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ABSTRACT

Communities are an important type of structure in networks. Graph

filters, such as wavelet filterbanks, have been used to detect such

communities as groups of nodes more densely connected together

than with the outsiders. When dealing with times series, it is pos-

sible to build a relational network based on the correlation matrix.

However, in such a network, weights assigned to each edge have dif-

ferent properties than those of usual adjacency matrices. As a result,

classical community detection methods based on modularity opti-

mization are not consistent and the modularity needs to be redefined

to take into account the structure of the correlation from random ma-

trix theory. Here, we address how to detect communities from cor-

relation matrices, by filtering global modes and random parts using

properties that are specific to the distribution of correlation eigenval-

ues. Based on a Louvain approach, an algorithm to detect multiscale

communities is also developed, which yields a weighted hierarchy of

communities. The implementation of the method using graph filters

is also discussed.

Index Terms— community detection, modularity, correlation

matrix, hierarchical communities, graph filters

1. INTRODUCTION

A first goal when analysing a set of related signals, such as times

series acquired by sensor networks (see Fig. 1), economical series,

or any dynamical quantity measured at different points in space, is

to discover relations between them, and to group together similar se-

ries, before further processing. We adopt a network model to study

this question, assuming that each series represents a node of the net-

work and that the relation between any two series is the weight of

the corresponding edge in the network. Then, groups of closely re-

lated series will appear as communities in this network, i.e., groups

of nodes having a larger proportion of links within the group than

without [1]. Existence of communities is a frequent and well studied

feature of complex networks [2].

The objective of the present work is to show that one can cluster

together series, even if they are correlated and nonstationary, consid-

ering the correlation matrix of the whole collection of series, import-

ing thus, the concept of communities from network analysis. How-

ever, as it was shown in [3], correlation matrices are not adjacency

This work was partly funded by the European Research Council,
PLEASE project (ERC-StG-2011-277906); and the ANR-14-CE27-0001
GRAPHSIP grant.

matrices of networks and the classical modularity metrics [2] has

to be adapted. Recalling how classical modularity is extended to

correlation matrices, we first show some resulting pitfalls in com-

munity detection. More precisely, we will be confronted to two

common problems of community detection: one is the presence of

global modes or trends among all the individuals (the so-called mar-

ket mode in economy) that can mask the specific relations within

groups. A second difficulty comes from the size heterogeneity of the

groups which raises the tricky question of resolution limit for mod-

ularity in usual networks [4]. In a second step, we propose solutions

to avoid such pitfalls. This leads us to a new algorithm for multires-

olution community mining from correlation matrices. The proposed

approach is tested both on simulated examples and on a real-world

example of temperature sensor networks.

2. BACKGROUND

2.1. Community detection with modularity matrix

Numerous works and methods exist to find communities in com-

plex networks, many of which being reviewed in the survey of S.

Fortunato [1]. As a loose definition, a community is a set of nodes

that has a larger number of links inside the group than with the out-

side. That said, it remains to decide on a precise metrics to quantify

this property. Methods have been proposed ranging from the use of

spectral clustering or cut algorithms (see the review in [5]) to the

use of the popular modularity metrics [2], information-theoretical

approches [6], or graph wavelet based methods where one relies on

graph filterbanks defining wavelets to provide ego-centered views

from each node [7].

The starting point here is the modularity of a network. This

quantity measures how relevant a given node partition is to represent

the different communities that compose the network. It is calculated

by comparing the strength of the edges within communities to a null

model corresponding to a random rewiring of the links while the

nodes degree is kept unchanged. For a partition described by σi (the

label of the group of node i), the modularity is defined as

Q(σ) =
1

2m

∑

ij

(Aij− < Aij >)δ(σi, σj) (1)

where δ stands for the Dirac function, < Aij >=
kikj

2m
with ki =

∑

j Aij , and 2m =
∑

i ki. A good partition in communities is

then associated to a large value of Q(σ). More concisely, the modu-
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Fig. 1. Live E! sensor network [11] in Kurashiki city, Okayama

Prefecture, Japan, and the temperatures over 25 sensors for 10 days.
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Fig. 2. Estimation by histograms of the eigenvalue distribution of C

for N/T = 0.01, (left) when following the hypotheses leading to

the Marchenko-Pastur distribution (also shown in black above) and

(right) when there is a structured mode with eigenvalues outside the

bulk (and possibly a global mode as well).

larity (1) can be rewritten as follows:

Q(σ) =
1

2m
Trace(σT (A− < A >)σ) (2)

where σ is a matrix coding for the communities, σij = 1 if node i
is in community j, and 0 otherwise.

Maximization of Q(σ) is hard as it requires an optimization

procedure over the huge space of all partitions of any size of the

network. There are several possibilities to find the partitions that

(approximatively) maximize this modularity: simulated annealing,

spectral methods [1, 2]. The modularity matrix (A− < A >)/2m
can be studied in itself to find a relevant partition in a community

(see [8, 9]). In the following, we will use the sub-optimal yet very

efficient method that is the greedy Louvain algorithm [10].

This Louvain algorithm will be used as it opens the way to

the study of large scale problems [10]. In a nutshell, this algorithm

iterates two steps:

(1) Select a node and group it with the node that causes the largest

increase of Q; do this sequentially with all other nodes.

(2) Merge the nodes of the same community to form a new network

whose nodes are the communities formed at step (1).

At the beginning of each step (1), the partition assigns one node to

one community (singletons), then the different communities grow

or disappear by absorption. The algorithmic efficiency comes from

the fact that it is possible to write the modularity increase due to

steps (1), without considering the entire graph but only the nodes

to be grouped together, and that it is possible to consistently and

easily derive the weighted edges of the pruned graph from the initial

weighted edges.

2.2. Decomposition of correlation matrices

As argued in [3], correlation matrices are not adjacency matrices

of networks and therefore modularity is not readily applicable. In

particular, they show that the null model < Aij > is failing for cor-

relation matrices and leads to biases. To overcome the problem, [3]

proposes to rely on random matrix theory in order to have a relevant

null model for correlation matrices. We briefly recall their approach.

Let us consider the time series Xi(t) for i = 1, ..., N at times

t = 1, ..., T . Their correlation matrix C is:

Cij = Corr(Xi, Xj) =
XiX

T
j

√

Var(Xi)Var(Xj)
= X̃iX̃

T
j (3)

with centered and normalized series X̃i. Results from random ma-

trix theory (see, e.g., [12, 13]) can be applied to decompose the cor-

relation matrices in several parts: a random part (or bulk) associ-

ated to some null hypothesis, a structured part which describes non-

random behaviors and possibly a global (also called market) mode

that represents a general mode common to all series (such as the one

apparent on Fig. 1).

The random part is associated to the null model that would co-

incide with stationary, white (i.e., uncorrelated in time) series that

are i.i.d. with 0 mean and identical variance. In that case and in the

limit of N and T large with ratio N/T > 1 still finite, the eigen-

decomposition of the correlation matrix C, yields eigenvalues fol-

lowing the famous Marchenko-Pastur (MP) distribution:

ρ(λ) =
T

N

√

(λ+ − λ)(λ− λ−)

2πλ
(4)

for λ ∈ [λ−, λ+] where λ± =

(

1±
√

N

T

)2

, and ρ(λ) = 0 out-

side this interval. Fig. 2 shows this theoretical distribution superim-

posed to the sample histogram obtained for stationary, white random

series. This suggests that the correlation eigenvalues lying within

the interval [λ−, λ+] could correspond to a random null model with

independent, stationary and white series. Hence, if there is a cor-

relation structure that can be detected, its footprint is expected on

eigenvalues that lie outside this interval.

This argument leads to decompose a correlation matrix C in its

spectral domain. Let’s diagonalize C (always possible as it is a def-

inite positive matrix) as:

C = U diag(λ1, ..., λN ) UT , (5)

where the eigenvalues λk are sorted in decreasing value: λ1 ≥ λ2 ≥
.... ≥ λN−1 ≥ λN . The decomposition comprises three parts:

C = C
(r) +C

(s) = C
(r) +C

(s−) +C
(g). (6)

• C(s) = U diag(λ1, .., λs, 0..., 0) UT , where λs is the

smallest eigenvalue that is still larger than λ+ (there are s
such eigenvalues). It is called the structure mode.

• C(r) = U diag(0, 0, .., 0, λs+1..., λN ) UT , where λs+1 is

the first eigenvalue smaller or equal to λ+. (there are N − s
such eigenvalues). It is the random mode or “bulk”.

• If there is a so-called global mode due to a general dynamics

common to all series, it is associated to the largest structured

eigenvalue λ1. In this case, one can split the structured part

in two and remove the global mode C(g) from it to keep a

(reduced) structure mode:

C
(g) = U diag(λ1, 0, ..., 0) U

T = λ1U1U
T
1 (7)

C
(s−) = U diag(0, λ2, .., λs, 0..., 0) U

T . (8)
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Fig. 3. Example of the distribution of the eigenvalues of C, (a) when

there is a global mode and the bulk is squeezed and is not located

in the interval [λ−, λ+] (two isolated eigenvalues that should be in

C(s) are lower than λ+), and (b) after filtering of the global mode

(the interval [λ−, λ+] is more representative of the bulk).

2.3. Community detection from correlation matrices

Combining results from sections 2.1 and 2.2, the authors of [3] pro-

pose to maximize a modified modularity adapted to correlation ma-

trices. If there is no global mode, the modularity is written, mutatis

mutandis, as eq. (2) where C(r) takes the role of the null model:

QC(σ) =
1

Ctot

Trace(σT (C−C
(r))σ). (9)

Moreover, if there is a global mode in C(g), they propose to

remove it from the correlation matrix and the modularity of C(s−)

reads

Q−

C(σ) =
1

Ctot

Trace(σT (C−C
(r) −C

(g))σ). (10)

To maximise the modularity QC(σ) or Q−

C(σ), they resort to

the Louvain algorithm described in Section 2.1.

3. PITFALLS IN COMMUNITY DETECTION FROM

CORRELATION MATRICES

Let us now stress some limits of this approach, using for that, time

series Xi(t) that follow the same model as in [3]:

Xi(t) = a α(t) + bi βσi
(t) + c γi(t) (11)

where α(t) is the global mode (with amplitude a), βσi
(t) is the

discriminant mode of the group σi and common to all time series

therein (with amplitude bi), and γi(t) is the noise for the node i (with

amplitude c). All modes are i.i.d. centered, normalised, white gaus-

sian noises. The following sections describe situations where the

proposed method fails at finding the true communities of the model.

3.1. Presence of a strong global mode

When there is a strong global mode, the bulk is squeezed as com-

pared with the expected MP distribution and this leads both to mis-

place λ+ and to have the eigenvector associated to the largest eigen-

value to dominate in C(s). See illustration of Fig 3 (a). As a con-

sequence, the Louvain algorithm usually finds only one community:

all series share the same global evolution (e.g. see series of Fig. 1).

If we were to know that there is a global mode, we could try to

update the (wrong) value of λ+. For instance, considering the one-

class model Xi(t) = a α(t) + c γi(t) leads to a bulk ending in

cλ+/
√
a2 + c2 instead on λ+. However, the parameters a and cc

are unknown beforehand in practical situations and this is not easily

possible.

(a) (b)

Correlation matrix Obtained communities

Fig. 4. Resolution limit of modularity: given the model correlation

matrix on the left, the maximization of modularity outputs the com-

munities on the right, merging together smaller groups.

Correlation matrix 3 hierarchical levels 4 hierarchical levels

Fig. 5. Hierarchical mining of communities, commented in 3.2.

3.2. Limit in resolution

A more standard weakness of modularity maximisation is its in-

ability at finding small scale structures.[4]. This is illustrated in

Fig 4 where N = 100 series are grouped in communities of sizes:

4, 6, 8, 11, 14, 17, 19, and 21. The community detection gathers the

first 5 groups into a unique global community, because of the natural

resolution limit of modularity.

A solution to bypass this problem is to adopt a hierarchical ap-

proach, by repeating for each community obtained separately, the

whole procedure. The question then is to decide where to stop the

recursion. We illustrate this issue with a variant of model (11) in-

volving nested communities:

Xi(t) = a α(t) + bi βσi
(t) + b′i β

′

σ′
i
(t) + c γi(t) (12)

where the group dependent term now depends on two levels of em-

bedded communities, σi and σ′
i. The results of a hierarchical ap-

proach yield the matrix of communities of Fig. 5 where each coeffi-

cient Commkl codes for the number of iterations up to which nodes

k and l are kept in the same community. Although it allows to iden-

tify small communities, including the embedded ones, a problem is

that there is no stopping criterion. For instance, the fourth commu-

nity (nodes 61 to 80) is erroneously split into 4 sub-communities in-

stead of just two if the iteration process were to stop at the third hier-

archical level. Similarly, without control, this hierarchical approach

forces the fifth monolithic community to fragment into meaningless

groups. Conversely though, it is necessary to iterate the process up to

level four to identify the small (sub-)communities formed by nodes

1 to 60.

4. THE PROPOSED ALGORITHM

In this section, we present our contributions to overcome the two

issues of correlation based community detection, described above.

4.1. Mitigate the effect of global mode

A straightforward solution to limit the effect of global mode, as re-

gards of a single dominant large community and of bulk squeezing,
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is to remove it before estimating the correlation matrix. The pro-

posed approach is to first detect communities from the unmodified

C(s), using the Louvain algorithm. If only one community emerges,

we remove the average behaviour from the time-series:

Xi(t)← Xi(t)−X(g)(t) where X(g)(t) =
1

NA

∑

k∈A

Xk(t). (13)

V (resp. NV ) stands for the set (resp. the cardinal) of nodes to be

considered: initially all, and only a subset of them at subsequent

iterations of the hierarchical algorithm. A new correlation matrix

is then computed from the detrended NV time series. Without the

global mode, the bulk is less squeezed towards the origin and the

bounds λ± are more accurately estimated. This is clearly illustrated

on Fig. 3 (b), where the distribution of the eigenvalues of C is dis-

played after the global mode was removed using Eq. (13), and to be

compared with plot (a) showing the distribution before filtering.

4.2. A weighted hierarchical approach

As described in Section 3.2, at each step of the hierarchical proce-

dure, the community matrix entry Commkl is incremented by one

whenever the nodes k and l remain in the same cluster. Here, for

each iteration on a newly found community V , we propose to incre-

ment the matrix entries corresponding to any two nodes kept together

in V , by the modularity QCσV
, associated to the new (embedded)

detected partition of σV :

Commkl ← Commkl +QCσV
. (14)

For clusters that do not subdivide at finer resolution, the value

QCσk
will remain very small and the matrix entries Commkl will

stabilise. On the other hand, if a new subdivision emerges as the

resolution increases, the matrix entries will undergo a larger incre-

ment and the corresponding sub-community will clearly distinguish

in the community matrix Comm. Finally, the output is a weighted

representation of hierarchical communities, as illustrated in Fig. 6.

4.3. Algorithm

Putting together the improvements developed in the previous two

sections, we propose an algorithm that leads to a multi-resolution

and weighted communities detection from a correlation matrix. The

pseudo-code is as follows:

Input {Xi(t), i = 1, . . . , N ; t = 1, . . . , T}
H (maximal depth of the hierarchy).

Set h = 1 and V = {1, ..., N}.
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comparison to the model correlation on the left.
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Fig. 8. Output (Weighted or not) of the algorithm for H = 4 in a case

of nested communities, and comparison to the model correlation.

(1) Consider the group of nodes in V , and note NV = |V|.
(2.a) Compute and diagonalize C.

(2.b) From MP, filter out the eigen-components larger than λ+ =
(1 +

√

NV/T )
2 and form C(s).

(3.a) Apply Louvain algorithm on C(s) to find σ.

(3.b) If there is only 1 community, remove the global mode as in

Eq. (13).

Go back to step (2.a) (or stop if all Xk are 0).

(4) For each detected community Vκ, increment the community

matrix according to:

∀k ∈ Vκ ∀l ∈ Vκ
Commkl = Commkl +QCκ

V
(σ)

(5) For each community Vκ, set h = h+ 1 and repeat the proce-

dure (1)-(5) for V = Vκ, until h = H .

5. EXAMPLES

5.1. Simple simulated examples

We illustrate the result of the previous algorithm on some simple

examples. The first one follows the model of eq. (11), with hetero-

geneous communities in sizes, as in Fig. 4. The result is shown on

Fig. 7 and it appears that the communities are all perfectly recovered.

Then, the situation of Fig. 6 where communities are embedded

in a hierarchical way as per eq. (12), is explored. The result is shown

on Fig. 8. Here again, the weighted approach with our algorithm

outputs a correct multi resolution representation of the communities.

5.2. Example with real data

We consider now data from the environmental sensors from the Live

E! project [11] for illustration. The data consists in several time se-

ries of temperature, with a time resolution set to 10 minutes. We will

explore a specific zone, the 25 sensors in Kurashiki city, Okayama

Prefecture, Japan. The goal is to group together sensors experienc-

ing similar temperature evolutions. As expected (and seen on Fig. 1),

there is a dominating global mode for all the sensors and it is the fluc-

tuations around this mode that are interesting. That justifies the use
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Fig. 9. Output of the algorithm for the Live E! temperature sensors.

The communities displayed on the left are used to color the sym-

bol of the sensor position according to the first level, and to color

the number of the sensor according to the second level of the hier-

archy of communities. The two sensors in white are malfunctioning

sensors and detected as such outside communities.

of the approach developed here. Figure 9 shows both the output with

unweighted and weighted community matrix.

In both cases, one sensor (19) is always separated from the oth-

ers: in fact this is an indication of the malfunctions at that time of

this sensor, and the same can be said for sensor (14) which is an

outlier also at the following levels. Other sensors are then grouped

in two large communities, one with 8 sensors which are relatively

homogeneous, and the second with the remaining 15 sensors appear

to have 3 sub-communities (plus 14 as outlier).

The finding is that the communities are essentially geographical

in their positioning: the separation in 2 big communities separate

the sensors in places near the sea from sensors more inland, and

the following levels are associated to refinements depending whether

there is a part of forest near the sensor’s location or not. This is

relevant as sea and forests have a major impact on temperature, with

for instance a cooling effect that reduces the possible fluctuations in

temperature measured by these sensors around the global mode.

6. DEVELOPMENTS AND PERSPECTIVES

The proposed algorithm relies on the simplification of the correlation

matrix via its decomposition and the removal of its random part. In

the spectral domain, the action is to filter the matrix by keeping only

its largest eigenvalues. The direct implementation of that is to di-

agonalize C, and this could be cumbersome for large problems. An

alternative is to realize that keeping only C(s) is a low-pass filtering1

of C, that keeps only eigenvalues larger than λ+. This interpretation

in terms of filtering is possible because C is definite positive: it

is diagonalizable with real positive eigenvalues; hence, contrary to

graph filters for adjacency matrix, as proposed in [14], its spectrum

is well defined and ordered. Instead of computing C, one can try

to compute the effect of this filtering in the spectral domain (using

the method of [15]) of C (as done in [7] for community detection

with wavelets) and estimate C(s) by applying this filtering to some

1The largest eigenvalues are associated to the more global mode, hence
the equivalent “frequency” is ordered as the opposite of the λk and low “fre-
quency” are for large eigenvalues.

fixed vectors. We do not detail this graph filter implementation of

the method further on here, as it remains a work in progress.

Perspectives of the present work of community mining in corre-

lation matrices would be first to go to problems of larger scales (as

the MP distribution would remain well valid), using the mentioned

graph filter implementation, and, second, to be able to take also into

account some adjacency matrix in the study, e.g., position in spaces

(and nearest neighbors) for sensor networks. This will be studied in

future works.
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