) respectively. If r=3, two users are chosen to send each other 

messages both using p(u|k). Also if r=1, the probability of choosing a project is zero. We 

consider that the type r event occurs with probability(r), where (r)∈[0,1] and r
(r)=1. 

In our model, the mixing portion (r) is assumed to be uniform, but it can be extended 

with non-uniform weights on relations. However, determining an optimal weighting 

function for different types of applications is an interesting question for future research. 
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Note that in this example, we use a user facet to model the same set of users 

participating in the ―instant-message‖ relation and the relation is encoded in a pairwise 

symmetric matrix W= (2)= W
T. We can obtain the solution3 for the user facet factor U(1) 

through the MF algorithm – the update of each facet factor is based on {(r)}, which in 

turn is based on the current solution of {U
(q)}. The solution of U(1) is interpreted as the 

distribution of a user participating in the relation without differentiating the message 

sender and receiver. It is trivial to use two facet factors to model different distributions of 

message senders and receivers with respect to an asymmetric sender-receiver matrix. The 

solution facet factors can be obtained in the same way by the MF algorithm. However, 

determining the community membership of each user in terms of his or her two different 

roles (as a message sender or as a receiver) may be cumbersome. 

Computational Complexity. We now discuss the time complexity for the updates. 

The most time-consuming step in the algorithm is to compute (r) for each hyperedge e(r). 

As can be seen in eq.<7>, we can take advantage of the sparseness of the data tensor (r) 

and compute only the non-zero elements (total number of tuples) in (r). Let n denote the 

maximum number of non-zero elements of the involved data tensors. This step has time 

complexity O(nKML), where K is the number of clusters, M is the maximal number of 

incident facets of a relation, and L is the total number of input relations. Usually, K, M, L 

are much smaller than n. If we consider K, M and L are bounded by some constants, the 

                                                           
3 When there is only a single relation existing between entities in the same facet, such as 
a user-user relation, the problem turns out to be symmetric NMF. Symmtric NMF has 
been studied in prior work [Catral et al. 2004; Ding et al. 2005] and similar algorithms 
can be derived for tensor version, but it is not the focus of this work. 

R K

ℰ(1) ℰ(2) ℰ(r)... ...
e

(1)
e

(2)
e

(r)

ℰ(1)

R

ℰ(2) ℰ(3)

K

u x d u j us ur

e
(1):{bookmark} e

(2):{join-project} e
(3):{instant-message}

Figure 8: (a) The corresponding generative model for the metagraph shown in Figure 
4. (b) The generative model for any given metagraph. 

(b) (a) 



30 
 

time complexity per iteration is linear in O(n), the number of non-zero elements in all 

data tensors. 

6. TIME EVOLVING EXTENSION 

This section presents our solution to the problem of metagraph factorization with time 

evolving data (MFT). We formulate a new optimization objective for MFT (section 6.1) 

and provide an algorithm to find a solution to it (section 6.2). 

6.1 Optimization Objective 

In the MFT problem, the relational data is constantly changing as evolving tensor 

sequences. We propose an on-line version of MF to handle dynamic data. Since historic 

information is contained in the community model extracted based on previously observed 

data, the new community structure to be extracted should be consistent with previous 

community models and new observations. The idea is similar to the evolutionary 

clustering discussed by Lin et al. [2008]. To achieve this, we extend the objective in 

eq.<3> in this section. 

A community model for a particular time t is defined uniquely by the factors {Ut
(q)} 

and core tensor [zt]. (To avoid notation clutter, we omit the time indices for t.) For each 

time t, the objective is to factorize the observed data into the nonnegative factors {U
(q)} 

and core tensor [z] which are close to the prior community model, [zt-1] and {Ut-1
(q)}. We 

introduce a cost lprior to indicate how the new community structure deviates from the 

previous structure in terms of the KL-divergence. The new objective is defined as follows: 

( ) ( )

( ) ( )
2

: ~

( ) ( )
1 1

1 ( ) ( )

( ) (1 ) ( || [ ] )

( || ) ( || )

.  ,  , 1 

 


 


 

   

 

     

 





m r

q

r m

m prior

r E m v e

q q

prior t t

q

I KK q q

iki

J G D l

l D D

s t q q k

z U

z z U U

z U U

X

   <11> 

where α is a real positive number between 0 and 1 to specify how much the prior 

community model contributes to the new community structure. lprior is a regularizer used 

to find similar pairs of core tensors and pairs of facet factors for consecutive times. The 

new community structure will be a solution incrementally updated based on a prior 

community model. We shall discuss the semantics of the regularization term in the next 

section.  

6.2 Algorithm 

We provide a solution to eq. <11> as follows. 
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Theorem 2. The cost defined in eq.<11> is non-increasing under the following 

update rules and therefore converge to a (local) optimal solution to the MFT problem: 
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where 
1

( )
Mr

r

i i k  is defined as in eq.<6>.  

Because of the normalization step, we have dropped the scaling constant for updating z 

and U(q). The proof of Theorem 2 is similar to the proof of Theorem 1 and is omitted. 

According to eq.<11>, α controls how much the current community structure z, 

{U
(q)} depends on the historic community structure zt-1, {Ut-1

(q)}, i.e. z, {U
(q)} partly 

depends on zt-1, {Ut-1
(q)}, which in turn partly depends on zt-2, {Ut-2

(q)} and so on, and 

the dependency is controlled by α. Hence we can consider α as a parameter that controls 

how much historic information is considered in extracting the current community 

structure. 

In eq.<11>, lprior can be written as: 
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where cz is a value irrelevant to z, and cq is a value irrelevant to U(q). The parameters in 

the previous model zt-1, {Ut-1
(q)} act as the Dirichlet prior distribution for the parameters 

in the current model z, {U
(q)}. So zt-1, {Ut-1

(q)} can be considered as hyperparameters 

that act as pseudocounts to augment observed community membership. This Dirichlet 

prior model provides a way to add smoothing to the observed community membership. 

Such membership smoothing shares the same idea of the ―Preserving Cluster 

Membership‖ (PCM) criterion as discussed by Chi et al. [2007], where they use a spectral 

clustering approach. One issue with their work is that the clusters at time t-1 are not 

explicitly mapped to those clusters at time t and therefore some partition-matching 

algorithms (e.g., [Lovasz and Plummer 1986]) must be used to obtain the optimal cluster 

mapping between those at time t-1 and those at time t, where the partition-matching is an 

NP-hard problem. 
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Chi et al. [2007] also discuss a ―Preserving Cluster Quality‖ (PCQ) criterion, which 

aims to find a community structure that explains both historic data and current data well. 

In our case, we can formulate the PCQ as follows:  

( ) ( )
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l D z UX , which requires the current model z, {U
(q)} to also 

explain the data tensors observed at time t-1. However, large variation in membership is 

more likely in this formulation due to lack of membership regularization. In our work, we 

focus on the PCM criterion that defined in eq.<11>. 

The update rules can be rewritten as the following operations with (r) pre-computed 

by eq.<7> and <8>: 
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where Mr+1 is the last mode of (r). The whole process of finding solutions to the MFT 

problem is summarized in Table 3. 

For time evolving social data, changes might happen in interactions among entities, or 

even in interactions among facets (e.g. due to the evolution of system features), which 

lead to changes in the metagraph. One advantage of our MFT algorithm is that it only 

requires new observed data defined on any given metagraph, so it is straightforward to 

incorporate the changes of a metagraph (the algorithm can take different input metagraph 

Gt). 

Algorithm: MFT 
Input:          metagraph G = (V,E),  

                   the data tensors {
(r)} on G observed at time t,  

                   previous model zt-1, and {Ut-1
(q)} 

Output:       new model z and {U
(q)} 

 
Method:       
                    Initialize z,{U

(q)} 
     Repeat until convergence 

        For each rE, compute (r) by eq.<7> and <8> 

        update z by eq. <14> 
        For each qV, update U(q) by eq. <15> 

Table 3: The MFT algorithm. 

Computational Complexity. For each time t, the time complexity of each iteration in 

the MFT algorithm is of the same magnitude as that in the MF algorithm, since both 
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algorithms involve computing eq.<7> where the time complexity is O(nKML). Recall that 

n is the number of non-zero elements in all data tensors, K is the number of clusters, M is 

the maximal number of incident facets of a relation, and L is the total number of input 

relations. Hence with bounded K, M, and L, the time complexity per iteration is linear in 

O(n). 

7. EXPERIMENTS 

This section reports our experimental study on two real-world social media datasets 

collected from an enterprise and the public Digg social network site. We first describe the 

datasets (section 7.1) and present the extracted communities (section 7.2). We evaluate 

our technique through prediction tasks (section 7.3). Finally, we evaluate the scalability 

of our factorization method on synthetic datasets (section 7.4).  

7.1 Dataset Description 

This section provides a brief description on two real-world data collections used in our 

experiments. The first, denoted as ―ENTERPRISE‖, is an intranet dataset collected in a 

corporation, and the second is an internet dataset collected in Digg, a popular online 

social media website. The Digg dataset and code are available online4. 

7.1.1 ENTERPRISE Dataset 

We have collected collaboration relationships from the employee profiles and rich-

context social/communication media. Data from different sources represent different 

aspects of the relationships among users (i.e. employees). This collection allows us to 

build five relations among seven facets. The relations are summarized in Table 4, which 

correspond to the metagraph shown in Figure 9(a). Based on the availability of the 

timestamps, we consider four static relations and one dynamic relation. 

Relation Tensor / incident facets #Tuples 

(R1) bookmark dynamic (user, tag, URL) 389,617 
(R2) join-wiki static (user, wiki) 1322 
(R3) department static (user, department) 2788 
(R4) directory static (user, directory) 2788 
(R5) country static (user, country) 2788 
Table 4: Summary of the relations in ENTERPRISE dataset. 

Static relations. We collect data from two sources: First, we collect data from the 

IBM Lotus® communities service which allows users to co-author Wiki-like web pages 

by registering as community members. A ―community-wiki‖ (or ―wiki‖ for short) is often 

                                                           
4 http://www.public.asu.edu/~ylin56/kdd09sup.html 
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organized based on users’ common interests in work or life, e.g. ―Lotus Sales 

Community‖, ―Mac Fans‖, etc. Second, we extract the formal collaboration relationships 

from the corporate employee profiles, including their departments, directories, countries, 

etc. These relations represent the stable context of users. 

Dynamic relation. We collect bookmark data from the dogear service [Millen et al. 

2006], a social bookmarking system hosted on the corporate intranet which has been 

widely adopted across the enterprise to index and share internal documentation as well as 

public web resources. The collected dataset contains bookmarks with timestamps ranging 

from January 2006 to June 2008. From the collection we have extracted users who have 

more than 3 bookmarks. Based on the timestamps, we construct a sequence of three-way 

tensors for the facet users, tags and webpage URLs, and each tensor comprises the 

bookmark data generated in a month. 

7.1.2 Digg Dataset 

We have collected data from a large set of user actions from Digg. Digg is a popular 

social news aggregator that allows users to submit, vote (i.e. digg) and comment on news 

stories. It also allows users to create social networks by designating other users as friends 

and tracking friends’ activities. The dataset used in our experiments include stories, users 

and their actions (submit, digg, comment and reply) with respect to the stories, as well as 

the explicit friendship (contact) relation among these users. To analyze users’ topical 

interests, we also retrieve the topics of the stories and extract keywords from the stories’ 

titles. 

From this dataset, we select five facets (user, story, comment, keyword, and topic) 

and build six relations among them. The relations are summarized in Table 5, which 

correspond to the metagraph shown in Figure 9(b). Except for the contact relation, all 

relations have timestamps. We assume the contact relation is static and consider the other 

Figure 9: The metagraph representation for (a) ENTERPRISE dataset, and (b) Digg 
dataset. Nodes represent facets and edges represent relations. 
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relations as dynamic. For dynamic relations, we extract tuples with timestamps ranging 

from August 1 to August 27, 2008. To study the data evolution, we segment the duration 

into 9 time slots (i.e. every three days), and construct a sequence of data tensors for each 

dynamic relation. In the following we shall use t[1,9] to denote a time slot index. The 

total number of tuples in each tensor sequence per relation is listed in Table 5.  

Relation Tensor / incident facets #Tuples 

(R1) content dynamic (story, keyword, topic) 151,779 
(R2) contact static (user, user) 56,440 
(R3) submit dynamic (user, story) 44,005 
(R4) digg dynamic (user, story) 1,157,529 
(R5) comment dynamic (user, story, comment) 241,800 
(R6) reply dynamic (user, comment) 94,551 

Table 5: Summary of the relations in Digg dataset. 

7.2 Community Case Studies 

We present a case study of the community extraction results for both the ENTERPRISE 

and Digg datasets. The communities are extracted using the MFT algorithm with =0.2; 

the parameter settings will be specified otherwise. 

7.2.1 ENTERPRISE Communities 

We use our algorithm to extract and track two latent communities from the 

ENTERPRISE collection, based on relations R1, R2, and R3 (ref. Table 4). The number 

of communities chosen here is solely for the ease of presentation and does not necessarily 

correspond to the true number of latent communities in the enterprise. 

We summarize the extracted communities in Table 6. For each community, we are 

able to extract entities in the five facets (users, tags, resources, departments and wikis) 

that are mostly likely to be involved in the communities. The entities are extracted based 

on their p(i|k) values (as interpreted in section 5.2) aggregated over all timesteps. We 

omit to show the department facet as the department titles (e.g. ―SMP RL Rational 

Architect‖) may not be informative to the readers. For privacy reasons we have 

anonymized the user identities5; instead, we show the users’ job description rather than 

their identifiable names or electronic ids/addresses. The users’ job description will still 

allow an investigation of certain characteristics of the extracted communities. 

As shown in Table 6, the two communities appear to have distinct profiles. In the first 

community (or C1 for short), the likely members (i.e. users with high probability to be 

involved in C1) come with engineering or services job titles, while in the second 
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community (C2), many likely members come with sales or software integration/architect 

job titles. It is interesting to note that ―engineer‖ and ―sales‖ plays complementary roles 

in a technical company, and the two extracted communities appear to correspond to the 

two roles. The resource facet suggests the different information consumption behaviors of 

the two communities – C1 tends to bookmark the implementation aspect (how-to) of a 

technique, while C2 tends to bookmark the analytical or business aspects of a technique 

(e.g. technical news relevant to the corporation). Two communities are also 

distinguishable in their popular bookmarks of specific search entries, e.g. search entries 

of ―research‖ and ―travel‖ information in C1 and C2, respectively (ref. Table 6 

―resources‖ facet). 

facets 
Community 1  

(engineering, services, etc.) 
Community 2  

(sales, integrations, etc.) 

users (job 
description) 

WebSphere Community Engineer, Collaborative 
Application Development Research, services 
enabler / software engineer / abuser of systems, 
Tape Manufacturing Engineer, Software 
Engineer, … 

Technical Sales - Lotus Software, Service Area 
Manager and Certified Consulting IT Specialist, 
Enterprise Integration Architecture, Technical 
Solution Architect, Business Transformation 
Consultant, … 

tags 
projectmanagement, ldap, plaxo, css, lotusphere, 
xss, analyst, rsa, cmu, pipes, ... 

caching, worm, disaster-recovery, rss, 
technology_adoption, healthcare, journal, 
cio_agenda, magazine, dou, ... 

resources 

IBM Research Web 2.0 Unified Search (internal 
webpage), BASH Programming – Introduction 
HOW-TO (http://tldp.org/HOWTO/Bash-Prog-
Intro-HOWTO.html), Top 10 Ways to Use 
del.icio.us 
(http://www.lifehack.org/articles/technology/top
-10-ways-to-use-delicious.html), … 

*** Evangelist Site – Innovation Through 
Collaboration (internal webpage), IBM Travel 
Map (internal webpage), I.B.M to Introduce 
Workers’ Networking Software – New York 
Times 
(http://www.nytimes.com/2007/01/22/technolog
y/22ibm.html), … 

wikis 
Lotus Social Software Community, WPLC 
Architecture, Mac Fans, BilWithOneL's Web 2.0 
Hangout, Notes 8 experts, ... 

Lotus Sales Community, Agile Development, 
Web 2.0 for Business (Web20forbiz), 5live 
Innovation Day Attendee, Mobile 2.0, ... 

Table 6: Summary of two communities extracted from the ENTERPRISE dataset. 

 

Community Evolution. It might not be easy to understand the semantics of the tags, 

so instead of comparing these tags, we compare the evolution of the likely tags within 

each community. We quantify the evolution of tags within each community based on the 

cosine similarity between consecutive tag distributions of a community. Specifically, 

from our algorithm we obtain a sequence of tag factor matrices {Xt} for t=1,2,… Each 

column, xk of Xt represents the tag distribution of the k-th community at time t. Then we 

compute the temporal tag dissimilarity by 1-cos(xk;t-1, xk;t) for time t to plot the concept 

evolution curve for the k-th community, as shown in Figure 10 (a). We annotate the peaks 

                                                                                                                                                
5 A more in-depth discussion about the results may require users’ identifiable information 
or some cultural understanding about the company; hence we omit the detailed discussion. 
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by the most likely tags at the peak times for each cluster. In this figure, we can see 

distinct patterns of tag evolution within the two extracted communities – both the peak 

terms and peak times are different. In our interviews with the employees in the company, 

some pointed out that the peak times at the end of 2007 correspond to some proposal 

deadlines where new concepts are likely to be introduced. The two peaks seem to suggest 

there are different deadlines for the sales people and the engineering people. Figure 10 (b) 

shows the changes in the community sizes over time. We can see the community 

structure extracted from the ENTERPRISE data is quite stable except at the end of year 

2007, which may reflect a certain activity burst in the sales community (C2). This case 

study suggests that our algorithm is able to generate meaningful mining results from an 

enterprise data collection. 

7.2.2 Digg Communities 

We now present a detailed qualitative analysis of the communities extracted from the 

Digg dataset, which demonstrates an advantage of probabilistic interpretation given by 

our method. We first show all communities extracted for a particular time and then 

examine the community evolution within these communities. 

To illustrate what kinds of stories are ―dugg‖ by what kind of communities, we track 

the latent communities based on the digging activities that involve relation R1 and R4. 

Figure 14(a) and (e) shows the corresponding metagraph and the number of tuples in the 

two relations. In our factorization algorithm, we assume that the number of communities, 

K, is given beforehand. Here we show communities extracted given K=2, 4 and 12. 
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Figure 10: The community evolution characterized based on (a) change in tag 
distribution (concept evolution) in each community and (b) change in size of 
communities (cluster probability). 
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C2 
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Figure 11: Community extracted based on the user digging activities, for time t=3 
(August 6-9, 2008) and number of communities (a) K=2, (b) K=4 and (c) K=12. The 
most likely keyword and topic terms (shown within brackets) in each community are 
projected based on their soft membership. The size of each term indicates its 
probability and each term is colored based on its most likely community. The results 
show coherent topical preference in communities, as the terms with the same colors are 
located closely. 
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Based on relation R1 and R4, four facets are involved: user, story, keyword and topic. 

We present the keyword and topic facets because they are more informative to the readers 

than other facets. Figure 11 shows the most likely keywords and topics in each 

community. We present the results of t=3 (August 6-9, 2008). We project those keyword 

and topic (shown within brackets) terms onto a 2D plane. The location of the i-th 

keyword or topic term indicates its relative proximity to other terms and is computed 

based on its soft membership p(k|i). (The position is determined by standard 

multidimensional scaling (MDS) [Borg and Groenen 2005] with the soft membership as 

input.) The size of the i-th term indicates how likely the term appears in a story and is 

determined based on the probability p(i). Each term is colored based on its most likely 

community, i.e. by choosing k with maximal p(k|i). In the figure we can see the 

communities based on users’ digging activities have coherent topical preference, as the 

terms with the same colors are located closely. The 2-, 4- and 12-community results show 

the communities at different scales. The 2-community result distinguishes political 

interests from the Olympics news (Figure 11(a)). The 4-community shows four topical 

interests in communities: C1: gaming industry news, C2: US election news, C3: world 

news, and C4: general political news (Figure 11 (b)). The two major topics (―olympics‖ 

and ―georgia‖) in C3 are further split in the 12-community result (Figure 11 (c)). 

Community Evolution. We select the 4-community result and examine its evolution. 

Figure 12(a) shows the probabilities of the four communities over time, and Figure 12(b) 

shows the keyword dissimilarity across time where the dissimilarity is computed based 

on the cosine similarity of keyword distribution in each community of consecutive 

timestamps. We observe two critical times in Figure 12 (b): for communities C2 and C3, 

(a) community popularity 
 

(b) concept evolution 
 

Figure 12: The community evolution characterized based on (a) change in size of 
communities, and (b) change in keyword distribution in each community. 
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the keywords distribution change drastically at t=3 (August 6-9) and t=8 (August 21-24). 

To examine the events occurring during these times, we look at the keyword distributions 

of the two communities. Table 7 lists the top 10 keywords that are most likely to appear 

in C3 and C2, at t=2,3 and t=7,8 respectively. At t=3, the new popped keywords 

―olympics‖ and ―georgia‖ reflect users’ attention to two significant events: the 2008 

Summer Olympics began on August 8 and the 2008 Russia-Georgia conflict started on 

August 7. At t=8, the new popped keywords ―joe‖, ―biden‖, ―vp‖ correspond to the time 

when presidential candidate Barack Obama announced that Joe Biden would be his 

running mate (on August 22). Another critical time is captured by the change in 

community size. In Figure 12(a), we see the community C3 keeps growing until t=6, 

when the Russia-Georgia conflict ended with a ceasefire agreement signed on August 15 

and 16.  

 
Table 7: The keyword distribution of community C2 and C3 during two critical times, 

t=3 and t=8. 

The characterization of community evolution based on change in the probability of a 

cluster and on change in the distribution of entities such as keywords (Figure 12 and 

Table 7) demonstrates the advantage of our soft clustering method – the obtained 

probability values can be used not only to determine the community membership, but 

also to infer the importance or representativeness of entities in terms of their contribution 

to the community structure, as well as to capture the community evolution in various 

dimensions.. The presented case study suggests that our method is able to generate 

meaningful mining results from dynamic multi-relational social media data. 

7.3 Evaluation via Prediction 

We use prediction tasks to demonstrate the utility of our techniques. Due to the lack of 

ground truth in real world datasets, evaluating the community detection results is 

challenging. To address this, we design prediction tasks that allow evaluating how well 
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the detected community structures capture the interaction probabilities among entities. 

The tasks are designed based on different scenarios for the two datasets. We study three 

aspects of our method through these prediction tasks: 

(1) How does our community discovery framework help predict users’ future interests? 

(2) How much historic information do we need (i.e., the impact of α)? 

(3) Which relation is relevant to the prediction? 

7.3.1 Performance Metrics 

We use two metrics adopted in Information Retrieval:  

(1) P@10 (the precision of the top 10 results): For each user we compute P@10 as the 

portion of the correctly predicted tags (or stories) in the first 10 retrieved tags (or 

stories) for the user. The overall P@10 for the set of users is computed by taking the 

mean of P@10 per user, per time slot. 

(2) NDCG (Normalized Discount Cumulative Gain [Järvelin and Kekäläinen 2000]): 

One advantage of the measure is its sensitivity to the prediction order. The NDCG is 

given by: 

( ) log(1 ) i
NDCG i i ,      <16> 

where i is the rank of predicted tags (or stories), δ(i)=1 if the prediction of the rank-i 

tag is correct and 0 otherwise. 

In general, the P@N metric assigns an equal weight for each of the top N predicted stories, 

so the results may be sensitive to the choice of N (N=10 is used in our experiment). The 

NDCG metric allows different levels of relevance and weighs the prediction according to 

their ranks in the ranked list. We use top-5 story prediction as an example to illustrate the 

difference: Assume our model gives an ordered list of stories, s1, s2, s3, s4, s5, for a given 

user. In case s1 and s2 are correctly predicted, the NDCG  1/log(1+1)+1/log(1+2)1.63; 

in the other case, if s3 and s5 are correctly predicted, the NDCG  1/log(1+3)+1/log(1+5) 

0.89. The P@5 for both cases is the same (0.4). Hence we expect it is less sensitive to 

the cut-off of the ranking list used for prediction, and is more effective in differentiating 

prediction qualities in this task. We use P@N as a complementary metric in order to give 

an intuitive sense about the prediction quality. 

7.3.2 ENTERPRISE Dataset 

Prediction setting (tag prediction). For the ENTERPRISE dataset, we design a 

prediction task to illustrate how our community tracking algorithm can be utilized to 

predict users’ future interests. Specifically, given data Dt at time t, we extract 
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communities to predict users’ future use of tags, and compare the prediction with the 

ground truth in data Dt+1. We consider Dt as training data and Dt+1 as testing data. This is 

a constrained setting because there might be relevant tagging activities occurring before t 

and after t+1. In our prediction experiments we only consider two consecutive time slots6 

so to minimize the boundary effects at the beginning and the end of the dataset time span.  

The task is designed to understand the meaningfulness of the extracted community 

structure in the absence of ground truth for the community memberships. The extracted 

community structures are considered to be meaningful if these structures correlate with 

external relevant data (in this case, the future individual actions) to a certain extent and 

hence enable the prediction. 

Our prediction method. Our prediction is derived from the community tracking 

results. We determine if a user ui will be interested in a tag xj by the conditional 

probability: 

(1) (2)( | ) ( , )   j i j i k ik jkk
p x u p x u z U U ,     <17> 

where zk is the k-th diagonal element of the core tensor, (1)
ikU is the (i,k)-element of the 

user factor matrix and (2)
jkU is the (j,k)-element of the tag factor matrix. For each time t, 

we obtain the community model and derive the conditional probability to predict the 

user-tag association at time t+1. 

We use the MFT algorithm to handle the temporal data and extract communities 

incrementally. As a comparison, we also report the results of the MF algorithm that 

extracts communities for each time slice (non-incrementally). 

Baseline methods. We compare our method with two baseline methods: 

(1) recurring interests – predicting future tags (at t+1) as the tags most frequently used 

by the user at t. This is a simple frequency based heuristic. 

(2) collective interests (pLSA) – predicting future tags by using a well-known collective 

filtering method (probabilistic latent semantic analysis [Hofmann 1999] or pLSA) on 

the user-tag matrix. 

Results and Discussion. In our experiment, the time interval is one month. The 

overall prediction performance is obtained by taking average prediction performance over 

                                                           
6  The time slot duration is empirically chosen – we choose one month for the 
ENTERPRISE dataset and three days for the Digg dataset. Given the context of two 
social media environments, the time duration should be sufficient for the reasonable 
prediction. For example, in Digg, users are more likely to digg a news story submitted 
within few days. 
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10-month data. The best results for each method are reported in Table 8. The results 

indicate the prediction given by our community discovery framework outperforms the 

baseline methods by 43-81% (P@10) or 27-72% (NDCG) on the average, which suggest 

that our method can better capture the dynamics of users’ interests.  

       metric 
method 

ENTERPRISE tag prediction 

P@10 NDCG 

recurring 0.1080.001 0.0200.000 

pLSA 0.1550.001 0.0260.000 

MF 0.1750.001 0.0280.000 

MFT 0.1950.001 0.0350.000 

Table 8: The average prediction performance for ENTERPRISE tag prediction, 
evaluated by P@10 and NDCG metrics. 

 

We explain the results in the following. If a user’s interests remain similar from time 

t-1 to t, the simple frequency based heuristic (recurring interests) would be able to predict 

the user's interests. On the other hand, if the user's interests changes from t-1 to t, which 

cannot be captured by the recurring interests method, we may predict the user’s interests 

based on other users’ interests – we use pLSA to capture the collective interests. 

However, pLSA only considers users’ contexts via a single relation (other users’ interests 

on tags) and cannot handle richer aspects of users’ contexts. Figure 13 (b) shows that by 

leveraging cooperate relations (R3 and R4), 19.5% of the users’ future interests can be 

predicted by our method under the experiment setting. Note that even using a single 

relation (R1) as in pLSA, our method still performs better due to its ability to handle 

tensor data. It is also possible to use existing tensor analysis to incorporate all possible 

relations; however, in the next section we show that transforming the data into a single, 

high dimensional tensor does not necessarily yield good prediction results. 

We further study how the prediction performance is affected by different historic 

information and relational context. 

Effect of historic information. We vary the weight of the prior model in MFT by 

setting α[0,1], and report the average P@10 (averaging over time) against α, as shown 

in Figure 13(a). The results suggest that incorporating prior knowledge does work better 

than no prior (α=0). Note that the prediction performance drops when overlooking current 

observation (α>0.6). In practice, a good α value can be obtained through cross-validation. 
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Effect of various relational context. We seek to determine the effective relations in 

terms of future tag prediction. We consider relations as a set of features and employ a 

forward-feature selection approach to select the best combination of relations. Starting 

from the first relation (R1, i.e. bookmark relation), we select one relation among the rest 

that best improves the prediction. The results are shown in Figure 13 (b). The results 

suggest that combining multiple relations can significantly improve the prediction 

performance. However, the performance gain does not always come with the increasing 

number of input relations. In our case, the effective relations for future tag prediction are 

relation R1, R3 and R4 (i.e. bookmark, department and directory), which interestingly 

suggest how an individual’s use of tags is affected by her or his cooperate structures. 

7.3.3 Digg Dataset 

Prediction setting (voting and commenting prediction). Based on the Digg scenario, 

we design prediction tasks to predict users’ future interests on digging (i.e. voting) and 

commenting on Digg stories. There are two tasks: (a) digg prediction – what stories a 

user will digg, and (b) comment prediction – what stories a user will comment on. Both 

tasks are evaluated on data from each time slot. We use stories that have digging or 

commenting events in time slot ts[2,9] as testing sets and the available relational data 

(ref. Table 5) in time slot ts-1 as training sets. The prediction results are compared with 

the actual diggs and comments occurring in slot ts. This is a constrained setting because 

there might be more digging or commenting activities occurring after ts (also see footnote 

5). In our prediction experiments we only consider diggs and comments in each single 

slot ts as ground truth. The idea behind the design of both prediction tasks is similar to the 

ENTERPRISE tag prediction discussed in the previous section. 

R1 

R13 R134 

other possible 
combinations 

R1234 
R12345 

(a) (b) 

Figure 13: Effect of (a) prior community model (historic information) and (b) different 
input relations. 
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Our prediction method. We generate predictions based on the community structure 

extracted by our method, denoted by MF and MFT. The MF algorithm outputs 

community structure from relational data of each time slot ts-1. The MFT algorithm uses 

the same data as MF, with the aid of a community model extracted for time ts-2 as an 

informative prior. Hence MFT gives results incrementally. From an extracted community 

model we obtain the probability of a community k, p(k), and the probability of a user u, a 

keyword w and a topic j, given community k, i.e. p(u|k), p(w|k) and p(j|k). To predict if a 

user u will digg or comment on a story r, we first use a folding-in technique [Popescul et 

al. 2001] to compute p(r|k), the probability of a story given each community k, based on 

the story topic and keywords. Then a prediction is made based on the condition 

probability p(r|u)p(u,r)k’p(k)p(u|k’)p(r|k’). 

Baseline methods. Three baseline methods are used7:   

                                                           
7 The baseline methods chosen here are different from the baseline methods used in the 
ENTERPRISE prediction task due to the differences in the available facet information for 
making predictions. In ENTERPRISE prediction, the task is to predict future tag use 
based on a data matrix – a single relation involving the user and tag facets. Given the 
single matrix setting we have chosen pLSA that has been considered effective to handle 
(document-term) matrix data. In Digg voting prediction, the task is to predict future digg 
interests based on one or more high-dimensional data tensors – one relation involving the 
user and story facets and another relation involving the story, keyword and topic facets. 
(The comment prediction has a similar high-dimensional setting.) To handle this high-

Figure 14: Relations used by different methods for digg and comment prediction: (a) R1 
and R4 used in our method for digg prediction; (b) R1 and R5 used in our method for 
comment prediction; (c) TD tensors used in PARAFAC and MWA for digg prediction; 
(d) TC tensors used in PARAFAC and MWA for comment prediction; (e) no. of tuples 
in each relation over time. 

(a) (b) 

(c) (d) 

(e)  
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(1) Frequency based heuristics (FREQ) – predicting stories based on the frequency of 

story topic and keywords at ts-1. 

(2) Standard tensor analysis (PARAFAC) – predicting stories by using the 

CP/PARAFAC tensor decomposition [Bader and Kolda 2006] for data in slot ts-1. 

The stories to be predicted are first projected on the latent spaces, and the prediction 

is made based on the dot product of the user and story projected vectors. 

(3) Multi-way aspect model (MWA) – predicting stories by using the multi-way aspect 

model [Popescul et al. 2001], a special case of our model (ref. section 4.3). 

The ability to handle relational contexts is the key to our comparison. We choose 

specific relations to illustrate the utility of leveraging a specific context by a metagraph – 

relation R1 and R4 for digg prediction and R1 and R5 for comment prediction (ref. 

Figure 14(a) and (b)), and we shall evaluate the effect of other relations later in this 

section. Since PARAFAC and MWA only deal with a single high dimensional relation, 

we construct two 4-way tensors per time that contains digg actions and comment actions 

with respect to stories. The two tensors, denoted by TD and TC are shown in Figure 14 (c) 

and (d). Figure 14 (e) shows the number of non-zero entries (tuples) of these data tensors 

over time. The number of tuples in an R5 tensor corresponds to the number of stories per 

time. 

Results and Discussion. The overall prediction performance is obtained by taking the 

average of prediction performance on data for each time slot (t=1…8 for training and 

t=2…9 for testing) over different K values. The results (mean and standard deviation) are 

given in Table 9. There are several observations. First, our method, MF and MFT, 

significantly outperforms all baseline methods. In digg prediction, our MF method 

outperforms the best baseline, PARAFAC by 43% (P@10), 45% (NDCG) on the average. 

In comment prediction, the MF method outperforms the best baseline MWA by 73% 

(P@10), 89% (NDCG). Second, the MFT performs the best. It slightly outperforms MF 

in digg prediction and improves MF by 15% in comment prediction. In Figure 15, we 

show the prediction results over time based on P@10. The results indicate that during the 

test period, MFT tend to have better prediction performance than MF. The performance 

gain of MF and MFT may be attributed to the ability to handle relational contexts. As 

shown in Figure 14 (e), transforming the data into 4-way tensors results in the increase of 

non-zero entries, while a larger amount of entries does not necessarily help predict users’ 

                                                                                                                                                
dimensional setting we have chosen MWA, a high-dimensional extension of pLSA, and 
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interests. In the 4-way tensor representation, users’ preference for stories may be 

underrated due to the multiple counts of the facets (keywords or topics) of popular stories. 

Unlike PARAFAC and MWA, which only deal with a single high dimensional relation, 

MF and MFT are able to handle multiple relational tensors simultaneously, which 

balances the information given by user-story and story-keyword-topic relations. 

 

       metric 
method 

digg prediction comment prediction 

P@10 NDCG P@10 NDCG 

FREQ 0.1750.061 0.0350.016 0.0150.007 0.0040.002 

PARAFAC 0.3690.004 0.1450.002 0.0490.002 0.0180.001 

MWA 0.1950.002 0.0690.001 0.0670.001 0.0200.000 

MF 0.5290.008 0.2120.002 0.1170.001 0.0380.000 

MFT 0.5430.007 0.2150.004 0.1350.001 0.0430.000 

Table 9: The average prediction performance for digg and comment prediction, 
evaluated by P@10 and NDCG metrics. 

 

Next we examine two characteristics, to show how our prediction can be further 

improved by (a) incorporating a historic model and (b) leveraging other relations through 

a metagraph. 

Effect of historic information. We vary the weight of the prior model in MFT by 

setting α[0,1] and report the average P@10 over α values (Figure 16 (a)). The results 

suggest that incorporating historic information as prior knowledge works better than no 

                                                                                                                                                
PARAFAC which is a variant of higher-order SVD.  
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Figure 15: The prediction performance over time for (a) digg and (b) comment 
prediction, evaluated by P@10. 
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prior (α=0, i.e. MF). The effects of historic information are different for the two activities. 

For digg prediction, the prediction performance drops when α>0.4. For comment 

prediction, the performance drops increase α0.8. This suggests that the future comment 

activities are more consistent with the historic community structure than the digg 

activities, which also implies a longer lasting correlation of community structures on 

users’ commenting behavior. 

Effect of various relational contexts. For comment prediction, we evaluate the 

prediction performance over different relational contexts. Figure 16(b) shows the average 

prediction results. The label R* indicates which relations are used in the training set, e.g. 

R125 denotes relation R1, R2 and R5. We observe that different combinations of the 

relations affect the prediction performance. For example, incorporating the contact 

relation R2 with R1 and R5 significantly helps predict users’ comment activities, which 

implies some correlation between the contact relation and the comment activities (e.g. 

users are likely to comment on stories on which their friends also give comments). This 

comparison shows the complexity of choosing the best context in prediction. A 

metagraph can leverage a mechanism similar to the feature selection scheme for 

comparing against a family of relational contexts. 

Further discussion on prediction results. Although our method significantly 

outperforms baseline methods in the prediction tasks, predicting the items of users' future 

interests based on historic data is not easy in practice -- in the ENTERPRISE data (ref. 

Table 8), the best performance (by our method) indicates 19.5% of the users have at least 

one item of 10 predicted correctly (according to P@10), but the low NDCG value implies 

these items may not be predicted in the correct order. In the Digg dataset (ref. Table 9), 

(a) (b) 
 

Figure 16: Effect of (a) prior community model (historic information) and (b) different input 
relations. 
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the best performance (by our method) of the digg prediction indicates 54.3% of the users 

have at least one item of 10 predicted correctly, while the relatively low NDCG value 

(0.215) still reflects the inaccurate ranks of the predicted items. The best results of the 

comment prediction are similar to those in the ENTERPRISE dataset. These results 

suggest that leveraging multiple relations may be effective in increasing the coverage of 

predictable items, but may be limited in giving a correct ranks of these items. 

7.4 Scalability Evaluation 

We use synthetic datasets to illustrate the scalability of our algorithms. We study how the 

computational time of our algorithm increases with different types of data growth – (a) 

non-zero elements in a data tensor, (b) number of tensor modes (dimensions), (c) number 

of relations (tensors) on a given metagraph, as well as (d) the algorithm parameter, i.e. 

number of clusters. The four experiments are described below (ref. Figure 17). 

(1) We randomly generate an M-way tensor of dimensionality I1, …, IM. We increase the 

number of non-zero elements in a data tensor by setting M=3, I1=I2=I3=1000. In 

Figure 17 (a), we show the average running time per iteration of our algorithm 

against the number of non-zero elements. 

(2) With a fixed number of non-zero elements (105), we vary the number of tensor 

modes (i.e. the number of incident facets of a relation). The dimensionalities of all 

facets are fixed (we set Iq=1000 for all q’s). Figure 17 (b) shows the average running 

time per iteration over the number of tensor modes. 

(3) With a fixed number of non-zero elements (105), we vary the number of relations in 

a metagraph by connecting an existing vertex with a new vertex. The order (tensor 

modes) and dimensionalities of each relation are fixed (M=3, I1=I2=I3=1000). Figure 

17 (c) shows the average running time per iteration over the total number of relations. 

(4) With a fixed number of non-zero elements (105) in the data tensors, we vary the 

input parameter, the number of clusters, K. Figure 17 (d) shows the running time per 

iteration over the number of clusters. 
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The results empirically show the running time per iteration scales linearly with the 

data sizes, the number of tensor modes, the total number of relations, and the number of 

clusters. Note that the slope for increasing tensor modes is steeper than increasing 

relations. Empirically, the non-zero elements in a higher mode tensor are usually much 

more than lower mode tensors (as in Figure 14(e)). Therefore, by leveraging a metagraph, 

we can efficiently combine multiple low-dimensional relations instead of constructing a 

high-dimensional tensor. 

The experimental results on the synthetic datasets correspond to our analysis in 

section 5.2 and suggest that our algorithm can efficiently deal with large sparse multi-

relational data. 

(a) (b) 
 

(c) 
 

(d) 
 

Figure 17: Running time per iteration (sec.) for different types of data growth (let n denote 
the value on the x-axis of each plot): (a) number of non-zero elements (one 3-way tensor with 
n non-zero elements), (b) number of tensor modes (one n-way tensor), (c) number of relations 
(n 3-way tensors) in a metagraph, and (d) for different algorithm parameter, the number of 
clusters (K). 
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8. OPEN ISSUES 

We discuss some open issues in the proposed framework: 

(1) Evaluating the results of community detection is challenging due to the lack of 

ground truth in real world multi-relational datasets. In this work, we have tried to 

address this issue in two ways: (a) we present case studies in both ENTERPRISE and 

Digg datasets, and (b) we use prediction tasks to study the "potential links" derived 

from the detected communities. The case studies rely on human interpretation which 

is expensive and difficult for comparison, making it an unpromising method to scale 

to very large datasets. It is important to note that the prediction framework only 

provides an indirect assessment. Developing a direct and unambiguous quantitative 

assessment of community detection in multi-relational networks requires annotated 

benchmarks and would be critical in our future work. 

(2) In our factorization method, we use the product of the facet matrices to fit each 

observed relation. A more natural extension is to use kernel representation for those 

factors to exploit their non-linear relationship. 

(3) We have assumed the number of communities, K, is given beforehand. However, 

different K values affect the extracted community structure. Selecting the best K is 

highly dependent on the context of application, e.g. it is usually more useful to select 

a smaller K for community discovery, but a larger K might improve the prediction 

accuracy. Moreover, the community might have hierarchical structure such that 

reasonable mining results occur with many K’s. There is work proposing the flat 

structure assumption in determining optimal number of communities from a single, 

static network. [Newman and Girvan 2004] proposes a modularity function Q to 

measure the strength of the discovered clustering structure, which quantifies the 

deviation between fraction of edges within communities and the expected fraction of 

such edges. They empirically demonstrate that Q is an effective measure for 

evaluating the community structure in large networks, where a maximal Q leads to 

good modular structure in the network. Their modularity function relies on a hard 

membership assumption – each entity can belong to only a single community. Lin et 

al. [2008] extend the idea to take soft membership into consideration. Hofman and 

Wiggins [2008] incorporate the idea of modularity into a Bayesian treatment on the 

stochastic block model. They develop a solution to this problem that relies on 

inferring distributions over the model parameters based on a set of hyperparameters 

which act as pseudocounts that augment observed edge counts and occupation 
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numbers. Extending their idea to the multi-relational network could be a fruitful 

research direction. 

(4) There are different aspects of community evolution, e.g. (i) change in the community 

size, (ii) change in the number of communities and (iii) change in the community 

membership, content or features (what the community is about). To study the 

evolution within communities, our method has assumed the number of communities 

does not change across time (i.e. we do not consider the second aspect). Ahmed and 

Xing [2008] propose a temporal Dirichlet process mixture model (TDPM) for 

evolutionary clustering which allows the clusters to retain, die out or emerge over 

time, and the actual parameterization of each cluster can also evolve over time in a 

Markovian fashion. However, extending their framework to efficiently model 

various types of co-evolving objects is non-trivial. Moreover, comprehending several 

evolution aspects in a unified process is a challenging issue. 

(5) Our proposed method is useful in quantifying how much the data changes over time 

in terms of the changes in overall community structure or the changes in specific 

facet distribution. Lahiri and Berger-Wolf [2008] propose a frequency-based 

approach to mine periodic or near periodic subgraphs in dynamic networks. You et al. 

[2009] extract (a) a set of ―graph rewriting rules‖ to describe the changes in graph 

sequences and (b) a set of ―transformation rules‖ to describe the structures of these 

changes based on compression-based metrics. These studies have a different focus 

on mining the types of network changes. 

9. CONCLUSION 

We proposed the MetaFac framework to extract community structures from various 

social contexts and interactions. There were three key ideas: (1) metagraph, a relational 

hypergraph for representing multi-relational social data; (2) MF algorithm, an efficient 

non-negative multi-tensor factorization method for community extraction on a given 

metagraph; (3) MFT, an on-line factorization method to handle time-varying relations. 

We conducted extensive experiments on synthetic and two real world datasets, the 

ENTERPRISE and Digg datasets. A qualitative analysis on communities extracted from 

both datasets suggested that our method is able to extract meaningful work communities. 

We evaluated our method by tag prediction (using ENTERPRISE data), as well as digg / 

comment story prediction (using Digg data). We generated the predictions based on the 

extracted community models and compared results with baselines. Our method 
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outperformed baselines up to an order of magnitude. We showed our method can be 

further improved by (a) incorporating a historic model and (b) leveraging other relations 

through a metagraph. A further examination on the prediction metrics indicates predicting 

users' future interests based on historic data is non-trivial; nevertheless, the improvement 

over baseline methods suggest the utility of leveraging metagraphs to handle time-

varying social relational contexts. 

There are several future directions of this work. (1) As our algorithm does not tie to a 

specific data schema, it can be easily extended to deal with schema changes. (2) By 

combining various social relations of data and applying model selection approach, it can 

be used to identify effective social relations. As part of our future work, we are interested 

in efficiently determining a relational hypergraph that is effective for a given information 

task. 

10. APPENDIX 

Proof of Theorem 1. To prove the convergence of eq.<4>–<6>, we will make use of an 

auxiliary function similar to the NMF algorithms by Lee and Seung [2001] (which are 

based on the Expectation-Maximization algorithm [Dempster et al. 1977]).  

First, we employ the concavity of log function. Because -log(k akBjk) is a convex 

function, the following equality holds for all j, and  k μjk = 1. 

 log log , where  

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k jk jk jkk k
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   <18> 

Let a=z and ( ) (1) T( ... )  rMB U U  for each r, where  denotes the Khatri-Rao product 

operation. Then we have: 
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where 
1

( )
...

Mr

r

i i k  is defined as in eq.<6>.  

Update z: We define Qz(z;zt) as an auxiliary function [Lee and Seung 2001] for Jz(z) with 

respect to z, where {U
(q)} are fixed and z

t represents the values at the t-th iteration in 

1

( )
...

Mr

r

i i k . The auxiliary function satisfies Qz(z;zt)≥Jz(z) and Qz(z;z)=Jz(z), such that Jz(z) is 
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nonincreasing under the update z
t+1=argminz Qz(z;zt). Because Jz(z

t+1)≤Qz(z
t+1;zt)≤Qz(z

t; 

z
t)=Jz(z

t), the sequence of iterative minimization of Qz leads to a monotonic decrease in 

the objective function value Jz and ensures the convergence of the update relations. 

Hence, with the constraints ( ) 1    qq

q

i ki
q kU , the Lagrangian of Qz is defined as: 

( )( 1)    qq

q

q i kq i
L QZ Z U       <20> 

With {U
(q)} fixed, and by taking the derivative of L and setting its result to zero, we have: 

1 1

1

( ) ( )
... ...

...

0 
    

    M Mr r
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L L
constz z

z z
X ,    <21> 

where ( )( 1)    qq

q

q i kq i
L Q U is the Lagrangian of Q.   <22> 

By solving this equation, we obtain the update rule for z (eq.<4>). 

Update U(q): Similarly, with z and {U
(m)}m≠q fixed, we have: 

1 1
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By solving the equations, we obtain the update rule for U(q) (eq.<5>).  
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