
Research Policy 32 (2003) 1217–1241

Community, joining, and specialization in open
source software innovation: a case study

Georg von Krogha, Sebastian Spaetha,∗, Karim R. Lakhanib
a Institute of Management, University of St. Gallen, Dufourstrasse 48,

CH-9010 St. Gallen, Switzerland
b MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02139, USA

Abstract

This paper develops an inductive theory of the open source software (OSS) innovation process by focussing on the creation
of Freenet, a project aimed at developing a decentralized and anonymous peer-to-peer electronic file sharing network. We are
particularly interested in the strategies and processes by which new people join the existing community of software developers,
and how they initially contribute code. Analyzing data from multiple sources on the Freenet software development process,
we generate the constructs of “joining script”, “specialization”, “contribution barriers”, and “feature gifts”, and propose
relationships among these. Implications for theory and research are discussed.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Open source software; Innovation; Community; Collective action; Virtual teams

1. Introduction

The production of open source software1 (OSS) re-
sults in the creation of a public good that is non-rival,
i.e. users’ utility from the software are independent,
and non-exclusive, i.e. no individual or institution
can be feasibly withheld from its usage (Lerner
and Tirole, 2002). OSS development represents a
“private-collective” model of innovation where de-
velopers obtain private rewards from writing code for
their own use, sharing their code, and collectively

∗ Corresponding author. Tel.:+41-71-224-23-63;
fax: +41-71-224-23-55.
E-mail addresses:georg.vonkrogh@unisg.ch (G. von Krogh),
sebastian.spaeth@unisg.ch (S. Spaeth),
karim.lakhani@sloan.mit.edu (K.R. Lakhani).

1 Software that comes with source code and a usage license that
allows for modification and further redistribution of the source
code by any user.

contributing to the development and improvement of
software (von Hippel and von Krogh, 2003). This
model explains the existence of the open source phe-
nomenon, but leaves open a number of questions about
the innovation process that requires in-depth empir-
ical research. An assertion in the private-collective
model, and much of the writing on OSS is that the
success of a project in terms of producing the soft-
ware relates to the growth in the size of thedeveloper
community; people who contribute to the public good
of open source software by writing software code for
the project (Moody, 2001; Raymond, 1999; Sawhney
and Prandelli, 2000; Wayner, 2000). However, joining
a developer community may not be costless. Software
development is a knowledge-intensive activity that
often requires very high levels of domain knowledge,
experience, and intensive learning by those contribut-
ing to it (Pliskin et al., 1991; Waterson et al., 1997).
Fichman and Kemerer (1997)found that in commer-

0048-7333/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0048-7333(03)00050-7

1218 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

cial software development, complex technologies can
erect significant barriers of understanding and contri-
bution, to both users and developers of the software,
and the integration of newcomers can be arduous. As
the technology grows more complex, only a few peo-
ple who have been actively involved in its development
over a certain period of time might fully understand
the software architecture and effectively contribute
code to its development, and new contributors might
find it too costly to join the project (Kohanski, 1998).
Therefore, a theory of the open source software inno-
vation process needs to explain how people sign up
for the production of the public software good, under
conditions where the cost of contributing vary. This
paper intends to contribute to a theory of the open
source software innovation process by examining
joining behavior in a developer community.

Since the immanent puzzle of open source soft-
ware innovation is the creation of the public good
(Lerner and Tirole, 2002), research also has to un-
cover how joiners becomenewcomers, that is, how
they make their initial contribution to software. In
particular, it is important to understand what bene-
fits newcomers derive from belonging to an existing
developer community (e.g.Olson, 1965). According
to the private-collective model (von Hippel and von
Krogh, 2003), newcomersshare with existing devel-
opers, greater benefits of revealing their innovations,
than those outside the community (see alsoCallhoun,
1986; Taylor and Singleton, 1993). This is so because
their ideas, bug reports, viewpoints, or code can be re-
viewed and commented upon by other developers and
users, and in terms of learning benefits, the group’s
feedback can be direct and specific to the newcomer.
Additionally, the formal acceptance of new code, the
fixing of bugs or incorporation of feature requests re-
sults in direct benefits to the newcomer as their con-
cerns regarding the software program now become the
responsibility of the entire developer community.

The literature on commercial software develop-
ment suggests that “modularization” (Baldwin and
Clark, 2000) of the software code may increase a
project’s transparency, lower barriers to contribute,
and allow for specialization by enabling efficient use
of knowledge (Khoshgoftaar et al., 2001; Meyer and
Seliger, 1998). Furthermore, efficiency in the inno-
vation process requires that individuals specialize
in certain areas of knowledge (Grant, 1996; Simon,

1991). Therefore, specialization in the developer com-
munity, by distinct software modules, could benefit
the development process, and due to the barriers of
understanding and contribution, this could be espe-
cially true for newcomers. Research is still lacking
on the benefits of specialization in open source soft-
ware innovation, and this paper attempts to contribute
to a theory of the open source software innovation
process, by uncovering if newcomers specialize and
what may cause this specialization.

The lack of research on joining, contributing and
specialization by newcomers, and the overall lack of
a theory of the open source software innovation pro-
cess, suggest a qualitative grounded approach to de-
velop analytical categories and propositions (Glaser
and Strauss, 1967; Meyers, 1997; Strauss and Corbin,
1990). We base our theory development on Freenet,
an open source software project for decentralized and
anonymous peer-to-peer electronic file publishing and
retrieval over the Internet.

The paper is organized as follows; we first re-
view the research method employed in our study
(Section 2). Next we provide a history of Freenet and
related development data (Section 3). We then pro-
ceed to theory induction (Section 4) by our analysis of
joining and contributing behavior exhibited by those
who became developers in Freenet. We conclude the
paper by discussing implications of our study for
theory and research (Section 5).

2. Research method

In this section we describe the research method
employed in our study. Our research proceeded in
three phases: sampling of case, data gathering, and
data analysis. We selected one case in order to in-
crease the depth of the analysis, acquire and report
experience with the gathering of new and unfamiliar
data (seeNumagami, 1998).2 Freenet was sampled for
three reasons: firstly, in contrast to the Linux operat-
ing system (which is based on Unix) and most other
open source projects, there is no pre-existing template

2 Because the empirical setting of open source software inno-
vation might be new and unfamiliar to many readers ofResearch
Policy, we use a higher level of detail in our description of re-
search methods than normal.

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1219

software architecture3 for Freenet. Developers in the
Freenet community are engaged in de novo design
and development making it a radical innovation in dis-
tributed file sharing software systems (Oram, 2000).
Consequently joiners should have to put in consider-
able effort before they can contribute, and newcom-
ers should not be able to realize immediate benefits
from specializing in module development according
to an official and pre-defined modular software archi-
tecture. In contrast to projects emulating existing ap-
plications, Freenet contributors also do not know if
their efforts will result in a suitable working prod-
uct. Secondly, Freenet was launched not on the basis
of workable code (seeLerner and Tirole, 2002), but
on a master thesis in computer science written by its
founder Ian Clarke outlining the theoretical principles
of such a software system. This further compounds
the practical considerations of writing code as most
early developers will not have an initial software ker-
nel to build upon (Raymond, 1999). Thirdly, Freenet
is a young project in comparison to the more estab-
lished OSS projects like the Linux operating system
that has been in operation since 1991 or the Apache
web server project which was founded in 1995. Our
data covers the first year (2000) of the Freenet project,
which was a critical phase in establishing sufficient
momentum for the project by mobilizing newcomers.
These three characteristics make Freenet a unique pi-
lot case compared to the ones we know, with respect to
joining, contributing and specialization of newcomers
(Stake, 1995; Yin, 1994).

We gathered data from four different sources.
Firstly, we conducted thirteentelephone interviews4

in two rounds with eight Freenet developers identi-
fied from the developer list on the project’s Internet
homepage. Each interview took between 1 and 2
hours and was recorded and transcribed to facilitate
easy data analysis. The rounds occurred between Oc-
tober 2000 to January 2001 and March to May 2001.
All interviews were semi-structured with guidelines
including developer background information, over-
all structure of the project, reason for joining and

3 The architecture of software characterizes the functionality of
specific modules within the software and the interdependencies
and interactions among these.

4 Eric von Hippel participated in the interviews of some of the
developers.

working on the project, specialization, and particular
challenges in the project. In the first round of inter-
views basic understanding was gained of such factors
as the technical characteristics of the project, critical
events, and philosophy. Analysis of the first round of
interviews indicated that one of the central issues of
concern to the developers was the joining and spe-
cialization of newcomers. In the subsequent round we
identified central as opposed to peripheral categories
by obtaining information on the personal reasons for
joining, how developers deal with joiners and others
in the project, what type of contributions are made to
projects, typical work-load, and specialization in the
project. The interview guidelines provided a compar-
ison across interviewees’ arguments.

Secondly, we collected the project’s public e-mail
conversations stored in the projects’mailing lists
which is archived on Freenet’s website.5 Since we
focused on the contribution to technical develop-
ment of Freenet, we gathered e-mail data from the
‘development’ list where the discussion centers on
topics pertaining to the next release of Freenet, its
design, emerging architecture and other technical
aspects. The project also had three other mail lists
pertaining to user support, technical discussions and
announcements. Analysis of those lists showed them
to be used infrequently during the timeframe of our
study and thus not selected for analysis. This choice
was also confirmed by our interviews of Freenet de-
velopers who indicated that the development list was
the only place where any significant discussion took
place. All the core developers also mentioned that the
development list was the primary means of commu-
nication in the development team. Private e-mails to
particular individuals or groups was not a standard
practice for Freenet development and rarely occurred.
We created a database of all messages including con-
tributor identity, date and time for posting a message,
mails responding to the message, and mail content
for the period 1 January to 27 December 2000. The
database included 11,210 single e-mail messages cov-
ering issues such as implementation details or code
contributions. Similar to the method used byMockus
et al. (2002)each contributor to the discussion list
was given a unique identification code based on an
automated process of matching e-mail addresses.

5 See athttp://www.freenetproject.org.

http://www.freenetproject.org

1220 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

We removed “junk” mail from the list and obvious
repetitions of mails. Contributors with multiple e-mail
identities were reconciled in one unique identity by
the basis of manual examination of e-mail name field
and signature in the text of the e-mail message which
lead to a total number of 356 unique participants6 on
the development e-mail list.

The third source of data included the history of
changes to the software code available via the project’s
software repository within theConcurrent Versioning
System(CVS) source code management tool. CVS is
a public ‘version control’ tool, designed to synchro-
nize work and keep track of changes in the source
code performed by developers working on the same
set of files. CVS stores its version control information
in a directory hierarchy on a central server, called ‘the
repository’, which is separate from the user’s working
directory on his own personal computer. This allows
developers to add or remove files easily, or to ask for
versioning information of files. In addition to storing
the project’s source code, the CVS retains developers’
comments regarding changes they have made to the
source code CVS allows anybody to check out code
from the repository. However, committing code, i.e.
making changes to the source code, is restricted to
those individuals that have been given permission by
the administrator(s) of the CVS repository which in
our case was the project founder and some early de-
velopers. Source code commits served as a major pool
of data because progress of the project is reflected by
the progress of source code modifications. The data
retrieved from the period 1 January to 27 December
2000 included 1244 source code commits from 30 dif-
ferent developers. This comprised in total 54,000 lines
of software code added, not counting the initial revi-
sions of files.

Fourthly, in order obtain contextual understanding
of the project we collectedpublicly available docu-
mentsrelated to the project. Among the most impor-
tant sources were the Freenet project web pages (e.g.
the frequently asked questions (FAQ)7), Ian Clarke’s

6 Participants were numbered by an automated script according
to the sender’s email address. A manual analysis of the mails
was performed in order to remove spam mails as well as to
merge duplicate e-mail addresses. As the original numbering has
not been changed, the 356 unique participants are not numbered
sequentially and higher values are possible.

7 http://freenet.sourceforge.net.

master’s thesis (1999), newspaper interviews with
the core developers, and a technical paper (Clarke
et al., 2000) describing the Freenet project written by
some of the developers. In the case of doubt, ambi-
guity, or lack of data, clarification with developers
in the project was obtained via e-mail or Internet
chat.

The data analysis covered all 356 participants
in the development list. We created four categories
of participation in Freenet based on different roles
played in the project. Members of the e-mail list
(326 individuals) that did not submit any source
code to the CVS repository were classified as “list
participants” or non-developers. The remaining 30
individuals were assigned three temporal coding
roles: (1)Joiner—someone who is on the e-mail list
but does not have access to the CVS repository; (2)
Newcomer—someone who has just begun to make
changes to the CVS repository, and (3)Developer—
someone who has moved beyond newcomer stage
and is contributing code to the project.8 Based on the
development e-mail list database, we generated de-
scriptive statistics on posting frequencies, the number
of active participants over time and communication
patterns among developers versus non-developers
(list participants). This provided insight into the com-
munity size, ‘life span’ of developers and activity
measures in order to identify patterns for joining. We
then backtracked the evolution of the whole project
and explored the developers’ efforts of joining, con-
tributing and specializing. These results were then
used for in-depth qualitative content and process
analysis in order to verify, complement, and ex-
tend the findings and our inductive theory building
exercise.

We developed a coding scheme for joining (Strauss
and Corbin, 1990), by analyzing e-mails on the de-
velopment list, and coding the first e-mail (First Mail)
of a prospective joiner, and the following e-mails
(Subsequent Mail) from list participants, existing de-
velopers and the joiner, before a joiner was given
CVS access. “First Mail” was based on message
contents, and as well the responses from the commu-
nity to the first mail (Response Mail). This provided

8 No attempt was made to gather and analyze data on “lurkers”;
passive but listening subscribers to the development mailing lists
(Nonnecke and Preece, 2000).

http://freenet.sourceforge.net

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1221

a coding scheme of 31 different first mail message
types, covering items such as bug fixes,9 technical
questions, and general comments on development, as
well as 17 subsequent mail response types. We further
grouped these into 14 broader items and analyzed their
frequencies.10 Two people separately coding the mes-
sages contributed to inter-coder reliability. Analysis
of the “Subsequent Mail” was done for all 25 joiners
until they were granted CVS access. The First Mail
and Subsequent Mail of five developers was not avail-
able for examination as they had obtained CVS access
and developer status prior to the start of the study
period. The average number of messages until joiners
became newcomers (23) served as a basis for examin-
ing the mails of all 326 list participants in the project
who did not obtain CVS commit access. Confidence
intervals were used to test whether the type of activ-
ity was significantly different from the two groups of
people.

We analyzed developer activity over time by an-
alyzing the frequency of source code commits,11 as
well as their specialization in different areas of the
software code. Recall that, although seasoned devel-
opers might have tacit knowledge of Freenet’s evolv-
ing architecture, no explicit model was available. In
order to capture the type of source code modifications
to identify specialization of newcomers and existing
developers, we created a reference model of Freenet
by examining all 1244 source code modifications
and clustering them according to (a) the file structure
within the code repository on the CVS and (b) the dif-
ferent tasks of the software. In order to enhance the va-
lidity of the reference model, we followedJorgenson’s
(1989) advice by discussing and reviewing it in
three iterations with developers, including the project
founder.

9 A bug is a programming defect or error that causes the software
to malfunction.
10 The full list of categories is available from the authors.
11 A first attempt involved a cluster analysis of modified files by

the each developer, but this was rejected as too imprecise for our
purposes. A descriptive analysis of the number of touched files
per developer indicated a high degree of specialization, but needed
to be complemented by a qualitative analysis. In short, this first
analysis did not tell us much about the distinctions between parts
of Freenet critical to its purpose and performance, and those less
critical.

3. Freenet history and development
characteristics

In this section we provide a brief history of the
Freenet project, its objectives and an overall charac-
terization of the development process. The Freenet
software enables a peer-to-peer network designed
to allow for the distribution of information over the
Internet in an efficient and anonymous manner. Ian
Clarke started the Freenet project when he was a
fourth year student at the University of Edinburgh,
and completed the basic design in 1999. The overall
design goals as stated on their development web-
site are (Freenet.sourceforge.net, 2000); “Freenet is
a large-scale peer-to-peer network which pools the
power of member computers around the world to
create a massive virtual information store open to
anyone to freely publish or view information of all
kinds. Freenet is: (1) Highly survivable: All internal
processes are completely anonymized and decentral-
ized across the global network, making it virtually
impossible for an attacker to destroy information or
take control of the system. (2) Private: Freenet makes
it extremely difficult for anyone to spy on the infor-
mation that you are viewing, publishing, or storing.
(3) Secure: Information stored in Freenet is protected
by strong cryptography against malicious tampering
or counterfeiting. (4) Efficient: Freenet dynamically
replicates and relocates information in response to
demand to provide efficient service and minimal
bandwidth usage regardless of load”.

The first basic ideas and design of Freenet were
outlined in Ian Clarke’s master thesis (1999)enti-
tled “A distributed decentralized information storage
and retrieval system”, which was published on an
OSS community website (freshmeat.net) for people
to comment on. He also initiated a project e-mail list
and source code repository on SourceForge.net to co-
ordinate the efforts of interested developers. Clarke
was particularly interested in contributions that could
turn these ideas and design into a workable software.
The original document received limited attention, and
Clarke sent an e-mail to the subscribers on the mail-
ing list around Christmas 1999 announcing that he
planned to step down as project leader due to personal
reasons. Nobody volunteered to take over his posi-
tion, but a number of people on Freenet’s mailing list
came to realize that there was a minimal amount of

1222 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

Table 1
The reference model of the Freenet architecturea

Component name Description

1 Routing Which node to contact in order to request or insert data from or into Freenet
2 Data store How data is stored on the local hard disk
3 Cryptography and security Everything related to encryption
4 Keys Keys represent a pseudo-unique ID for each file in Freenet and are used to identify data
5 Network joining How new nodes can be hooked up into the Freenet network
6 Protocol and metadata The internode protocol through which nodes are communicating
7 Clients Clients are the interface which people use to communicate with their node and can fulfil several tasks
8 Client library Commonly shared libraries among most clients to avoid duplicated code
9 Build and install Scripts to compile the source code and to enable a convenient, user friendly installation of Freenet

10 Performance Increasing the performance of the Freenet node
11 Search How searching is accomplished
12 Testing and simulation Code to test the functionality of Freenet and to simulate its behavior on a large scale
13 Documentation Concerns all documentation which is written, like technical specifications, manuals and protocols
14 Node operation Code which is required to get the Freenet server (node) up and running
15 GUINode & configurator A graphical interface to the Freenet node and a graphical configurator (written in Java)
0 Miscellaneous Everything not fitting into other components

a A more detailed description of the software architecture can be requested from the authors.

programming going on at the time. This mobilized
efforts and in early 2000 several people made active
contributions to Freenet.

Consistent with Freenet’s philosophy of a wide-
spread diffusion among users, the Java programming
language was chosen as the development language
for its ability to operate on heterogeneous computer
platforms. Java also has strong network support facil-
ities, a high integrated security level (e.g. against cer-
tain attacks) and it is said to be easier to debug than
other computer languages like C or C++ (Freenet.
sourceforge.net;Kohanski, 1998). However, Java also
occasionally erected barriers for joiners. Many con-
tributors to OSS projects have limited knowledge of
Java and are confronted with the need to learn the
programming language before contributing (Emurian
et al., 2000).

Our reference model (Table 1 and Fig. 112 of
the model) revealed that the Freenet software archi-

12 Analyzing data with such a reference model deviates from
previous methods.Koch and Schneider (2000)accessed publicly
available data on the GNOME project in the CVS repository and
in discussion groups. Their variables included demographic data
of developers, and the project’s productivity measured as lines of
code (LOC) per hour, lines of code added or deleted, or num-
ber of postings to the mailing list. However, the validity of their
“productivity” construct could be compromised because the met-
rics and results were not verified with developers (Glaser and
Strauss, 1967). LOC is generally a weak proxy for a software de-

tecture evolved via 16 main modules. We assigned
developers’ efforts to the various parts of the archi-
tecture and discerned patterns of contributions and
specialization form their activity in the model. On
an even more detailed level of analysis, 53 ‘features’
were identified as subcategories of these modules,
that serve different tasks for the function of the
module, however for the sake of simplicity we will
limit our analysis and discussion to the 16 main
modules.

The first beta13 release of the Freenet software
occurred in March 2000.Table 2 indicates that the
Freenet developers followedRaymond’s (1999)dic-
tum of “release early, release often”, with nine official

velopment project’s productivity (e.g.Caban et al., 2001; Rauscher
and Smith, 1995), since it does not inform if code or a file is crit-
ical to the software’s functionality. A very high number of LOC
added does not necessarily mean a higher quality of code (e.g.
bloated software). The “productivity” of 30 lines of a user man-
ual file might not compare well with 30 lines introducing a new
encryption algorithm. Besides LOC fails with binary documents
(images, WinWord, compiled programs). In addition, since the
source code also includes the contributors’ comments to the code,
LOC additionally distorts the projects’ quantitative changes (see
also discussions inKoch and Schneider, 2000; Humphrey, 1995).
Being tested with the field, and by identifying and distinguishing
central modules of the architecture, the use of a reference model
remedies these weaknesses.
13 A release that has working software code but may have many

defects and many features missing.

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1223

Fig. 1. The Freenet reference model—graphical overview.

code releases during our study period.Table 2also
shows there was a considerable amount of interest in
the project with over 650,00014 copies of the soft-
ware downloaded by users over the Internet.15 The
download statistics indicate a large potential base of
developers available to be mobilized for Freenet, since
users are the primary source of developers in open
source software projects (Moody, 2001; Raymond,
1999; von Hippel, 2001).

The development in a project like Freenet entails
intense discussions on the software development
e-mail list and the ongoing authoring and submission
of source code as shown by changes made to the
CVS repository. Overall, the project is characterized
by temporary efforts, i.e. there is a high turnover in

14 This number shows the cumulative number of downloads for
all releases, the point release statistic, i.e. 42,461 downloads for
release 0.3.6 provides an estimate of the user base for the project.
15 Data for 2001 indicated a similar level of interest amongst

users with an additional 618,000 downloads.

Table 2
Release dates and download numbers

Release Release date Week Downloads

0.1 beta 9 April 2000 15 236573
0.2 1 May 2000 18 203562
0.3 17 September 2000 38 2191
0.3.1 19 September 2000 38 56595
0.3.2 1 October 2000 40 24245
0.3.3 9 October 2000 41 26674
0.3.4 31 October 2000 44 33660
0.3.5 18 November 2000 47 26827
0.3.6 24 December 2000 52 42461

Accumulated
downloads

652788

the developer community, confirming the findings
from interviews that there is a need for understand-
ing joining and contribution of newcomers and those
that eventually become a developer.Fig. 2 shows the
overall number participants on the developer e-mail

1224 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

Fig. 2. Project size based on e-mail activity.

list over the year and the number of people entering
and leaving16 the list.

On average the project consisted of 45 (S.D. = 21)
active participants per week. This number was achie-
ved and stabilized around the first public release date
week 15. As mentioned earlier, 356 unique individ-
uals participated in the Freenet developer discussion
list. They generated 1714 message threads consisting
of 11,210 e-mail messages. A message thread is given
by responses to an initial e-mail, covering a specific
subject such as code which is required to get a Freenet
node up and running, what is needed to enable a conve-

16 A join was recorded when a new participant posted their
first message to the e-mail list. Content analysis of the messages
showed that participants never gave notice of leaving, rather, they
just stopped posting. Thus a leave was recorded based on the
date of the last message of a participant. For each participant, we
examined the forward weeks of e-mails to determine their leave
date. Our data may suffer from “right censoring” effects as we did
not have information on developers that posted initially in 2000
and then also continued participation in 2001.

nient, user friendly installation of Freenet on a user’s
computer and any other development related topic.
The mean number of messages per thread was 6.5
(S.D. = 10.4). Significance testing indicated no dif-
ference in the means for messages per threads initiated
by developers (regardless of temporal role) and list
participants (P = 0.11 , t = 1.56).17 This indicates
that there was an active community of participants
and status in the developer community (i.e. who has
CVS access) did not impact the day-to-day technical
conversations. Developers and list participants were
equally likely to be responded to in an initial e-mail.
Fig. 3 shows the weekly distribution of e-mail mes-
sages and message threads over the year. On a weekly
basis there were an average of 211 (S.D. = 106.1)
messages and 32.34 (S.D. = 16.75) new message

17 Twenty-six percent of threads contained only one message with
no further public response from the developer list. Fifty-six percent
of those non-response threads were initiated by 21 developers and
the remaining were initiated by 118 other participants.

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1225

Fig. 3. E-mail messages and threads per week.

threads initiated. The solid lines on the graph indicate
weeks where a major new release of Freenet was an-
nounced. The dashed lines indicate weeks where mi-
nor releases were announced to the development list.
According toTable 2the first release of Freenet (0.1
beta) was made in week 15. This resulted in a steep
increase in e-mail messages, and as shown inFig. 3, it
sparked the interest and entry of new participants on
the mailing list. Although the Freenet project initially
did not start with a working code base, the presence of
code, however early or defective, mobilized new con-
tributors (Raymond, 1999; Lerner and Tirole, 2002).

A high 78% of the population of development list
participants attempted to initiate dialogue, via starting
a new thread, at least once. Of these attempts only 29
(10.5%) participants did not receive any reply to their
initial posting and subsequently did not appear on the
developer list again.

The character of the discussion activity shows that
the behavior of the Freenet community resonates that
of other open source communities (see e.g.Herrman

et al., 2003). A “critical mass” of contributors sus-
tained the development in the project. Participation
in the development list was highly concentrated with
four individuals, all of them developers, or 1.1% of
the population accounting for 50% of the e-mail list
traffic. The GINI coefficient for message authorship
was 0.89 confirming this concentration of activity.

Fig. 4 shows the pattern of code commits to the
project CVS repository over the year. On average there
were 24 (S.D. = 18) commits per week.

Altogether 30 individuals (8.4% of total e-mail list
population) had CVS commit access18 for the project.
There was a high degree of concentration in the code
writing task with four developers (13%) making 53%
of the code commits to the CVS repository (GINI

18 The project did not normally have a separation between CVS
commit access and writing code for the project, i.e. those writing
code for the project would send their code to a specific person who
had CVS commit access. Our analysis revealed only one e-mail
list participant who modified the source code and then asked a
developer with CVS access to commit the code in their name.

1226 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

Fig. 4. Number of code commits per week.

coefficient= 0.77). Code commits culminated shortly
before and remained for 2 weeks after the first public
release (0.1 beta) took place in week 15. As developer
#38919 commented:

A public release always leads to increased testing
by new users, which in turn leads to the discovery of
new bugs in the software, and commit of debugged
code.

In summary we observe that although many people
participate in the development discussion e-mail list
for Freenet, code writing task is concentrated in a rel-
atively smaller set of individuals who become devel-
opers for the project. Understanding the mechanisms
by which these developers join the project and the ar-

19 The developer number is higher than the total number of
developers reported because some participants would post via
multiple e-mail accounts. We manually combined those participants
that exhibited such behavior. However we collapsed the coding
such that the e-mail address and the corresponding unique ID
associated with the highest number of posts was used as default.

eas in which they contribute and specialize are cru-
cial elements towards developing a theory of the open
source software innovation process.

4. Theory induction

In this section we develop propositions towards a
theory of open source software innovation process.
The propositions are grounded in observed behav-
ioral strategies of newcomers attempting to join the
developer group and their choices of the technical
areas within the existing software code where they
contribute.

4.1. Joining

Scholars have observed that newcomers joining
technical projects must demonstrate some level of
technical expertise as well as understanding of what
the community expects in terms of behavior, in order

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1227

to make a contribution to technical development
(Lovgren and Racer, 2000; Wenger, 1998). In study-
ing the formation of collective action,Tilly (1999)
underscored that “Joining” is a behavioral script that
provides a structure for the activity of becoming a
member of a collective action project. In our context, a
joiner is a person who is eventually given CVS access,
and thus becomes member of the developer commu-
nity. Joiners emerge from the much larger group of list
participants in the development e-mail list. We define
a joining scriptas the level and type of activity a joiner
goes through to become a member of the developer
community. And therefore, joining scripts represents
a cost to any would-be developer in the project.

4.1.1. Level of activity
One dimension of the joining script is the level of

activity, that is the intensity of effort until a joiner
is granted developer’s status. Messages posted on the
development mailing list and interviews with core de-
velopers indicated that often a significant period of ob-
servation (lurking), ranging from a couple of weeks to
several months, was needed before someone felt they
could contribute to the technical discussion:

Participant#83: I’ve been lurking on this list for a
while, so I thought I’d share some ideas about this
[. . .].

Developer#187: [I’ve] been lurking on freenet-dev
for a while, but this is my first post to freenet-dev
[. . .].

Participant#78: I wanted to spit out a very quick in-
troduction to everyone. I just joined the freenet-dev
list today, and I’m very eager to get involved in the
project. I think the concept is absolutely brilliant!
I’m a software developer with about three years of
experience in the commercial world writing Java
(1.1 and 1.2) for my day to day living. My most
recent project lasted two years, and involved a dis-
tributed architecture based on RMI with cryptogra-
phy provided by the Sun JCE. . . . Hopefully, similar
skills are needed somewhere in the FreeNet project.
I’ll be happy to look through the code and help
out where needed, whether it’s heads-down coding,
debugging, writing JavaDoc, or authoring whitepa-
pers. Whatever. Until then, I’ll shut up and just ab-
sorb the culture a little bit and get my bearings!

Since the lurking period was unobserved in our
study, the level of activity of joiners was measured in
terms of the number mails to the developers list, prior
to them getting access to the CVS repository. In the
case of Freenet the average value of mails needed be-
fore a joiner became a developer was 23.4. However,
the standard deviation was quite high (S.D. = 37.8)
due to the fact that one of the 2520 joiners generated
194 mails before being granted CVS access. Average
time between first post and first commit on CVS was
40.8 days. Other participants over the whole year on
average contributed only 9.8 mails (S.D. = 21.6).

4.1.2. Type of activity
The type of activity is also central to a joining script.

In a study of software development,Glass et al. (1992)
found differences in activities ranging from clerical to
highly intellectual, complex and time consuming. In-
spired by this study, we searched for differences in
activities by proceeding in two stages: First Mail, and
the type of activity a joiner underwent before being
granted developer status (Subsequent Mail). Analyz-
ing the First Mail of all participants using the coding
technique we identified 14 non-disjunctive first e-mail
contact categories.21

In 10% of the cases, people made personal intro-
ductions indicating level of skills, without necessarily
providing any evidence of mastery in coding. Most
commonly, in 40% of the cases a first e-mail posted
a message to an already ongoing technical discussion
on the developer list. By joining in a technical dis-
cussion a new participant can learn about the specific
technical challenges of Freenet and signal interest and
knowledge to existing project developers. As devel-
oper (#297) confirmed:

If you wanted to join an open-source project, the
first thing you do is get on the mailing list.

However, no joiner started out by unsolicited ‘new’
technical suggestions, perhaps indicating that it might
be wise to start out humbly and not to boldly announce
“great ideas” for solving problems. In fact none of

20 Recall that five developers had access to CVS prior to the start
of our study (pre-2000), one of which was Ian Clarke, the project
founder. Two others were also very active developers.
21 We do not give the full details of this analysis here, but

summarize some of the results. The complete analysis can be
obtained by the authors.

1228 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

the 12.3% who suggested technical solutions without
accompanying software code in their first post were
joiners. In 16.7% of the cases, joiners started by offer-
ing source code for a bug fix, or an additional feature,
in the form of actual software code submission, in the
evolving software architecture, whereas only 4.6% of
all non-developers did the same (mostly the announce-
ment of external client projects).

A critical category we found is “Express interest to
join as a coder”. In 16.7% of the cases, this worked
as an element of a joining script and in 9.5% it did
not. By coding the responses from the community of
developers (16 items), we further analyzed unsuccess-
ful joining. In 36.7% of all cases, new participants on
the development list stated they would like to join as
coders, but got no response. However, in 56.7% of the
cases members of the community encouraged the new
participants to find some part of the software archi-
tecture to work on that would match with their spe-
cialized knowledge. In only 16.7% of the cases new
participants were both encouraged to join and given
specific technical tasks to work on. Given that Freenet,
at the time of our study, did not have a well-defined
and transparent architecture, general encouragement
for newcomers to find something to work on might
not have made the joining script less costly.

Given an average message thread-length of 6.5, and
some threads exceeding 50 messages, joiners can con-
tribute to an ongoing discussion, which in turn is likely
to provide them with a better knowledge of the emerg-
ing software architecture and technical issues facing
the project. Overall, the community welcomed peo-
ple who announced their interest and indicated their
skill levels, but they expected new participants to find
their own tasks to work on. As we reasoned above, be-
cause a significant level of knowledge is often needed
for entry, of both the emerging architecture as well as
programming (Java), we also observed that many of
those who announce their interests never become de-
velopers.

Next, we performed an analysis of all 564 e-mails
of joiners until they were granted CVS access (with
an average of 23.4 mails (S.D. = 37.8) before they
were given developer priviliges) and of 1189 mails
of non-developers. The average number of joiners’
mails was used as a base for the examination of the
other contributors’ mails, so only the first 23 mails or
the total message volume if less than 23, were taken

Table 3
List of differences between types of activity

Activity category Joiner List
participant

Significantly different activities
Freenet question 0.018 0.087
Offer bugfix (code) 0.048 0.014
General technical discussion 0.430 0.276
Report bug 0.096 0.033
Repeated interest to contribute 0.016 0.003
Usage feedback (no bug report) 0.014 0.099
Request for resources

(documentation, articles)
0.000 0.014

Request for help
(to get Freenet running)

0.000 0.022

Point to technical
resources/
refer to other projects

0.000 0.043

Not significantly different activities
Express interest to contribute 0.053 0.075
Suggestion for improvements 0.126 0.153
Propose/outline bugfix (no code) 0.025 0.008
Coordination and organisation

discussion
0.028 0.028

User support 0.014 0.017
Answer (technical) Freenet question 0.032 0.016
Self introduction 0.007 0.014
Announcing “external” contribution 0.044 0.047
Point out theoretical

weaknessess of FN
0.018 0.007

Give Feedback on others contribution 0.011 0.010
Ask for a task to work on 0.005 0.003
Off topic discussion 0.082 0.072
Discuss legal/philosophical

implications/matters
0.014 0.015

into account. Of the resulting 22 categories of mails
(seeAppendix A for a complete list with example
mail excerpts), nine categories turned out to be signif-
icant in distinguishing joiners’ from non-developers’
type of activity.Table 3provides an overview of these
categories and the descriptive statistics on joiner and
non-developer types of activities. The numbers rep-
resent the relative percentage frequency of the occur-
rence of specific activity categories in the examined
mails.22

There are differences in behavior of joiners and
non-developers. Non-developers ask more general

22 A clarifying example: values of 0.5 respectively 0.3 for joiners
and list contributors would mean the 50% of all joiners’ mails and
30% of all other contributors’ mails fall into that specific category.

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1229

questions about Freenet, and more frequently request
help to get the software up and running on their own
computer. They would also more frequently request
resources such as documentation and articles. The
interviews revealed that a joiner would typically lurk
silently on the developer list and learn as much as
possible in order to make a technical contribution,
rather than entering into the development list asking
general questions. Having learned about the techni-
cal details of the project, joiners would contribute
more actively, than other contributors, to an ongo-
ing technical discussion as a way of increasing their
recognition. A developer (#334) stated:

Actually, I just started getting involved. There
would be a discussion about something, and I
would just throw in my two cents about it. After a
while, I was contributing to the discussion so much
that everybody knew who I was and what I was
doing there.

Joiners would more frequently report technical
bugs in the software than other contributors, mak-
ing developers aware of important “construction
sites” in the project (seeKohanski, 2000). However,
non-developers would give more general user feed-
back, without specific bug reports, than joiners. These
reports were focussed on the use experience and often
contained new feature requests.

Interestingly, whereas joiners in their first e-mail
rarely indicated an interest to join the project, during
the period that followed, they would more frequently
than other contributors, repeat their interest to become
a developer. The interview with developer #405 pro-
vides further interpretation of these findings:

There are probably three kinds of people. One is,
‘I started working with it. I saw these problems.
I fixed them. Here they are.’ That person gets in.
There is the person who says, ‘I am a JAVA en-
gineer from Dallas, Texas. I’ve been working for
five years, and I really would like to help. Give me
something to do.’ That person tends not to do any-
thing. They tend to volunteer some expertise that
doesn’t get exploited yet. [. . .] The third type of
person is the visionary, who says, ‘I think Freenet
is great, but it needs permanent storage, announce-
ments, and broadcasting.’ They tend to start fight-
ing with the core architects, if they’re lucky, who
are actually making the decisions not to do that.

Usually, they fight with lower-down people on the
totem pole who are given the party line. They tend
to never get in.

The quote indicates that there are implicit, but
nevertheless important joining scripts in the Freenet
project (no script has been written down). It shows
the developer favors hand-on solutions to technical
problem, and that demonstration of technical knowl-
edge in the form of software code submission matters
more than signaling of interest and experience.

The categories “technical discussions” also covers
technical activities and reflects a joiners’ technical and
computational knowledge (e.g.Sonnentag, 1995). Ei-
ther a message contains written software code, and/or
it provides a technical contribution to the design and
implementation of Freenet. Hence a joining script of
Freenet is to undertake technical activities (Lovgren
and Racer, 2000), providing concrete example to the
community of a joiner’s technical and computational
knowledge (SeeSauer et al., 2000).

Based on the data, analysis, and foregoing discus-
sion, we conclude with the following proposition:

Proposition 1. Participants behaving according to a
joining script (level and type of activity) are more
likely to be granted access to the developer community
than those participants that do not follow the project’s
joining script.

4.2. Contributing

In our analysis of Freenet, the transition from
“joiner” to “newcomer” occurs when the joiner is
given CVS access and makes a first contribution to
the software. As reasoned above, there are private and
collective benefits pertaining to community member-
ship discussed in the literature (von Hippel and von
Krogh, 2003; von Krogh, 2002; Wenger, 1998), but
as well, there might be private and collective benefits
resulting from specialization and division of labor in
a project.

4.2.1. Specialization
In order to examine specialization of newcomers,

we tracked the overall specialization in the developer
community. The “specialization” construct is mea-
sured by the address of code submissions, i.e. to which

1230 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

module of the software a particular contribution is
made. “High” specialization indicates that the same
modules within the code base were changed over
time by a developer, while “generalization” indicates
multiple modules were changed by a developer. The
construct’s dimension is the accumulated number of
modules a developer created or changed over time. As
we described above, modularity in the Freenet project
was not explicit or visible. Our construction of the
modules in the reference model (seeFig. 1andTable 1)
was based on an ex-post examination of source code
areas and interviews with developers. However, this
lack of explicit modularity did not deter specialization
by modules as indicated by developer #4:

I think we recently have specialized. Because [. . .]
there are people like [developer #6] and they are
working most with the client. And then [developer
#101] and I have been doing the core stuff. And even
with that, [developer #101] has been doing most of
[. . .] the actual cryptography modules. [. . .] There
is a guy who is working on graphical user interfaces.

Applying the reference model for the analysis of
code commits to modules, we found evidence of high
specialization. On average developers contributed to
4.6 (S.D. = 4.1) modules. However, 43% of all de-
velopers only contributed to up to two modules.

A similar high specialization can be shown for each
of the 666 source code files:23 Roughly 80% of all
files were created and/or modified by a maximum of
two developers during the period of analysis, with a
mean value of 1.88 contributors per file. This finding
matches astonishingly well with the research ofKoch
and Schneider (2002)who found a mean value of 1.8
contributors per file in the Gnome project.24 Ian Clarke
comments:

It’s . . . like, “I’ll do this and I’ll do this.” Basically
people throw ideas onto the mailing list and then
people say: “I’ll do that. . . I’ll do that . . . I’ll do
that.” You’ve got all of these tasks floating around
and then people take tasks that they want to do. I
think what makes the core programmers special is
that they’re willing to do the tasks that no one else
does because I think they take a greater sense of

23 As of 31 December 2000. This number increased constantly
over time.
24 http://gnome.org.

personal responsibility and a more long-term ap-
proach. So some of the people who are not so active
in the development will take the easy or the inter-
esting stuff where the core developers are willing to
do anything that needs to be done in order to further
the progress of the project.

This quote supports the notion that developers spe-
cialize in coding modules because it is personally re-
warding (von Hippel and von Krogh, 2003); they can
apply their domain knowledge to modules and fea-
tures in the emerging software architecture at low cost.
Yet, three developers showed “generalization” or low
specialization by contributing broadly to more than
13 modules. These are what Ian Clarke refers to as
“core developers” with a long-term commitment to the
project. The following quote from an interview with
developer #101 provides a further interpretation:

. . . well one of the problems we have right now
that we are working on is cryptography (Module
3). We are adding a public key to the cryptography
to the entire system, and unfortunately, any change
you make in that affects just not only the protocol,
which is what I am working on right now, but it af-
fects how the keys are handled (Module 4), how the
client interprets the keys (Module 8), how data is
verified. Basically, that little change affects pretty
much everything in Freenet and, therefore, the kind
of people making those changes, myself and (de-
veloper #6) mainly, have to understand everything
that happens in Freenet in order to do it.

As the emerging software architecture becomes
increasingly complex, modules and features increas-
ingly intertwined, some developers need to spread
their efforts more broadly across the software. While
high specialization allows for efficiency in innova-
tion, there are also benefits to rotating people among
jobs, in particular to broaden the understanding of a
project, the increased sensitivity to coupling of tasks,
and better management of interfaces (Cosgel and
Miceli, 1999; Lindbeck and Snower, 2000). A small
set of core developers therefore derived utility from
working on many modules and ensured integration
across the project as changes were made to modules
that had other dependent modules.

In terms of newcomers’ specialization,Fig. 5shows
the total number of developers that contribute to each
module in the reference model, and how this related

http://gnome.org

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1231

Fig. 5. Number of contributors per component and where they contribute on joining.

to newcomer’s contributions. This comparison is done
across the population of newcomers making the first
commits, rather than across time for each developer.

There were 30 contributors during the examined
timeframe, so that, e.g. a value of 22 in Module 7
(clients) means that 73% of all contributors have
changed the component “clients” at least once. The
“first contribution” bars shows to which module new
developers contributed during their first day. The base
number for this figure is 26, since four out of the
total of 30 contributors had already been developers
prior to the timeframe we examined. Two modules
are clearly predominating for joining behavior and
shows high specialization. Sixty-five percent of new
developers enter by either modifying the “build and
install scripts” (Module 9) or by modifying existing
clients or adding new clients (Module 7).

4.2.2. Contribution barrier
What can explain this high specialization of new-

comers? Based on the interview findings, and the
literature in commercial software development (e.g.
Fichman and Kemerer, 1997; Kohanski, 1998), we
propose a construct of “contribution barrier” erected
by complex open source software technologies, where

the following four items pertain:

1. ease of modifying and coding module (developer
#101, #389);

2. the extent to which the potential developer can
choose the computer language used to code for the
module can vary (developer #389);

3. ease with which to “plug” the module into the
architecture (developer #36);

4. the extent to which a module is intertwined or inde-
pendently working from the main code (developer
#36).

We illustrate the salience of the contribution barrier
items by comparing all four dimensions for the ‘build
and install’ module and the ‘cryptography’ module
(seeTable 1). As Fig. 5 indicates, 31% of all first
contributions occurred in the build and install module
(#9), whereas none of the first contributions occurred
in the cryptography and security module (#3).

The first item, “Ease of modifying and coding”
refers to the complexity of the source code and the
level of difficulty of the used algorithms in order to
achieve the desired goals. The level of ‘difficulty’
seems to be relative to the professional education
and prior domain knowledge and expertise of the

1232 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

developers. It varies across all developers and new-
comers and cannot be adequately captured in a single
global measure. Nevertheless it is possible to indicate
some generic differences across modules. Using the
two modules, cryptography and build and install, we
found that the installer, which mainly performs simple
tasks like copying files, uses much simpler routines
than the cryptography module which contains com-
plex algorithms and requires, e.g. in-depth knowledge
of mathematics.

The second item concerns the computer language of
a module. Some languages are complex and difficult
to learn, while others, i.e. simple script languages25

can be mastered fairly easily. Additionally, some com-
puter languages are wide spread and can attract a
large number of potential contributors, while others
are known by few, and thus raise contribution barri-
ers. Developers’ personal preferences might be an ad-
ditional reason why barriers to contribution is tied to
language. One list participant stated, i.e. the dislike
of having to use a proprietary software in order to be
able to run the open source software:

However, by principle, I will not install any Java
product until the language becomes non-proprietary.
I would like to start a C version of the server,. . .
(list participant #33).

In Freenet, the cryptography module is part of the
core of the software architecture which written in Java,
i.e. successful Freenet operation depends on this mod-
ule, therefore requiring all cryptography algorithms to
be written in Java as well. This poses a restriction on
this module in contrast to, e.g. the build and install
part, which is not part of the core and can be written
in any programming language, allowing developers to
use the language of their preference. We found at least
five different types of programming languages used to
code this module.

The third item of contribution barriers is the ease
with which new modules can be ‘plugged into’ the
existing software architecture. Clearly defined inter-
faces between the modules allow developers to use ex-
isting functionality without having to understand the
rest of the specific algorithms used by Freenet. Also

25 A script is a list of commands to the computer that can be
executed without the interaction of a user. A scripting language is
a very simple computer language used to write scripts.

unwanted side effects are prevented by such an archi-
tecture, which allows to plug in modules easily, e.g.
the build and install module with its functionality can
be plugged into the main Freenet architecture without
affecting it in any way. Also the build and install mod-
ule uses predefined interfaces to communicate with the
rest of Freenet, thus lowering the contribution barrier
erected by the need for a detailed understanding on
how Freenet itself works. The cryptography module
stands in sharp contrast to the build and install module.
Cryptography is closely intertwined with other mod-
ules in the architecture, thus requiring both a broad
understanding of the overall functionality of Freenet,
as well as a detailed understanding of more than one
module. Two interview quotes illustrate how the ease
with which to plug a module into the software archi-
tecture matters for the choice to contribute:

Oh, well because at that time I felt I didn’t know
too much about technology. So,. . . I didn’t really
want to mess too much with what was going on in-
side the node. So, on the user interface side, there’s
really no specialized knowledge (of the emerging
architecture—authors’ addition) needed. [. . .] And
I saw that Freenet didn’t have this and so that I
could do something that I could just put in and it
wouldn’t be too controversial (developer #36).

Yes. I think that what he [Ian Clarke] is saying there
is that the node itself is so complicated and, unfor-
tunately, so inter-tangled that it’s not easily modu-
larized and to do development on. Freenet, at least
now, requires an understanding of fully everything
that happens in the Freenet node. So that’s why I
think there are so few developers that actually work
on the core node right now. There’s a lot of learning
curve there (developer #101).

Developer #36 mentions the relative benefit of spe-
cializing in the user interface, build and install, before
more knowledge could be gained about the emerging
software architecture. Developer #101 contrasts this
with the core node functionality, including cryptog-
raphy, where the “learning curve” for newcomers is
very high because it requires thorough understanding
of modules and features and their interconnectedness.
As we reasoned, those modules are highly intertwined
and specific to the project and require significant past
investment in learning about the architecture, thus
erecting contribution barriers for newcomers.

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1233

Table 4
Feature gifts made by newcomers during their first week

Developer Module Feature gift(s)

9 Cryptography and security Test to ensure that files are properly encrypted
101 Cryptography and security Three algorithms for encrypting files and better random number generator
101 Performance Thread pool system for parallel processing
101 Testing and simulation System to model overall Freenet network response
296 Cryptography and security Safe operation while using web browser
297 Clients Graphical interface for client
345 Clients Address consistency in web browser
351 GUINode & configurator Graphical interface for operation of Freenet server
389 Build and install Microsoft Windows operating system build and install

The fourth item of contribution barriers concerns
the extent to which a module is intertwined or inde-
pendently working from the main code. Modules that
work independently from the Freenet architecture can
be used optionally and/or alternatively, and breaking
them does not prevent the whole system from work-
ing. Such modules can be added or removed at any
point, often without having to recompile the whole
source code. For example, the build and install mod-
ule is optional, because the Freenet software can also
be installed and run without a proper installation util-
ity. Developers consider the barriers for contributing
to such modules to be lower because they do not risk
breaking the whole system. This is not the case with
all components. If the cryptography module is broken,
Freenet will cease to work and might compromise the
security and anonymity of its users.

The data, foregoing analysis and discussion leads
us to formulate:

Proposition 2. In an evolving software architecture of
open source software projects, contribution barriers of
modules(modifying and coding, variation in computer
language, plug-in, and independence) are related to
the specialization of newcomers.

4.2.3. Feature gifts
We further analyzed instances where newcomers

had provided whole modules or features (sub mod-
ules) to the software, rather than contributing to ex-
isting modules and features. The construct “Feature
gift” is measured by whether the first contribution is
an extension or feature in the reference model.Table 4
shows that there were nine such features added dur-
ing the first week of a newcomers participation in the
Freenet developer community.

In social exchange one can assume that individuals
form relationships to maximize rewards and minimize
costs, and that gifts are a part of this process. Our
findings and analysis confirm an evolving idea in the
literature; open source software innovation hinges on
contributors giving gifts in the form of code
(Raymond, 1999),26 in this case features.Bergquist
and Ljungber (2001)suggest that the gift giving is
an important mechanism for organizing relationships
between people. In their view, the open source soft-
ware innovation process hinges on gift giving as a
way of getting new ideas and prototypes out into
circulation, and test their quality. In addition to the
learning benefits obtained by contribution (von Hippel
and von Krogh, 2003), in Freenet we found gift giv-
ing to increase early specialization of newcomers.
The nine features given allowed newcomers to make
a specialized contribution from the outset, and also
allowed for specialization among other contributors.
Hence we formulate:

Proposition 3. Feature gifts by newcomers are re-
lated to their specialization in open source software
projects.

An important element of the feature gift giving was
that the cost of creating and giving the gift was rel-
atively low to the newcomers. Our interviews with
the developers revealed that those that had contributed
feature gifts did so on the basis of prior knowledge

26 Eckstein (2001)notes that gift giving can be based on voluntary
action in a community where norms and values give rise to such
behavior. However, our data are weak on the social norms of the
community, and we can only speculate that gift giving is related
to the evolving sense of collective fate and obligation among
developers.

1234 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

and experience they had acquired and refined in other
circumstances. As developer #36 told us:

I guess (developer #101) had some thread-pooling
code that he’d previously written, which was just ly-
ing around, essentially. And he said, “Freenet needs
thread pooling,” so he just sort of imported that
whole stuff in.

In these circumstances, developers simply modi-
fied ready-at-hand code they had developed and used
for other purposes, to the Freenet framework and
then submitted their feature gift. The early feature
gift is thus a way to quickly contribute code to the
project. This finding is consistent with studies of
the innovation process where pre-existing domain
knowledge or direct experience is a source of new
product ideas (Luthje et al., 2002; von Krogh et al.,
2000) and a source of user-to-user technical support
(Lakhani and von Hippel, 2003). This leads us to
posit:

Proposition 4. In open source software projects, fea-
ture gifts by newcomers emerge from the newcomers’
prior domain knowledge and user experience.

Our findings and analysis of feature gifts also shows
another point related to contribution barriers. The Win-
dows installer, a gift given by newcomer #389 to the
build and install module, allowed other newcomers to
make a fruitful contribution to Freenet in the area of
Windows programming, although they may not have
had intimate understanding of the evolving architec-
ture of Freenet and perhaps lacked proficiency in Java
programming. This gift seemed to have significantly
lowered the contribution barriers of those that came
after (seeProposition 3andFig. 5). Hence, we formu-
late:

Proposition 5. Feature gift by newcomers are related
to contribution barriers in an open source software
project.

5. Conclusion and implications

We studied joining and early contribution to the
collective action of open source software innovation.
Using data from Freenet, we inductively generated

theory on the phases of joining a developer commu-
nity and making the initial contributions to the soft-
ware. In the first phase, we developed the construct
of “joining script”, and proposed that contributors
who follow joining scripts in terms of level and type
of activity are more likely to obtain access to the
developer community. The transition from joiner to
newcomer is achieved when a person is granted such
access to the developer community, and to a priv-
ileged source code commit regime. We developed
the constructs of specialization, contribution barriers,
and feature gifts. We proposed that newcomers de-
rive benefits from specializing in their contributions,
that specialization of newcomers will be related to
the contribution barriers in the project, that feature
gifts given by newcomers will be related to their
specialization in the project. Additionally feature
gifts will be based on the newcomers prior direct
experience and are related to contribution barriers
and they create new entry points for developers who
follow.

Some limitations confront our research. Firstly, the
constructs and propositions are developed based on
data from one case only. Although care was exer-
cised to make the categories non-disjunctive and the
constructs operational, measures, items, and the ex-
ternal validity of our propositions must be verified
across a wider sample of cases. Secondly, although we
could refine and eventually verify the reference model
with an alternative field, its validity could be compro-
mised by the allocation of files to the model. Research
on projects with overt software architectures will not
be subject to this limitation, but probably researchers
could loose the benefits ensuing from studying a young
project where mobilization of joiners and newcomers
is critical. Thirdly, we studied an open source project
where the commit regime was restricted to 30 peo-
ple. Although similar regimes are known to hold for
other projects, such as Linux, there may be projects
that are fully open and where joining scripts are ei-
ther more difficult or near costless. Fourthly, this re-
search assumed that joiners expressing their intention
to become a contributor actually intend to contribute
to the project. Further research could reveal that for
some reasons joiners frequently state their interest to
join without real intentions to do so, which would bias
the number of people not succeeding in becoming a
developer.

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1235

The study has implications for research on open
source and commercial software innovation. Firstly,
it is important to recall that open source software
development has characteristics of collective action
aimed at producing a public good. This calls for an
extended theory of innovation (von Hippel and von
Krogh, 2003). Current theorizing builds on the premise
that all or most innovation will be supported by private
investment and that private returns can be appropriated
from this (e.g.Demsetz, 1967). To encourage such in-
vestment, society grants innovators intellectual prop-
erty protection (Grandstrand, 1999). The situation is
different in open source where the protection mecha-
nisms partly or fully guarantee the rights of the user, by
sustaining free revealing of software code (Stallman,
1999). An extended theory must explain why, what,
and how expert developers contribute for free to the
production of a public good. The premise of such a
theory, as shown by this study, should be that contri-
butions are not costless and that significant costs are
associated with joining a project. A joining script of
a project implies significant levels of technical activi-
ties conferred upon joiners before they are granted the
access to the commit regime. Future research should
explain not only variance in joining scripts across a
population of projects, but also the motives of joiners
and how they change over time as they work their way
into the project. This will help get a more complete
picture of those factors enabling growth and continu-
ation of projects.

Secondly, in line with existing theory, we found
that there are community-related benefits available
to newcomers (von Hippel and von Krogh, 2003;
Raymond, 1999), but added that specialization in
the project incur benefits for newcomers. More re-
search should be devoted to test if the same patterns
of newcomer specialization can be identified across
a population of projects. Future studies should also
investigate whether or not developers change their de-
gree of specialization over time, as they “move down
the learning curve” in the software architecture.

Thirdly, one might have the impression of open
source software innovation as a market where contri-
bution equals participation. If Freenet is representa-
tive, this is not so. On the one hand, the market for a
technical solution might matter less for an entry into a
developer community, than the knowledge and interest
demonstrated through a sustained level of high quality

technical activity.27 On the other hand, some anecdo-
tal information available in our data revealed that join-
ing script relates to concerns in the community about
software architecture, but the method did not give suf-
ficient substance to further develop this line of inquiry.
Theorists of collective action have suggested the con-
cept of “non-redundant groups”, in which the contri-
butions of all members of a certain type is needed for
the production of a specific public good (seeCortazar,
1997). The analysis of specialization in Freenet indi-
cates the community could be redundant to some ex-
tent, but also that newcomers were attracted to those
modules where entry points were present and visi-
ble and contribution barriers were low. The problem,
therefore, is for the community as well as the joiner to
understand whether the contributions of joiners is es-
sential to the project, and also how this relates to the
contribution barriers. Future research should attempt
to uncover how the evolution of the software architec-
ture changes joining scripts, so that for example, the
joining script is less costly for people who demon-
strate high level of technical knowledge in areas vital
to the project, than for those joiners whose technical
knowledge is significantly overlapping with that of the
existing developer community.

Fourthly, a pressing issue of concern to researchers
interested in both technical and social aspects of soft-
ware innovation is whether or not there are linear or
non-linear production relationships between developer
input (team size) and the project’s productivity. For
example, in commercial software developmentBanker
et al. (1994)found non-linear effects: there are both
increasing and decreasing economies of scale. Future
research should attempt to investigate the production
relationships between developer input and produc-
tivity. There might be a critical size of a developer
community, 30–40 people, that can produce open
source software in an efficient manner (seeWayner,
2000), but we clearly need more research on factors,
such as the costs and mechanisms of coordination
impacting on critical size. Studies should compare the

27 Bidault and Fischer (1994)made a similar observation regard-
ing technology transactions between firms. Rather than buying a
superior technology in the market, firms tend to engage in tech-
nology transactions with partners about which they possess infor-
mation, that is, whose “identity” is known.

1236 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

productivity of the private-collective model of innova-
tion with traditional commercial software innovation.

Fifth, MacCormack et al. (2001)found evidence
in commercial Internet software development that
higher performance of the development project was
associated with the use of development teams with
greater knowledge from several releases of a particu-
lar software (generational experience). Open source
software development is a voluntary activity, and as
can be inferred from the analysis of development
activity in Freenet, a high turn over among develop-
ers and other contributors may reduce generational
experience. Intuitively, transparent development pro-
cesses and software architecture could outweigh the
loss of generational experience in producing high
levels of a project’s productivity (also by reducing
contribution barriers), but this needs examination
in further research. Research should investigate if
projects differ much in terms of turnover among var-
ious contributors, and as well what factors impact
on turnover. Moreover, the sharing of knowledge
among ingoing, outgoing, and remaining developers
needs more attention, and also how turnover im-
pacts on the performance of an open source software
project.

Solid theory building and empirical studies on the
social aspects of software development is still lacking
(Nambisan and Wilemon, 2000; Swanson, 1994). In
commercial software projects the technical aspects of
innovation are often obscured by lack of access to the
source code. For this reason,Kemerer and Slaughter
(1999)noted that it is methodologically challenging to
capture incremental changes in the software architec-
ture, and their causes. This study shows that the open
source software development process is transparent,
both with regards to the social and the technical as-
pects. As a research setting, an open source software
project permits empirical work on innovation issues
such as choices of design, architectural development
and modularization, activities preceding and follow-
ing software release, user feedback, quality improve-
ment, social dynamics in innovation communities,
integration of newcomers into a project, and leader-
ship. Eventually, work on open source software devel-
opment and its commercial counterpart will mutually
benefit from exchange of results, and jointly they will
contribute to an extended theory of private-collective
innovation.

Acknowledgements

We are grateful to helpful comments from two
anonymous reviewers. We also thank Chris Argyris,
John Seely Brown, Eric von Hippel, Audris Mockus,
Patrick McCormick, Luis Villa, Stefan Haefliger,
Petra Kugler, Heike Bruch, Simon Gächter, Simon
Peck, and Hari Tsoukas for helpful comments and
suggestions. Ben Ho and Craig Lebowitz provided
technical assistance with data importation and pars-
ing. We would like to thank Ian Clarke and the
Freenet developers for their willingness to partici-
pate in our study and providing key insights into the
open source development process. Karim R. Lakhani
would like to acknowledge the generous support of
the Boston Consulting Group and Canada’s Social
Science and Humanities Research Council doctoral
fellowship. Georg von Krogh and Sebastian Spaeth
acknowledge the generous support from the Research
Foundation at the University of St. Gallen.

Appendix A. List of activity categories with
excerpts of a typical e-mail

A.1. Express interest to contribute

Hi all, I’d like to contribute to the development
of Freenet. I’ve found that the best way for me
personally to understand the code is to document it.
So I guess the first thing I’d like to do is go through
all the code and document it (participant #253).

A.2. Freenet question

How will people find a document when it is first up-
loaded into freenet? The only nodes that can find it
are the ones that are closer to it’s pocket in keyspace
than to any other pocket. The document can’t spread
if nobody can find it (pockets must occur, because
inserts are done to proximal keys, and pockets are
a Good Thing anyways) (participant #7).

A.3. Suggestion for improvements

I agree that adding special routing tables for every
single situation is just asking for confusion. [. . .] I
would like to propose a flexible plan that might get

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1237

around these issues. There is no doubt that there is
some importance to a node knowing the “quality” of
its surrounding neighbours. This could include ping
time, node uptime, node cpu load, available band-
width and could be passed back and forth to nodes
through the handshaking mechanism (a mechanism
which has amazing application potential for future
freenet development. . . for all those people ques-
tioning “why do we bother with a handshake?”).
This quality data could be stored in a single table
mapping various Ips to their associated vitals. This
data would be useful to many different parts of the
code but here I would single in on routing. . . (par-
ticipant #46).

A.4. Offer bugfix (code)

I hacked around the problem by putting private
static class RequestAbortException extends Re-
quest.RequestAbortException{}in classes DataRe-
quest and InsertRequest. Obviously a kaffe bug,
though (participant #76).

A.5. General technical discussion

I know the planned hash function for CHK but by,
e.g. modifying one word in a document I assume
you could more likely get that same key with fatal
consequences. Anyhow, the chances exist, in which
case two different versions of one CHK in Freenet
exist [and one would retrieve the wrong document].

The chances two insert two different docs with
the same key despite the checking mechanism still
exist, but are much smaller (I would think). So we
shouldn’t disable that feature that makes Freenet
more reliable in terms of consistent keys (participant
#389).

A.6. Propose/outline bugfix (no code)

Yes, that’s it. If you run out of entropy reading
/dev/random on FreeBSD, /dev/random stops re-
turning bytes (i.e. the read() is short) until more
entropy appears from the interrupt channels. Oops,
and I don’t have any interrupt channels but the key-
board. . . .

/dev/urandom always returns data; you might
want to make it try to open that before /dev/random
(participant #76).

A.7. Report bug

I am seeing evidence of message ID corruption, the
following illustrates [. . .].

Mar 24, 2000 2:29:43 PM:client/RequestClient:
Minor:The request got stuck on a broken node but
has been restarted at a depth of 0.

Mar 24, 2000 2:37:13 PM:MessageFactory.java:
Normal:Unknown messagetype-java.lang.ClassNot
FoundException: Freenet.message.

I noticed in the code that the ID is handled as a
long integer. Is there a type mismatch somewhere
in the code? (participant #45).

A.8. Coordination and organisation discussion

I second this motion. It’s so hard to read up on this
list and try and follow all of the discussions: some-
times people have good points; other times people’s
points seem valid but have some flaws. It would
be nice if at the conclusion of a discussion authors
of ideas would write-up their proposals and posted
them to the website. More specifically, I’m still un-
certain about the conclusion of the following dis-
cussions:

(a) mechanism for updating documents;
(b) search and metadata;
(c) subspace partitioning (the language spec is a

good start);
(d) exact protocol for trusting your neighbors and

discovering rogues (participant #208).

A.9. User support

> I read Oskar’s response to your problem and
wasn’t sure if he was saying that port forwarding
would work or not.

Port forwarding works just fine. I ran Freenet
behind an ISDN router (Zyxel 100IH) OK. This is
set up to forward ports to a particular PC. I used a
version of W2K, and did not have to do anything

1238 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

special. If Netmeeting work for you, then Freenet
should as well (participant #116).

A.10. Answer (technical) Freenet question

> What is the current status of metadata implemen-
tation in Freenet, and how do I get at this metadata
from the command line client?

> Can I get a MIME content type? The -metadata
[FILE] option will do it. I assume you’re not using
an output file. The client’ll output something like
this to stdout: [. . .] (participant #345).

A.11. Self introduction

My name is [XXX]. I live and work in Cheltenham,
England. I work in a small computer shop called
[XXX], fixing and building computers.

I study in a nearby city called Gloucester. Other
than computers and Free Software my mail inter-
ests are the sciences, language (though not in the
science that you might expect) and drama. Really I
have know idea what I want to do with the rest of
my life, but Brandons “company programming dy-
namic non-linear multi-user virtual reality worlds”
sounds like the type of thing I’d hope to be doing!
(participant #9).

A.12. Announcing “external” contribution

My pet project for this month—a freenet library and
client in c—is now in a previewable state. There’s
still a lot of code cleanup and big changes to the
client in store and the library still needs a lot of
work. I’ve tested the client with Snapshot 4–27 and
it worked. So take a look: XXX [removed URL to
project] (participant #52).

A.13. Point out theoretical weaknessess of FN

I just want to point out one potential danger of
this mapping idea. It would cause people who re-
quest data to have both a descriptive key and the
actual message on their node whereas the routing
of data would normally split the two up. So you
get a record of what you request and one of the

nice things about Freenet is that requested data and
data routed through your node are indistinguishable
(participant #19).

A.14. Repeated interest to contribute

Lads, would you be prepared to let me loose on it?
I can do a nice job of it, and you’re welcome to
inspect my code before I check it back in. If you
could decide now it would be good, because my
evening is just beginning [. . .] (participant #297).

A.15. Give feedback on others contribution

> OK, I have added the code in these two places.
Hopefully things will be better in tomorrow’s snap-
shot. Unless of course we have to wait another week
for people to start running the new code.

Nah, just applied your patches and restarted the
server. I think you are truly the Orkin man:-) [. . .]
(participant #45).

A.16. Ask for a task to work on

I have about 5 years coding experience in C, 3 in
C++, and about 1.5 in Java. I can do Perl pretty
well too. I have a spring break coming up, so maybe
if someone could point me to a little part where I
could contribute? (participant #56).

A.17. Usage feedback (no bug report)

I put up a node on piclab.com:800 and it seems to
be working. InsertClient is a bit inelegant: it seems
to have inserted the file correctly, but then timed
out and killed itself. I don’t yet know the code well
enough to decide whether that’s OK (participant
#26).

A.18. Off topic

OK Since I’m on AOL I’m an EVIL and stupid [per-
son] who doesn’t know the first thing about com-
puters, the Internet, or how big money works!. . .

right? I don’t like the way the corporate is shaping
the world wide web (note not the Internet) for their

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1239

own, and only their own benefit [. . .]. I think cap-
italism is a good system except it is fatally flawed
in that: once you have most or everything of mon-
etary ($) value what else is there to have? there is
control—your first and last goal (participant #314).

A.19. Request for resources (documentation, articles)

Hi, I was wondering if someone could be good
enough to send a copy of Freenet.ps to XXX
[removed e-mail address]; this is the paper “A
Distributed Decentralised Information Storage and
Retrieval System” by Ian Clarke (participant #7).

A.20. Request for help (to get freenet running)

Hi, I have just downloaded your program and I cant
seem to get it to open. I saved it to desk top and
along with the freenet software I also downloaded
the Java software. I even unzipped both downloads
and when I click on any of the folders in them it
asks you to choose which program to use to open
the program, and I’m not quite sure which to open
it in. I tried it in explorer and it does’nt work. I’m
very anxious to begin using your software, so please
help me. Thank you (participant #325).

A.21. Discuss legal/philosophical
implications/matters

However, it’s clear to me (and many others) that
Freenet is likely the singularly most interesting
and powerful piece of software currently in de-
velopment. So powerful, in fact, that I doubt
that by the time the platform becomes quite
feature-comprehensive, easy-to-use, and popular
(I’d give ∼1–2 years for 5 million nodes?) that the
governments of the world are going to do all they
can to stop it, legally and technically.

Therefore, it seems to be prudent for someone to
give a legal analysis [of Freenet]. (participant #37).

A.22. Point to technical resources/refer to other
projects

Hmmm, All these talk of multicasting jogged my
memory and what popped out was this article ap-

pearing on DDJ #312, May 2K, “Scalable Multi-
casting File Distribution”.

Sounds familiar? You can get it athttp://www.ddj.
com/articles/2000/0005/0005i/0005i.htm. No doubt
this was written by a researcher in MS (horrors!:),
but was done quite professionally. There are code
available but. . . in C/C++. Another article on gen-
eral multicasting ishttp://www.ddj.com/articles/
1997/9710/9710b/9710b.htm?topic=communica-
tions (participant #152).

References

Baldwin, C.Y., Clark, K.B., 2000. Design Rules, vol. 1. The Power
of Modularity. MIT Press, Cambridge, MA.

Banker, R.D., Chang, H., Kemerer, C.F., 1994. Evidence of
economies of scale in software development. Information and
Software Technology 36 (5), 275–282.

Bergquist, M., Ljungberg, J., 2001. The power of gifts: organizing
social relationships in open source communities. Information
Systems Journal 11(4).

Bidault, F., Fischer, W.A., 1994. Technology transactions—
networks over markets. R&D Management 24 (4), 373–386.

Caban, A., Cimino, C., Swencionis, C., Ginsberg, M.,
Wylie-Rosett, J., 2001. Estimating software development costs
for a patient multimedia education project. Journal of the
American Medical Informatics Association 8 (2), 185–188.

Callhoun, C., 1986. The radicalism of tradition: community
strength or venerable disguise and borrowed language?
American Journal of Sociology 88 (6), 886–924.

Clarke, I., 1999. A distributed decentralised information storage
and retrieval system, Unpublished Masters Thesis. University
of Edinburgh, Edinburgh.

Clarke, I., Sandberg, O., Wiley, B., Hong, T.W., 2000. Freenet:
a distributed anonymous information storage and retrieval
system. In: Proceedings of the Paper Presented at the Designing
Privacy Enhancing Technologies in International Workshop on
Design Issues in Anonymity and Unobservability. Berkeley,
CA.

Cortazar, R., 1997. Non-redundant groups, the assurance game,
and the origin of collective action. Public Choice 92 (1–2),
41–53.

Cosgel, M.M., Miceli, T.J., 1999. Job rotation—cost, benefits
and stylized facts. Journal of Institutional and Theoretical
Economics 155 (2), 301–320.

Demsetz, H., 1967. Towards a theory of property rights. American
Economic Review 57 (2), 347–359.

Eckstein, S., 2001. Community as gift-giving: collective roots of
volunteerism. American Sociological Review 66 (6), 829–851.

Emurian, H.H., Hu, X., Wang, J., Durham, A.G., 2000. Learning
Java—a programmed instruction approach using applets.
Computers in Human Behavior 16 (4), 395–422.

http://www.ddj.com/articles/2000/0005/0005i/0005i.htm
http://www.ddj.com/articles/2000/0005/0005i/0005i.htm
http://www.ddj.com/articles/1997/9710/9710b/9710b
http://www.ddj.com/articles/1997/9710/9710b/9710b

1240 G. von Krogh et al. / Research Policy 32 (2003) 1217–1241

Fichman, R.G., Kemerer, D.F., 1997. The assimilation of software
process innovations: an organizational learning perspective.
Management Science 43 (10), 1345–1363.

Glaser, B., Strauss, A., 1967. The discovery of grounded theory:
strategies for qualitative research. Aldine de Gruyter, New York,
NY.

Glass, R.L., Vessey, I., Conger, S.A., 1992. Software tasks:
intellectual or clerical. Information and Management 23 (4),
183–192.

Grandstrand, O., 1999. The Economics and Managment of
Intellectual Property: Towards Intellectual Capitalism. Edward
Elgar, Cheltenham.

Grant, R.M., 1996. Towards a knowledge-based theory of the firm.
Strategic Management Journal 17, 109–123.

Herrman, S., Hertel, G., Niedner, S., 2003. Motivation of software
developers in open source projects: an Internet-based survey of
contributors to the Linux kernel. Research Policy (special issue
on open source software development).

Humphrey, W.S., 1995. Discipline for Software Engineering.
Addison-Wesley.

Jorgenson, D.L., 1989. Participant Observation: A Methodology
for Human Studies. Sage, Newbury Park, CA.

Kemerer, C.F., Slaughter, S., 1999. An empirical approach to
studying software evolution. IEEE Transactions on Software
Engineering 25 (4), 493–509.

Khoshgoftaar, T.M., Allen, E.B., Jones, W.D., Hudepohl, J.P.,
2001. Cost-benefit analysis of software quality models. Software
Quality Journal 19 (1), 9–30.

Koch, S., Schneider, G., 2000. Results from software engineering
research into open source development projects using dublic
data. In: Hansen, H.R., Janko, W.H. (Eds.), Tätigkeitsfeld
Informationsverarbeitung und Informationswirtschaft.

Koch, S., Schneider, G., 2002. Effort, cooperation and coordination
in an open source software project: GNOME. Information
Systems Journal 12 (1), 27–42.

Kohanski, D., 1998. Moths in the Machine. St. Martin’s Press,
New York, NY.

Kohanski, D., 2000. Moths in the Machine: The Power and Perils
of Programming, 2nd Ed. St. Martin’s Press, New York.

Lakhani, K., von Hippel, E., 2003. How open source
software works: “Free” user-to-user assistance. Research Policy
(forthcoming).

Lerner, J., Tirole, J., 2002. Some simple economics of open source.
Journal of Industrial Economics 50 (2), 197–234.

Lindbeck, A., Snower, D.J., 2000. Multitask learning and
the reorganization of work—from Tayloristic to Holistic
organization. Journal of Labor Economics 18 (3), 353–376.

Lovgren, R.H., Racer, M.J., 2000. Group-dynamics in projects:
don’t forget the social aspects. Journal of Professional Issues
in Engineering Education and Practice 126 (4), 156–165.

Luthje, C., Herstatt, C., von Hippel, E., 2002. The Dominant
Role of “Local” Information in User Innovation: The Case of
Mountain Biking. MIT Sloan School of Management Working
Paper, #4377-02.

MacCormack, A., Verganti, R., Iansiti, 2001. Developing products
on “Internet Time”: the anatomy of flexible development
process. Management Science 47(1), 133–150.

Meyers, J.D., 1997. Qualitative research in information-systems.
MIS Quarterly 21 (2), 241–242.

Meyer, M.H., Seliger, R., 1998. Product platforms in software
development. Sloan Management Review 40 (1), 61–74.

Mockus, A., Fielding, R., Herbsleb, J., 2002. Two case studies of
open source software development: Apache and mozilla. ACM
Transactions on Software Engineering and Methodology 11 (3),
1–38.

Moody, G., 2001. Rebel Code: Inside Linux and the Open Source
Revolution. Perseus Press, New York.

Nambisan, S., Wilemon, D., 2000. Software development and new
product development: potential for cross-domain knowledge
sharing. IEEE Transactions on Engineering Management 47 (2),
211–220.

Nonneke, B., Preece, J., 2000. Lurker demographics: counting the
silent. In: Proceedings of the SIGCHI conference on Human
factors in computing systems. Association for Computing
Machinery, ACM Press, New York, pp. 73–80.

Numagami, T., 1998. The infeasiblity of invariant laws in
management studies: a reflective dialog in defense of case
studies. Organization Science 9 (1), 2–15.

Olson, M., 1965. The Logic of Collective Action. Harvard
University Press, Cambridge, MA.

Oram, A., 2000. Gnutella and Freenet Represent True Techno-
logical Innovation http://www.openp2p.com/pub/a/20805/12/
2000.

Pliskin, N., Balaila, I., Kenigshtein, I., 1991. The knowledge
contribution of engineers to software development: a case study.
IEEE Transactions on Engineering Management 38 (4), 344–
348.

Rauscher, T.G., Smith, P.G., 1995. Time-driven development of
software in manufactured goods. Journal of Product Innovation
Management 12 (3), 186–199.

Raymond, E., 1999. The Cathedral and the Bazaar: Musings on
Linux and Open Source from an Accidental Revolutionary.
O’Reilly and Associates, Sebastapol, CA.

Sauer, C., Jeffrey, D.R., Land, L., Yetton, P., 2000. The
effectiveness of software development technical reviews: a
behaviorally motivated program of research. IEEE Transactions
on Software Engineering 26 (1), 1–14.

Sawhney, M., Prandelli, E., 2000. Communities of creation:
managing distributed innovation in turbulent markets. California
Management Review 42 (4), 24–35.

Simon, H., 1991. Bounded rationality and organizational learning.
Organization Science 2 (1), 125–134.

Sonnentag, S., 1995. Excellent software professionals: experience,
work activities, and perceptions by peers. Behaviour &
Information Technology 14, 289–299.

Stake, R.E., 1995. Case studies. In: Denzin, N.K., Lincoln, Y.S.
(Eds.), Handbook of Qualitative Research. Sage, Thousand
Oaks, CA, pp. 236–247.

Stallman, R., 1999. The GNU Operating System and the Free
Software Movement. In: DiBona, C., Ockman, S., Stone, M.
(Eds.), Open Sources: Voices from the Open Source Revolution.
O’Reilly, Sebastapol, CA, pp. 53–70.

Strauss, A., Corbin, J., 1990. Basics of Qualitative Research. Sage,
Thousand Oaks, CA.

http://www.openp2p.com/pub/a/20805/12/2000
http://www.openp2p.com/pub/a/20805/12/2000

G. von Krogh et al. / Research Policy 32 (2003) 1217–1241 1241

Swanson, E.B., 1994. Information systems innovation among
organizations. Management Science 40 (9), 1069–1092.

Taylor, M., Singleton, S., 1993. The communal resource:
transaction cost and the solution to collective action problems.
Politics and Society 21 (2), 195–214.

Tilly, C., 1999. Durable Inequality. University of California Press,
Berkeley, CA.

von Hippel, E., 2001. Innovation by user communities: learning
from open-source software. Sloan Management Review 42 (4),
82–86.

von Hippel, E., von Krogh, G., 2003. Open source software and
the private-collective innovation model: issues for organization
science. Organization Science 14 (2), 209–233.

von Krogh, G., Ichijo, K., Nonaka, I., 2000. Enabling Knowledge
Creation. Oxford University Press, New York, NY.

von Krogh, G., 2002. The communal resource and information
systems. Journal of Strategic Information Systems 11 (2), 85–
107.

Waterson, P.E., Clegg, C.W., Axtell, C.M., 1997. The dynamics of
work organization, knowledge and technology during software
development. International Journal of Human-Computer Studies
46 (1), 81–103.

Wayner, P., 2000. Free For All: How Linux and the Free Software
Movement Undercuts the High-Tech Titans. HarperBusiness,
New York.

Wenger, E., 1998. Communities of Practice: Learning, Meaning
and Identity. Cambridge University Press, Cambridge, UK.

Yin, R.K., 1994. Case Study Research: Design and Methods,
second ed. Sage, Thousand Oaks, CA.

	Community, joining, and specialization in open source software innovation: a case study
	Introduction
	Research method
	Freenet history and development characteristics
	Theory induction
	Joining
	Level of activity
	Type of activity

	Contributing
	Specialization
	Contribution barrier
	Feature gifts

	Conclusion and implications
	Acknowledgements
	List of activity categories with excerpts of a typical e-mail
	Express interest to contribute
	Freenet question
	Suggestion for improvements
	Offer bugfix (code)
	General technical discussion
	Propose/outline bugfix (no code)
	Report bug
	Coordination and organisation discussion
	User support
	Answer (technical) Freenet question
	Self introduction
	Announcing "external" contribution
	Point out theoretical weaknessess of FN
	Repeated interest to contribute
	Give feedback on others contribution
	Ask for a task to work on
	Usage feedback (no bug report)
	Off topic
	Request for resources (documentation, articles)
	Request for help (to get freenet running)
	Discuss legal/philosophical implications/matters
	Point to technical resources/refer to other projects

	References

