Community Preferences and the Representative Consumer
Author(s): John Muellbauer
Source: Econometrica, Vol. 44, No. 5 (Sep., 1976), pp. 979-999
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/1911540
Accessed: 30/07/2013 16:50

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

COMMUNITY PREFERENCES AND THE REPRESENTATIVE CONSUMER

By John Muellbauer ${ }^{1}$

Abstract

A representative consumer exists if market behavior corresponds to a representative income or utility level which is a function of the income distribution. Necessary and sufficient conditions are given on micro behavior and macro behavior (whether maximizing or not) for a representative consumer to exist. Nonlinear Engel curves and taste differences are permitted. If the representative income level is restricted to be mean income, we obtain the traditional linear Engel curves solution. A striking result on economy of information in the representation of a social welfare function is given.

1. INTRODUCTION

Two NOTIONS WHICH are so closely related that one would not even put them on different sides of the same coin are that of a community indifference curve and that of a representative consumer. A representative consumer exists if the market behavior of an aggregate of different consumers is as if it were the market behavior of a number of identical hypothetical consumers, each with the same level of income. It is implicit or explicit in much of economic analysis. Community indifference curves have a long history in international trade theory. They are at least as old as Jevons. That there are problems with their existence was realized by Wicksell [27] and many economists since. Samuelson's 1956 paper [22] is still the best accessible statement of the problem and its solution.

In a classic 1953 paper, "Community Preference Fields" [10], Gorman established: (i) given that each consumer has sufficient income, then community preferences exist if the marginal propensity to consume for any good is the same across consumers, and (ii) given (i), income redistribution "does not matter" in that it does not affect market behavior.

These conditions imply linear expansion paths not necessarily through the origin with identical slopes across consumers. ${ }^{2}$ Samuelson proposed an alternative

[^0]story to justify community indifference curves. Here the government has a Bergson-Samuelson type social welfare function defined on individual utilities. Both the government and consumers are simultaneously optimizing: the former with respect to the income distribution, the latter with respect to their budget allocations.

The assumption of community preferences is standard for trade theorists and for cost benefit analysts who use as their tool the change in consumer surplus defined as the approximate money value at given prices of the change in utility which occurs for some representative consumer. This interpretation is strictly valid only if the observed market purchases in the two situations being compared are compatible with maximizing behavior and, even then, the separate question of distributional judgements arises. Although the latter is a quite separate issue, the knowledge that income distribution "does not matter" behaviorally when community preferences exist in Gorman's sense may predispose economists to neglect distributional issues.

Samuelson's alternative story for the existence of community preferences has perhaps proved even more popular among formal theorists in public economics. It underlies, for example, the elegant exposition in Diamond and McFadden [6]. It is even more explicitly unrealistic about distributional issues.

It is worth pointing out that this paper has only a very distant connection with the work of Scitovsky [23] and Arrow [1] who are often mentioned in connection with community preferences. Scitovsky's concept is much weaker and is discussed at the end of Section 2. Arrow's framework is much more general. But, within my specific and narrow framework of individualistic preferences and market decentralization, the negative result that without severe restrictions community preferences do not exist is related to his negative result. However, that the answer is negative here is already well known to all.

My new set of conditions for the existence of community preferences is more in the spirit of linear aggregation. I use a slightly more general framework than Gorman's, and his theorem is a special case of mine. I define my representative consumer through the representativeness of his or her budget shares rather than the quantities or values purchased. It turns out that this permits the Engel curves to be nonlinear. The effect of this is to re-introduce explicitly a behavioral influence for income distribution. I hope that this will make it psychologically more difficult for welfare economists to ignore distributional issues.

One might ask whether the assumption of community preferences in my sense has any ethical connotations. Does it, for example, aid in finding out whether one social situation is better than another? The answer to this is that it does not. What it does offer is an elegant and striking informational economy. This can be seen as follows: A Bergson-Samuelson social welfare function is a formalization of some ethical judgements. In particular, the implied "distributional weights" (i.e., the marginal social value of each person's income) are a convenient representation of these judgements. If under community preferences each consumer's budget shares are aggregated, weighting income by the relevant distributional weight, the resulting budget shares correspond to a socially representative income level. In
general, more egalitarian judgements result in a lower socially representative income level. This means that the choice of the socially representative income level corresponds locally to a Bergson-Samuelson welfare function. The former, i.e., choosing one point on the income continuum is, however, much simpler and more intuitively appealing than the latter. This is perhaps the best way to grasp the informational economy for the making of welfare statements of the assumption of community preferences. This point is illustrated in Section 5.

I have two specifications of the requirements for community preferences. The weaker of the two does not require maximizing behavior but does require the absence of money illusion. The stronger specification assumes micro-maximizing behavior and requires the same of the representative consumer; i.e., it should be possible "to integrate back" from the market budget share relationships to a utility function. Recently, general equilibrium theorists have shown considerable interest in a related issue. In distinction to my problem (which is: when can we aggregate consistently?), these theorists have asked: when can we decompose consistently? Basically there are two theorems. The first, proved by Sonnenschein [25], says that locally, any n continuous market demand functions consistent with the budget constraint and homogeneous of degree zero in prices and aggregate income can be decomposed into the n demand functions of each of n hypothetical utility maximizing consumers. Each can have the same level of income but, in general, has different preferences. Sonnenschein says this "provides a striking indication that the (budget and homogeneity) restrictions largely exhaust the empirical implications of the utility hypothesis for market demand functions". The second theorem is a global one and says that a similar decomposition can be carried out for market excess demand functions. In Debreu's [5] version this is so for some distribution of initial endowments; in McFadden, et al. [17, Theorem 3], it is for any initial distribution, but decomposition works only for market excess demand functions in a neighborhood of the aggregate endowment.

Clearly, consistent aggregation is sufficient but not necessary for consistent decomposition. However, when decomposition is required for all initial distributions, it comes close to being the same as consistent aggregation. It is clear that there are some interesting results to be obtained in the middle ground between the two problems.

In particular, this is so for the fixed income distribution case with which I do not directly deal in this paper but which McFadden, et al. have raised as an open question. Pearce [20] devoted a chapter to it, but apart from some differential conditions and one very special solution did not get very far towards a general solution. The functional forms in this paper are much more general, though still not the most general solutions to this problem.

2. THE MAIN RESULTS AND THEIR INTERPRETATION

The integrability condition for an individual consumer is nothing more or less than the condition that one should be able to "integrate back" to his utility function given his market behavior, i.e., integrate back to the specification of
preferences from the implicit marginal conditions for utility maximizing or cost minimizing behavior. Expressed in terms of quantities demanded, it is given by the conditions

$$
\begin{equation*}
q_{i h}=\frac{\partial m_{h}\left(u_{h}, p\right)}{\partial p_{i}} \tag{1}
\end{equation*}
$$

$$
(i=1, \ldots, n)
$$

where $q_{i h}$ is the purchase of good i by consumer h, p is the price vector, and $m_{h}\left(u_{h}, p\right)$ is his cost-of-utility function or expenditure function.

Equation (1) can be expressed in budget share terms:

$$
\begin{equation*}
w_{i h}=p_{i} q_{i h} / y_{h}=\partial \log m_{h}\left(u_{h}, p\right) / \partial \log p_{i} \tag{2}
\end{equation*}
$$

where $y_{h}=\Sigma_{i} p_{i} q_{i h}$ is the budget. ${ }^{3}$
Duality principles established by Hotelling [14], Shephard [24] (in a production context), and Karlin [16], among others, guarantee that if the standard axioms on consumer preferences hold, such an $m_{h}\left(u_{h}, p\right)$ exists and, moreover, that its properties, that m_{h} is concave in p, monotonic increasing in u_{h} and p, linear homogeneous in p, entail all the behavioral implications of these axioms. As is well known, the mathematical condition that $\partial^{2} m_{h} / \partial p_{i} \partial p_{j}=\partial^{2} m_{h} / \partial p_{j} \partial p_{i}$ implies the Slutsky symmetry restrictions.
I shall use the aggregate version of (2) to define Condition R, i.e., the existence of a representative consumer and the integrability conditions being satisfied by the market demands. Let y be the vector $\left(y_{1}, \ldots, y_{N}\right)$. Let C be the set of y for which each of the cost functions $m_{h}\left(u_{h}, p\right)$ is concave and linear homogeneous in p, monotonic increasing and differentiable ${ }^{4}$ in p and u_{h} at prices p.

Condition R: Given $w_{i h}=\partial \log m_{h}\left(u_{h}, p\right) / \partial \log p_{i}$ for $i=1, \ldots, n$ and $h=1$, \ldots, N, there exists a function $M\left(u_{0}, p\right)$ for all $y \in C$ so that for some u_{0}

$$
\begin{equation*}
\bar{w}_{i}=\partial \log M\left(u_{0}, p\right) / \partial \log p_{i} \tag{3}
\end{equation*}
$$

$$
(i=1, \ldots, n),
$$

where $\bar{w}_{i} \equiv p_{i} \Sigma_{h} q_{i h} / \Sigma_{h} y_{h} \equiv \Sigma y_{h} w_{i h} / \Sigma_{h} y_{h}$ and $M\left(u_{0}, p\right)$ has concavity, etc. properties similar to those of $m_{h}\left(u_{h}, p\right)$ and where y_{0} and u_{0} are functions of p and of the vector y or the vector u. u_{0} is interpreted as the utility level of the representative consumer. His income level $y_{0}=M\left(u_{0}, p\right)$.
What Gorman [10] supplemented by Gorman [11] ${ }^{5}$ proved can be recast in these terms:

[^1]Theorem 1: Define the representative income to be $\bar{y}=\Sigma_{h} y_{h} / N$. Then the necessary and sufficient condition for R to be fulfilled is that

$$
\begin{equation*}
M\left(u_{0}, p\right)=a(p)+u_{0} b(p) \tag{4}
\end{equation*}
$$

and that

$$
\begin{equation*}
m_{h}\left(u_{h}, p\right)=a_{h}(p)+u_{h} b(p) \tag{5}
\end{equation*}
$$

where $a(p)=\Sigma_{h} a_{h}(p), u_{0}=\Sigma_{h} u_{h} / N$, and $a(p), b(p)$, and $a_{h}(p)$, all h, are concave ${ }^{6}$ and linear homogeneous in p.

It is easy to show that the requirement $y_{0}=\bar{y}$ is equivalent to redefining Condition R on the quantities rather than on the budget shares. This makes clear the sense in which my requirements for consistent aggregation are weaker than Gorman's.

There is a not-necessarily-maximizing (NNM) version of Condition R as follows:

Condition RNNM: Given $w_{i h}=w_{i h}\left(y_{h}, p\right)$ for $i=1, \ldots, n$ and $h=1, \ldots, N$, there exists a function $y_{0}=y_{0}(y, p)$ for all feasible y so that

$$
\begin{equation*}
\bar{w}_{i}=w_{i}\left(y_{0}, p\right) \tag{6}
\end{equation*}
$$

$$
(i=1, \ldots, n)
$$

where $w_{i}(), w_{i h}()$, all h, are continuous in income and zero degree homogeneous in income and prices.

It is obvious that if R is satisfied then RNNM must be satisfied, but not conversely.

I shall prove the following theorems on the forms of macro-preferences.
Theorem 2A: RNNM is satisfied iff the $w_{i}()$ functions satisfy the following two equivalent restrictions:

$$
\begin{array}{lr}
\frac{\partial \bar{w}_{i}}{\partial y_{0}} / \frac{\partial \bar{w}_{j}}{\partial y_{0}}=A_{i j}(p) & (i, j=1, \ldots, n ; i \neq j) \\
\bar{w}_{i}=v\left(y_{0}, p\right) A_{i}(p)+D_{i}(p) & (i=1, \ldots, n)
\end{array}
$$

where $A_{i} / A_{j}=A_{i j}, i, j=1, \ldots, n, \Sigma_{i} A_{i}=0, \Sigma_{i} D_{i}=1$, and v, A_{i}, D_{i} satisfy the homogeneity restrictions.

Equations (7) and (8) imply that any two aggregate budget share-income relationships must be related in the sense that there exists a linear transformation of one which will give the other.

[^2]Since for $y \in C$, RNNM plus the maximization assumption is equivalent to R , it is clear that the form of the cost function corresponding to (7) and (8) will be necessary and sufficient for \mathbf{R}.

Theorem 3A: The cost function

$$
\begin{equation*}
M\left(u_{0}, p\right)=G\left(u_{0}, H(p)\right) B(p) \tag{9}
\end{equation*}
$$

where B is homogeneous of degree one, H is homogeneous of degree zero, and G is monotonic increasing in u_{0}, is necessary and sufficient for \boldsymbol{R}.

Equation (9) can also be written in the form $M=\widehat{G}(a(p), b(p), u)$ where $a(), b()$ are homogeneous of degree one and $a=H B$ and $b=B$. Typically we would want to assume the concavity of a and b. This imposes some restrictions on \widehat{G}. In particular, the concavity of \widehat{G} in a and b is then sufficient for the concavity of \widehat{G} in p^{7} (given some restrictions on u).

Because conditions (7) through (9) entail linear relationships between budget shares, given income and because they a're clearly generalizations of the Gorman results, I have given them the name "generalized linearity" (GL). GL was first introduced in Muellbauer [19] in the context of identical preferences.

The sequence of argument is then to derive the micro-conditions corresponding to Theorem 2A.

Theorem 2B: RNNM is satisfied iff the $w_{i n}()$ functions satisfy the two equivalent conditions

$$
\begin{equation*}
y_{h}\left(\partial w_{i h} / \partial y_{h}-A_{i j} \partial w_{j h} / \partial y_{h}\right)+w_{i h}-A_{i j} w_{j h}-D_{i j}=0 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{i h}=v_{h}\left(y_{h}, p\right) A_{i}(p)+D_{i}(p)+C_{i h} / y_{h} \tag{11}
\end{equation*}
$$

where $A_{i j}=A_{i} / A_{j}$ and $D_{i j}=D_{i} / D_{j}$, all i, j, as defined in Theorem $2 A . \Sigma_{h} C_{i h}=0$, all i.

Since $\bar{w}_{i}=\Sigma_{h} y_{h} w_{i h} / \Sigma_{h} y_{h}$, we have y_{0} defined by $v\left(y_{0}, p\right)=\Sigma y_{h} v_{h}\left(y_{h}, p\right) / \Sigma y_{h}$.
Theorem 2B leads to the corresponding form of cost function:
Theorem 3B : R is satisfied iff the cost function is

$$
\begin{equation*}
m_{h}\left(u_{h}, p\right)=G_{h}\left(u_{h}, H(p)\right) B(p)+g_{h}(p) \tag{12}
\end{equation*}
$$

where $\Sigma_{h} g_{h}(p)=0$ and H and B are as before. ${ }^{8}$
Again we can write this in the form $m_{h}\left(u_{h}, p\right)=\widehat{G}_{h}\left(a(p), b(p), u_{h}\right)+g_{h}(p)$. Since if some g_{h} are positive others have to be negative, the concavity requirement may somewhat restrict the ranges over which the y_{h} belong to the set C. Notice, in-

[^3]cidentally, how by setting $\dot{a}_{h}(p)=a(p)+g_{h}(p)$ in (5), Gorman's case is a special case of GL.

The next results are devoted to two special cases of GL. The first is the one in which y_{0} is homogeneous in y. The second is the one in which y_{0} is independent of p. It turns out that under both RNNM and R, the latter implies the former, but not conversely. For obvious reasons, the case where y_{0} is independent of p will be given the name "price independent generalized linearity", PIGL.

Theorem 4: Linear homogeneity of y_{0} in y implies that under RNNM (i) the macro form for $v\left(y_{0}, p\right)$ in (8) is either $v=y_{0}^{\varepsilon(p)}$ or $v=\log y_{0}$ and (ii) the micro form for $v_{h}\left(y_{h}, p\right)$ in (11) is either $v_{h}=\left(y_{h} / k_{h}(p)\right)^{\varepsilon(p)}$ or $v_{h}=\log \left(y_{h} / k_{h}(p)\right)$.

Theorem 5: Independence of y_{0} from p implies linear homogeneity of y_{0} in y and that under RNNM (i) the macro form for $v\left(y_{0}, p\right)$ in (8) is either $v=y_{0}^{-\alpha}$ where α is a scalar constant or $v=\log y_{0}$ and (ii) the micro form for $v_{h}\left(y_{h}, p\right)$ in (11) is either $v_{h}=\left(y_{h} / k_{h}\right)^{-\alpha}$ or $v_{h}=\log \left(y_{h} / k_{h}\right)$ where $\alpha, k_{h}>0$ are scalar constants.

Theorem 6: Under R, i.e., when maximizing is assumed, the independence of y_{0} from p implies: (i) the macro form of the cost function is either

$$
\begin{equation*}
M\left(u_{0}, p\right)=\left((a(p))^{\alpha}+u_{0}(b(p))^{\alpha}\right)^{1 / \alpha} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
M\left(u_{0}, p\right)=(H(p))^{u_{0}} B(p) \tag{14}
\end{equation*}
$$

where a, b, B are linear homogeneous and H is zero degree homogeneous. ${ }^{9}$
(ii) The micro form of the cost function is either

$$
\begin{equation*}
m_{h}\left(u_{h}, p\right)=k_{h}\left((a(p))^{\alpha}+u_{0}(b(p))^{\alpha}\right)^{1 / \alpha} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
m_{h}\left(u_{h}, p\right)=k_{h} H(p)^{u_{h}} B(p) \tag{16}
\end{equation*}
$$

where α, k_{h} are as in Theorem 5.
For cost to be increasing with utility for $\alpha<0$ as well as $\alpha>0$ it is enough if u is made an increasing function of α, e.g., if u is replaced by αu. An alternative way of ensuring $\partial M / \partial u>0$ is to replace b^{α} by $c(p)^{\alpha}-a(p)^{\alpha}$, where $c>a$. Another advantage follows from writing (13) in the form

$$
M^{\alpha}=a^{\alpha}+u\left(c^{\alpha}-a^{\alpha}\right)
$$

The fact that $\lim _{\alpha \rightarrow 0}\left(x^{\alpha}-1\right) / \alpha=\log x$, implies that as $\alpha \rightarrow 0\left(13^{\prime}\right)$ becomes $\log M=\log a+u \log (c / a)$. This has exactly the same form as (14) where $a=B$ and $(c / a)=H$. Thus it is clear how the special case (14) arises.

[^4]Again a, b ought to be concave. Equation (14) can be written as $(H B)^{u_{0}} B^{1-u_{0}}$. This is a weighted average of $H B$ and B which suggests that $(H B)$ and B ought both to be concave. Incidentally, since (14) implies that the budget share equations depend on $\log y$, this case ought to be entitled PIGLOG ! ${ }^{10}$

The following result about the direct form of the utility function corresponding to the GL form $M\left(u_{0}, p\right)=\widehat{G}\left(a(p), b(p), u_{0}\right)$ is due to Professor Gorman. Since a, b are linear homogeneous, interpret them as the unit costs of two intermediate inputs Z_{1}, Z_{2} "produced" from the market goods q through nonjoint constant returns production functions $Z_{1}=f_{1}\left(q_{1}\right), Z_{2}=f_{2}\left(q_{2}\right)$. Hence the direct utility function must have the form

$$
\begin{equation*}
u_{0}=F\left(f_{1}\left(q_{1}\right), f_{2}\left(q_{2}\right)\right) \tag{17}
\end{equation*}
$$

where $q_{1}+q_{2}=q$.
Following up this idea for PIGL, it turns out that $F($) has the implicit form

$$
\begin{equation*}
(1-u)\left(f_{1}\left(g_{1}\right) / 1-u\right)^{\alpha /(1-\alpha)}+u\left(f_{2}\left(q_{2}\right) / u\right)^{\alpha /(1-\alpha)}=1 \tag{18}
\end{equation*}
$$

corresponding to (13). Similarly, in implicit form, that corresponding to (14) is

$$
\begin{equation*}
\left(f_{1}\left(q_{1}\right) / 1-u\right)^{1-u}\left(f_{2}\left(q_{2}\right) / u\right)^{u}=1 \tag{19}
\end{equation*}
$$

The interpretation has two immediate consequences. One is that it suggests that a, b, being unit cost functions, ought to be concave in p. And since a, b have the interpretation of being the prices of Z_{1}, Z_{2}, this suggests that $\widehat{G}()$ ought to be concave in a, b.

The other consequence is to give an intuitive reason for why GL works. The reason is that if there are only two goods, both Conditions R and RNNM must hold whatever the utility function or budget share equations. This is so because if $\bar{w}_{2}=\Sigma y_{h} w_{2 h} / \Sigma y_{h}=\dot{w}_{2}\left(y_{0}, p\right)$, then $\bar{w}_{1} \equiv 1-w_{2}\left(\dot{y}_{0}, p\right) \equiv w_{1}\left(y_{0}, p\right)$. Also if $\bar{w}_{2}=$ $w_{2}\left(u_{0}, p\right)$, then $\bar{w}_{1} \equiv 1-w_{2}\left(u_{0}, p\right) \equiv w_{1}\left(u_{0}, p\right)$. Thus both in terms of utilities and incomes, there exists a representative utility or income level.

In the cost function $m_{h}\left(u_{h}, p\right)=\widehat{G}_{h}\left(a(p), b(p), u_{h}\right)+g_{h}(p), g_{h}$ can be given a fixed cost or fixed endowment interpretation. But net of g_{h} all consumers buy the same two goods $f_{1}\left(q_{1}\right)$ and $f_{2}\left(q_{2}\right)$ at prices a and b. Since the g_{h} terms cancel out overall, the two-good interpretation applies precisely. Hence, a representative income level exists and so does (if consumers maximize) a representative utility level.

I conclude this presentation and interpretation of the main results by showing in detail how it is that consistent aggregation works. I do this by proving the sufficiency parts of Theorems 3B and 6.

[^5]Proof (Sufficiency of Theorem 3B): Since $q_{i h}=\partial m_{h}\left(u_{h}, p\right) / \partial p_{i}$, (12) gives

$$
\begin{align*}
& q_{i h}=\frac{\partial G_{h}}{\partial H} \frac{\partial H}{\partial p_{i}} B+G_{h} \frac{\partial B}{\partial p_{i}}+\frac{\partial g_{h}}{\partial p_{i}} \tag{20}\\
& p_{i} \sum_{h} q_{i h}=\left(\sum_{h} \frac{\partial G_{h}}{\partial H}\right) B \frac{\partial H}{\partial \log p_{i}}+\left(\sum_{h} G_{h}\right) B \frac{\partial \log B}{\partial \log p_{i}}+0 .
\end{align*}
$$

Since $\Sigma_{h} y_{h}=\left(\Sigma_{h} G_{h}\right) B$,

$$
\bar{w}_{i}=\frac{p_{i} \Sigma q_{i h}}{\Sigma y_{h}}=\left(\frac{\Sigma\left(\partial G_{h} / \partial H\right)}{\Sigma G_{h}}\right) \frac{\partial H}{\partial \log p_{i}}+\frac{\partial \log B}{\partial \log p_{i}}
$$

and from (9)

$$
\begin{equation*}
\bar{w}_{i}=\frac{\partial \log G\left(u_{0}, H\right)}{\partial H} \frac{\partial H}{\partial \log p_{i}}+\frac{\partial \log B}{\partial \log p_{i}} . \tag{21}
\end{equation*}
$$

Since $\Sigma\left(\partial G_{h} / \partial H\right)=\left(\partial \Sigma G_{h} / \partial H\right)$, we can write

$$
\begin{equation*}
\frac{\partial \log G\left(u_{0}, H\right)}{\partial H}=\frac{\partial \log \left(\sum_{h} G_{h}\left(u_{h}, H\right)\right)}{\partial H} \tag{22}
\end{equation*}
$$

Thus the aggregate budget share has the same form as that for the representative individual.

Since (20) implies

$$
\begin{align*}
w_{i h} & =\left(\frac{\partial G_{h}}{\partial H} / y_{h}\right) \frac{\partial H}{\partial \log p_{i}}+\frac{\partial \log B}{\partial \log p_{i}}+\frac{1}{y_{h}}\left(\frac{\partial g_{h}}{\partial \log p_{i}}-g_{h} \frac{\partial \log B}{\partial \log p_{i}}\right) \tag{23}\\
& =v_{h}\left(y_{h}, p\right) A_{i}(p)+D_{i}(p)+\frac{1}{y_{h}} C_{i h} .
\end{align*}
$$

Thus we see that (23) has the same form as (11) and if $A_{i}=\partial H / \partial \log p_{i}$,

$$
\begin{equation*}
y_{h} v_{h}\left(y_{h}, p\right)=\partial G_{h}\left(V_{h}\left(\frac{y_{h}-g_{h}}{B}, H\right), H\right) / \partial H \tag{24}
\end{equation*}
$$

where the indirect utility function V_{h} is given by solving $\left(y_{h}-g_{h}\right) / B=G_{h}\left(u_{h}, H\right)$ for u_{h}.

Next we turn to the PIGL case.
Proof (Sufficiency of Theorem 6): For (15), $G_{h} B$ can be written in the form $G_{h} B=k_{h}\left(H+u_{h}\right)^{1 / \alpha} B$ where $H=(a / b)^{\alpha}$ and $B=b$. Hence, $\left(\partial \log G_{h} / \partial H\right)=$ $1 /\left(\alpha\left(H+u_{h}\right)\right)=(1 / \alpha)\left(y_{h} / k_{h} B\right)^{-\alpha}$. Hence,

$$
\begin{equation*}
\bar{w}_{i}=\left(\frac{\sum_{h} k_{h}^{\alpha} y_{h}^{1-\alpha}}{\alpha \sum_{h} y_{h}}\right) B^{\alpha} \frac{\partial H}{\partial \log p_{i}}+\frac{\partial \log B}{\partial \log p_{i}} . \tag{25}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
y_{0}=\left(\sum_{h} k_{h}^{\alpha} y_{h}^{1-\alpha} / \sum y_{h}\right)^{-1 / \alpha} \tag{26}
\end{equation*}
$$

Hence, y_{0} is linear homogeneous in y and independent of prices.
Finally, we turn to the alternative form for PIGL (16). Here

$$
\begin{align*}
w_{i h} & =\frac{\partial \log B}{\partial \log p_{i}}+u_{h} \frac{\partial \log H}{\partial \log p_{i}} \tag{27}\\
& =\frac{\partial \log B}{\partial \log p_{i}}+\left(\log \left(y_{h} / k_{h}\right)-\log B\right) \frac{\partial \log H}{\partial \log p_{i}} / \log H .
\end{align*}
$$

Hence,

$$
\begin{equation*}
\bar{w}_{i}=\frac{\partial \log B}{\partial \log p_{i}}+\left(\frac{\sum y_{h} \log \left(y_{h} / k_{h}\right)}{\sum y_{h}}-\log B\right) \frac{\partial \log H}{\partial \log p_{i}} / \log H . \tag{28}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
y_{0}=\exp \left(\frac{\sum y_{h} \log \left(y_{h} / k_{h}\right)}{\sum y_{h}}\right) \tag{29}
\end{equation*}
$$

Hence, y_{0} is linear homogeneous in y and independent of prices.
Q.E.D.

This concludes the presentation and interpretation of the main results. Those interested in a discussion of the implications of the main features of these results for the econometric study of demand systems will find one in Muellbauer [19]. That paper is in the context of identical preferences ${ }^{11}$ but the main points remain the same so that there is no point in repeating them here. However, a brief application to the optimal commodity tax problem is included as the last section of this paper.

Now that the precise sense of my notion of community preferences has been explained, it is worth briefly discussing Scitovsky's [23] concept of social indifference curves. As Samuelson [22] makes clear, Scitovsky was interested in the aggregate minimum requirements contours when each consumer is at a specified and fixed utility level. Translating into price space this can be expressed by a function $\mathscr{M}\left(u_{1}, \ldots, u_{N}, p\right) \equiv \Sigma_{h=1}^{N} m_{h}\left(u_{h}, p\right)$. Given the u 's, \mathscr{M} is concave in p and is defined without restricting individual preferences. Given p, \mathscr{M} defines the utility possibility locus for a given amount of aggregate money income. Although it has some theoretical uses, it is obviously a quite different concept from mine. However, given Gorman's or my form of individual preferences the utility possibility loci are very substantially restricted. For the former, $\mathscr{M}=\Sigma a_{h}(p)+$ $\left(\Sigma u_{h}\right) b(p)$, the utility possibility contour slopes are independent of prices. For the

[^6]latter, $\mathscr{M}=\Sigma G_{h}\left(u_{h}, H(p)\right) B(p)$, these slopes depend on prices only through the scalar function $H(p)$.

3. PROOFS FOR GENERALIZED LINEARITY

Proof of Theorem 2A: In order to reduce the number of subscripts, I shall temporarily adopt the notation $w_{i h}=\psi_{h}, w_{j h}=\chi_{h}$. Hence at given p,

$$
\begin{align*}
\bar{\psi} & =\sum y_{h} \psi_{h}\left(y_{h}\right) / \sum y_{h}=\psi\left(y_{0}\right), \tag{30}\\
\bar{\chi} & =\sum y_{h} \chi_{h}\left(y_{h}\right) / \sum y_{h}=\chi\left(y_{0}\right) . \tag{31}
\end{align*}
$$

We shall show $\left(\partial \psi / \partial y_{0}\right) /\left(\partial \chi / \partial y_{0}\right)=A$ (equation (7)).
Differentiate (30) and (31) with respect to y_{k} :

$$
\begin{align*}
\psi^{\prime} \frac{\partial y_{0}}{\partial y_{k}} & =\frac{\left(y_{k} \psi_{k}^{\prime}+\psi_{k}\right) \sum y_{h}-\sum y_{h} \psi_{h}}{\left(\sum y_{h}\right)^{2}} \tag{32}\\
& =\frac{y_{k} \psi_{k}^{\prime}+\psi_{k}-\psi}{\sum y_{h}}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\chi^{\prime} \frac{\partial y_{0}}{\partial y_{k}}=\frac{y_{k} \chi_{k}^{\prime}+\chi_{k}-\chi}{y_{h}} . \tag{33}
\end{equation*}
$$

Dividing (32) by (33):

$$
\begin{align*}
\frac{\psi^{\prime}}{\chi^{\prime}} & =\frac{y_{k} \psi_{k}^{\prime}+\psi_{k}-\psi}{y_{k} \chi_{k}^{\prime}+\chi_{k}-\chi} \tag{34}\\
& =\frac{W_{k}\left(y_{k}\right)-\psi\left(y_{0}\right)}{T_{k}\left(y_{k}\right)-\chi\left(y_{0}\right)}, \quad \text { say }, \quad \text { all } k .
\end{align*}
$$

We now show that equation (7) is valid by proving that $\psi^{\prime}\left(y_{0}\right) / \chi^{\prime}\left(y_{0}\right)$ is independent of y_{0} and of y. In a way, this is obvious since the right-hand side of (34) is the same for all k which suggests that it is independent of y_{k}, all k, and hence of y_{0}. Formally, the result is obtained by differentiating (34) with respect to $y_{r}, r \neq k$:

$$
\begin{aligned}
\frac{\partial}{\partial y_{r}} \frac{\psi^{\prime}\left(y_{0}\right)}{\chi^{\prime}\left(y_{0}\right)} & =\frac{\left[\left(T_{k}-\chi\right)\left(-\psi^{\prime}\right)-\left(W_{k}-\psi\right)\left(-\chi^{\prime}\right)\right]}{\left(T_{k}-\chi\right)^{2}} \frac{\partial y_{0}}{\partial y_{r}} \\
& =\left[\frac{W_{k}-\psi}{T_{k}-\chi}-\frac{\psi^{\prime}}{\chi^{\prime}}\right] \frac{\chi^{\prime}\left(\partial y_{0} / \partial y_{r}\right)}{\left(T_{k}-\chi\right)} \\
& =0 \quad \text { by }(34) .
\end{aligned}
$$

Thus $\left(\psi^{\prime}\left(y_{0}\right)\right) /\left(\chi^{\prime}\left(y_{0}\right)\right)=$ constant $=A$, say. Q.E.D.

Integrating gives

$$
\begin{equation*}
\psi\left(y_{0}\right)=A \chi\left(y_{0}\right)+D . \tag{35}
\end{equation*}
$$

Letting $\chi\left(y_{0}\right)=v\left(y_{0}\right)$, we immediately see that (35) implies

$$
\psi=w_{i}=v\left(y_{0}, p\right) A_{i}(p)+D_{i}(p)
$$

(equation (8)) where prices are made explicit.
Since $\Sigma_{i} w_{i}=1, \Sigma A_{i}=0$, and $\Sigma D_{i}=1$. Homogeneity implies

$$
\begin{equation*}
0 \equiv v^{\prime} y_{0} A_{i}+\sum_{j} \frac{\partial v}{\partial \log p_{j}} A_{i}+v \sum_{j} \frac{\partial A_{i}}{\partial \log p_{j}}+\sum_{j} \frac{\partial D_{i}}{\partial \log p_{j}} . \tag{36}
\end{equation*}
$$

Several possibilities satisfy (36): e.g., D_{i} and v are zero homogeneous in p, and the homogeneity of v in y_{0} is minus that of A_{i} in p.
Q.E.D.

Theorem 3A is proved in Muellbauer [19]. The proof involves the fact that (7) implies $\left(\partial \bar{w}_{i} / \partial u_{0}\right) /\left(\partial \bar{w}_{j} / \partial u_{0}\right)$ is independent of u_{0} and the fact that

$$
\bar{w}_{i}=\partial \log M\left(u_{0}, p\right) / \partial p_{i} .
$$

Next we turn to a proof of Theorem 2B.
Proof of Theorem 2B: (i) We want to show that equation (10) holds, i.e., $y_{h}\left(\psi_{h}^{\prime}-A \chi_{h}^{\prime}\right)+\psi_{h}-A \chi_{h}-D=0$. Using (35) we can write (34) as

$$
\frac{y_{h} \psi_{h}^{\prime}+\psi_{h}-A \chi-D}{y_{h} \chi_{h}^{\prime}+\chi_{h}-\chi}=A .
$$

Thus, $y_{h}\left(\psi_{h}^{\prime}-A \chi_{h}^{\prime}\right)+\left(\psi_{h}-A \chi_{h}-D\right)=0$ (equation (10)), which proves part (i).
(ii) Let $\gamma_{h}\left(y_{h}\right)=\psi_{h}\left(y_{h}\right)-A \chi_{h}\left(y_{h}\right)$. Then equation (10) becomes

$$
\begin{equation*}
y_{h} \gamma_{h}^{\prime}=D-\gamma_{h} . \tag{37}
\end{equation*}
$$

But $\left(d / d y_{h}\right)\left(y_{h} \gamma_{h}\right)=y_{h} \gamma_{h}^{\prime}+\gamma_{h}=D$. Integrating, $y_{h} \gamma_{h}=D y_{h}+C_{h}$. Letting $\chi_{h}=v_{h}$, this implies $y_{h}\left(w_{i h}-A_{i}(p) v_{h}\left(y_{h}, p\right)\right)=D_{i}(p) y_{h}+C_{i h}$. Dividing by y_{h} gives (11). Q.E.D.

Since $\Sigma w_{i}=1, \Sigma A_{i}=0$, and ${ }^{\prime} \Sigma D_{i}=1$, and $\Sigma_{i} C_{i h}=0$. Summing over h must give (8). Hence $\Sigma_{h} C_{i h}=0$ and

$$
\begin{equation*}
v\left(y_{0}, p\right)=\sum y_{h} v_{h}\left(y_{h}, p\right) / \sum y_{h}, \tag{38}
\end{equation*}
$$

which defines y_{0}.
Now we derive the form of the micro cost functions corresponding to (11).
Proof of Theorem 3B: Rewrite (11) as

$$
\begin{equation*}
y_{h}\left(w_{i h}-A_{i j} w_{j h}\right)=D_{i j} y_{h}+C_{i j h} . \tag{39}
\end{equation*}
$$

Since $y_{h} w_{i h}=\left(\partial m_{h}\left(u_{h}, p\right)\right) / \partial \log p_{i}$, we can rewrite (39) as

$$
\begin{equation*}
\frac{\partial m_{h}}{\partial \log p_{i}}-A_{i j} \frac{\partial m_{h}}{\partial \log p_{j}}=D_{i j} m_{h}+C_{i j h} . \tag{40}
\end{equation*}
$$

Differentiate with respect to u_{h} :

$$
\begin{equation*}
\frac{\partial\left(\frac{\partial m_{h}}{\partial u_{h}}\right)}{\partial \log p_{i}}-A_{i j} \frac{\partial\left(\frac{\partial m_{h}}{\partial u_{h}}\right)}{\partial \log p_{j}}=D_{i j} \frac{\partial m_{h}}{\partial u_{h}} \tag{41}
\end{equation*}
$$

Let $Z_{h}=\log \left(\partial m_{h} / \partial u_{h}\right)$. Then (41) becomes

$$
\begin{equation*}
\frac{\partial Z_{h}}{\partial \log p_{i}}-A_{i j} \frac{\partial Z_{h}}{\partial \log p_{j}}=D_{i j} \tag{42}
\end{equation*}
$$

Differentiate (42) with respect to u_{h} :

$$
\begin{equation*}
\frac{\partial}{\partial \log p_{i}}\left(\frac{\partial Z_{h}}{\partial u_{h}}\right) / \frac{\partial}{\partial \log p_{j}}\left(\frac{\partial Z_{h}}{\partial u_{h}}\right)=A_{i j} \tag{43}
\end{equation*}
$$

which is independent of u_{h} and the same for all h. The solution to (43) is

$$
\begin{equation*}
\frac{\partial Z_{h}}{\partial u_{h}}=\widetilde{G}_{h}\left(u_{h}, H(p)\right) \tag{44}
\end{equation*}
$$

$H(p)$ must be the same as for the macro form of preferences-see equation (9) in Theorem 3A-since by (7)

$$
\begin{equation*}
A_{i j}=\frac{\partial w_{i}\left(u_{0}, p\right)}{\partial u_{0}} / \frac{\partial w_{j}\left(u_{0}, p\right)}{\partial u_{0}}=\frac{\partial H}{\partial \log p_{i}} / \frac{\partial H}{\partial \log p_{j}} \tag{45}
\end{equation*}
$$

However, $\widetilde{G}_{\boldsymbol{h}}$ can differ over households.
From (44),

$$
\begin{equation*}
Z_{h}=\log \widehat{G}_{h}\left(u_{h}, H(p)\right)+\log B_{h}(p) \tag{46}
\end{equation*}
$$

Next we show that $B_{h}(p)=B(p)$.
To the micro form (39), there corresponds the macro form $\bar{w}_{i}-A_{i j} \bar{w}_{j}=D_{i j}$. Because this must come from the cost function (9), i.e., by (21),

$$
\begin{equation*}
D_{i j}=\frac{\partial \log B}{\partial \log p_{i}}-A_{i j} \frac{\partial \log B}{\partial \log p_{j}} \tag{47}
\end{equation*}
$$

But (41) implies that

$$
\begin{equation*}
D_{i j}=\frac{\partial \log B_{h}}{\partial \log p_{i}}-A_{i j} \frac{\partial \log B_{h}}{\partial \log p_{j}} \tag{48}
\end{equation*}
$$

Hence, $B_{h}(p)=B(p)$.
Finally, we use $Z_{h}=\log \left[\left(\partial m_{h}\left(u_{h}, p\right)\right) / \partial u_{h}\right]$ to find that $\partial m_{h} / \partial u_{h}=\widehat{G}_{h}\left(u_{h}, H(p)\right) B(p)$. The solution is

$$
m_{h}\left(u_{h}, p\right)=G_{h}\left(u_{h}, H(p)\right) B(p)+g_{h}(p)
$$

That $\Sigma_{h} g_{h}(p)=0$ follows from the fact that $\Sigma_{h} C_{i j h}=0$. Also $g_{h}(p)$ is zero degree homogeneous in p since $w_{i h}()$ is zero degree homogeneous in y_{h} and p. Q.E.D.

4. HOMOGENEITY AND PRICE INDEPENDENCE OF y_{0}

In this section we prove Theorems 4,5 , and 6 which are concerned with conditions under which y_{0} is (i) linear homogeneous in y and (ii) independent of p.

Proof of Theorem 4: Since, omitting prices, $v\left(y_{0}\right)=\Sigma y_{h} v_{h}\left(y_{h}\right) / \Sigma y_{h}$, we want conditions on $v()$ and $v_{h}()$ so that

$$
\begin{equation*}
v\left(\lambda y_{0}\right)=\frac{\sum \lambda y_{h} v_{h}\left(\lambda y_{h}\right)}{\sum \lambda y_{h}} \tag{49}
\end{equation*}
$$

for $\lambda>0$ and all $y \in C$. Notice that this is a much more stringent requirement than that for some fixed income distribution, consistent aggregation holds for proportionate increases in incomes. It can be shown that more general micro conditions than those for which R or RNNM holds, permit consistent aggregation under a fixed income distribution rule.
First, we examine conditions on $v($). If there exists a $v()$ so that (49) is true, then for that $v()$ it must be true that

$$
\begin{equation*}
v\left(\lambda y_{0}\right)=\frac{\sum \lambda y_{h} v\left(\lambda y_{h}\right)}{\sum \lambda y_{h}} \tag{50}
\end{equation*}
$$

for $\lambda>0$ and for all y at least in a subset (not of measure zero) of C. But (50) is just the case where everyone has the same preferences. Theorem 7A in Muellbauer [19] shows that necessary and sufficient conditions for (50) are

$$
\begin{align*}
& v\left(y_{0}\right)=y_{0}^{\varepsilon(p)} \tag{51}\\
& v\left(y_{0}\right)=\log y_{0} \tag{52}
\end{align*}
$$

where arbitrary constants are absorbed in A_{i} and B_{i} and where $\varepsilon(p)$ is homogeneous of degree zero in p. Thus Theorem 4, part (i) must hold.

Next we turn to the derivation of the micro form of v_{h} as specified in Theorem 4, part (ii).

If $v\left(y_{0}\right)=y_{0}^{\varepsilon}$, then $\left(y_{0} / v\right)\left(\partial v / \partial y_{0}\right)=\varepsilon$. Differentiating

$$
v\left(\lambda y_{0}\right)=\frac{\sum y_{h} v_{h}\left(\lambda y_{h}\right)}{\sum y_{h}}
$$

with respect to λ and setting $\lambda=1$, we find

$$
\begin{equation*}
y_{0} \frac{\partial v}{\partial y_{0}}=\frac{\sum y_{h}^{2}\left(\partial v_{h} / \partial y_{h}\right)}{\sum y_{h}} \tag{53}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\varepsilon=\frac{y_{0}}{v} \frac{\partial v}{\partial y_{0}}=\sum y_{h}^{2} \frac{\partial v_{h}}{\partial y_{h}} / \sum y_{h} v_{h} . \tag{54}
\end{equation*}
$$

Differentiate (54) with respect to y_{r} :

$$
\begin{equation*}
0=\frac{\left(y_{r}^{2} v_{r}^{\prime}\right)^{\prime}-\varepsilon\left(y_{r} v_{r}\right)^{\prime}}{\sum y_{h} v_{h}} \tag{55}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
y_{r}^{2} v_{r}^{\prime}=\varepsilon y_{r} v_{r}+\beta_{r} .{ }^{12} \tag{56}
\end{equation*}
$$

Multiplying (56) through by $y_{r}^{-\varepsilon-2}$, we obtain

$$
y_{r}^{-\varepsilon} v_{r}^{\prime}-\varepsilon y_{r}^{-\varepsilon-1} v_{r}=\frac{d}{d y_{r}}\left(v_{r} y_{r}^{-\varepsilon}\right)=\beta_{r} y_{r}^{-\varepsilon-2}
$$

Hence, $v_{r} y_{r}^{-\varepsilon}=\left(\beta_{r} y_{r}^{-\varepsilon-1} /(-\varepsilon-1)\right)+k_{r}$. Hence,

$$
\begin{equation*}
v_{r}=\frac{-\beta_{r}}{y_{r}(\varepsilon+1)}+k_{r} y_{r}^{\varepsilon} \tag{57}
\end{equation*}
$$

But from form (11), the term $-\beta_{r} /\left(y_{r}(\varepsilon+1)\right)$ can be absorbed in the term $C_{i r} / y_{r}$ in (11) and, hence, can be taken as zero without loss of generality. Rewriting k_{r} as $k_{r}^{-\varepsilon}$, and inserting p explicitly, we have $v_{h}\left(y_{h}, p\right)=\left(y_{h} / k_{h}(p)\right)^{\varepsilon(p)}$. This concludes the proof of the first part of Theorem 4(ii).

Next we derive the micro form corresponding to $v=\log y_{0}$. Following a similar procedure, by (53)

$$
\begin{equation*}
y_{0} \frac{\partial v}{\partial y_{0}}=1=\sum y_{h}^{2} \frac{\partial v_{h}}{\partial y_{h}} / \sum y_{h} . \tag{58}
\end{equation*}
$$

Differentiating this with respect to $y_{r}, 0=\left(\left(y_{r}^{2} v_{r}^{\prime}\right)^{\prime}-1\right) / \Sigma y_{h}$. Hence,

$$
\begin{align*}
& y_{r}^{2} v_{r}^{\prime}=y_{r}+\beta_{r}, \\
& v_{r}^{\prime}=\frac{1}{y_{r}}+\frac{\beta_{r}}{y_{r}^{2}} . \tag{59}
\end{align*}
$$

Hence,

$$
\begin{aligned}
v_{r} & =\log y_{r}-\frac{\beta_{r}}{y_{r}}+\alpha_{r} \\
& =\log \left(y_{r} / k_{r}\right)
\end{aligned}
$$

since, without loss of generality, the term - β_{r} / y_{r} can be absorbed in $C_{i r} / y_{r}$ in (11) and α_{r} can be replaced by $-\log k_{r}$. Putting in p explicitly, $v_{h}\left(y_{h}, p\right)=\log \left(y_{h} / k_{h}(p)\right)$. This completes the proof of Theorem 4.

[^7]Now we turn to Theorem 5.

Proof of Theorem 5: Price independence implies that v_{h} and v are independent of prices. If a $v\left(y_{0}\right)$ exists, then arguing as before, $v\left(y_{0}\right)=\Sigma y_{h} v\left(y_{h}\right) / \Sigma y_{h}$ for at least a subset not of measure zero of C. But this is the same as the price independence condition under identical preferences analyzed in Theorem 5 (a) in Muellbauer [19]. This tells us that $v=y_{0}^{-\alpha}$ where α is constant or $v=\log y_{0}$ which gives us part (i) of the current Theorem 5.

But since these forms are just special cases of the macro-forms in Theorem 4, we know that the micro-forms are either $v_{h}=\left(y_{h} / k_{h}(p)\right)^{-\alpha}$ or $v_{h}=\log \left(y_{h} / k_{h}(p)\right)$. But since $y_{0}^{-\alpha}=\Sigma y_{h}\left(y_{h} / k_{h}(p)\right)^{-\alpha} / \Sigma y_{h}$ is independent of p, k_{h} must be independent of p, all h. Thus k_{h} is a scalar constant, all h and $k_{h}>0$ can be assumed without loss of generality. The same holds for $v_{h}=\log \left(y_{h} / k_{h}(p)\right)$. This completes the proof of Theorem 5 .

I have investigated the form of the cost function corresponding to $v=y^{\varepsilon(p)}$ in Theorem 4. However, I have not been able to obtain a closed form characterization. Since this analysis is a little tedious it is relegated to the Appendix.

Finally, we turn to Theorem 6 which derives the cost functions corresponding to Theorem 5.

Proof of Theorem 6: Theorem 5 in Muellbauer [19] implies that the macrocost functions have either the form $M\left(u_{0}, p\right)=\left(a^{\alpha}(p)+u_{0} b^{\alpha}(p)\right)^{1 / \alpha}$ or $M\left(u_{0}, p\right)=$ $(H(p))^{u_{0}} B(p)$ with the stated homogeneity conditions.

Next, we derive the cost functions corresponding to the micro-forms for the price independent case. We know that equation (11) corresponds to the cost function $m_{h}\left(u_{h}, p\right)=G_{h}\left(u_{h}, H(p)\right) B(p)+g_{h}(p)$. If $C_{i h}=0$ and $g_{h}(p)=0$, then we know that $v_{h}=\left(y_{h} / k_{h}\right)^{-\alpha}$ implies the cost function $m_{h}\left(u_{h}, p\right)=k_{h}\left(a^{\alpha}(p)+u_{h} b^{\alpha}(p)\right)^{1 / \alpha}$.

The most general form adds $g_{h}(p)$ to this but we shall show that price independence implies $g_{h}=0$. Including g_{h}, the demand equations are

$$
p_{i} q_{i h}=k_{h}\left(\frac{y_{h}-g_{h}}{k_{h}}\right)^{1-\alpha}\left[a^{\alpha} a_{i}+\left(\left(\frac{y_{h}-g_{h}}{k_{h}}\right)^{\alpha}-a^{\alpha}\right) b_{i}\right]+\frac{\partial g_{h}}{\partial p_{i}}
$$

where $a_{i}=\partial \log a / \partial \log p_{i}, b_{i}=\partial \log b / \partial \log p_{i}$. Hence,

$$
\begin{equation*}
w_{i h}=\frac{k_{h}}{y_{h}}\left(\frac{y_{h}-g_{h}}{k_{h}}\right)^{1-\alpha} a^{\alpha}\left(a_{i}-b_{i}\right)+b_{i}+\frac{1}{y_{h}}\left(\frac{\partial g_{h}}{\partial p_{i}}-\frac{g_{h} b_{i}}{k_{h}}\right) . \tag{60}
\end{equation*}
$$

Thus,

$$
y_{0}^{-\alpha}=\sum k_{h}\left(\frac{y_{h}-g_{h}}{k_{h}}\right)^{1-\alpha} / \sum y_{h} .
$$

But with g_{h} a function of p, y_{0} cannot be price independent. For $g_{h} \neq 0, g_{h}$ cannot be a constant parameter since that would violate the homogeneity of the cost function. Thus $g_{h}=0$, all h, for y_{0} to be price independent.

Finally, that the price independence of y_{0} implies the linear homogeneity in y of y_{0} follows immediately from equation (26) corresponding to (15) and equation (29) corresponding to (16).

5. AN APPLICATION TO OPTIMAL COMMODITY TAX THEORY ${ }^{13}$

Suppose the money income distribution is fixed and the government wants to tax goods so as to maximize a Bergson-Samuelson welfare function $W=$ $W\left(u_{1}, \ldots, u_{N}\right)$ subject to the revenue constraint $\Sigma_{h} \Sigma_{i}\left(p_{i}-r_{i}\right) q_{i h}=T$. Here T is the tax revenue objective $\left(<\Sigma y_{h}\right)$ and r_{i} is the fixed producer price of good i so that $p_{i}-r_{i}=t_{i}$ is the tax rate.

We know, using Roy's Lemma, that

$$
\begin{equation*}
\frac{\partial W}{\partial p_{j}}=\sum_{h} \beta_{h}^{w} \frac{\partial y_{h}}{\partial u_{h}} \frac{\partial u_{h}}{\partial p_{j}}=\sum_{h}-\beta_{h}^{w} q_{j h} \tag{61}
\end{equation*}
$$

where $\beta_{h}^{w}=\partial W / \partial y_{h}$, which is the social shadow value of h 's income. Hence, the marginal conditions of the standard Lagrangian problem are

$$
\begin{equation*}
-\frac{\partial W}{\partial p_{j}}=\sum_{h} \beta_{h}^{w} q_{j h}=\psi\left(\sum_{i} t_{i} \frac{\partial Q_{i}}{\partial p_{j}}+Q_{j}\right) \tag{62}
\end{equation*}
$$

for $j=1, \ldots, n$ where ψ is the Lagrangian multiplier and where $Q_{i}=\Sigma_{h} q_{i h}$. This is easy to interpret. Think of a small (unit) change in p_{j}. The left-hand side gives the "equity part" of the condition. The effects of the price change depend on how much of the good each consumer buys but each consumer is weighted by the social shadow value of his income which introduces the equity properties of $W() .{ }^{14}$ The right-hand side $=\psi\left(\Sigma_{i} t_{i} \partial Q_{i} / \partial p_{j}+Q_{j}\right)$ is the "revenue efficiency" part of the rule. The Q_{j} gains in revenue are partly offset by the substitution terms $t_{i} \partial Q_{i} / \partial p_{j}$.

Suppose all consumers have GL cost functions of the form $m_{h}\left(u_{h}, p\right)=$ $G_{h}\left(u_{h}, H(p)\right) B(p)$. Then the demand functions are

$$
\begin{equation*}
q_{j h}=\frac{\partial G_{h}}{\partial H} \frac{\partial H}{\partial p_{j}} B+G_{h} \frac{\partial B}{\partial p_{j}} . \tag{20}
\end{equation*}
$$

Hence,

$$
\sum_{h} \beta_{h}^{w} q_{j h}=\left(\sum_{h} \beta_{h}^{w} \frac{\partial G_{h}}{\partial H}\right) \frac{\partial H}{\partial p_{j}} B+\left(\sum_{h} \beta_{h}^{w} G_{h}\right) \frac{\partial B}{\partial p_{j}}
$$

${ }^{13}$ In writing this section, I benefited from seeing a draft paper by Angus Deaton [4].
${ }^{14}$ See Diamond and Mirrlees [7, pp. 265-268]. Contrast the one-consumer case where

$$
\lambda Q_{j}=\psi\left(\sum t_{i} \partial Q_{i} / \partial p_{j}+Q_{j}\right)
$$

(see [7, p. 262]). This gives ($\left.\Sigma t_{i} \partial Q_{i} / \partial p_{j}\right) / Q_{j}=$ constant or $\left(\Sigma t_{i} \partial Q_{i} /\left.\partial p_{j}\right|_{u}\right) / Q_{j}=$ constant as two familiar ways of writing the marginal conditions.

Hence,

$$
\begin{align*}
p_{j} \sum_{h} \beta_{h}^{w} q_{j h} & =\left(\sum \beta_{h}^{w} G_{h} B\right)\left[\left(\sum \beta_{h}^{w} \frac{\partial G_{h}}{\partial H} / \sum \beta_{h}^{w} G_{h}\right) \frac{\partial H}{\partial \log p_{j}}+\frac{\partial \log B}{\partial \log p_{j}}\right] \\
& =\left(\sum \beta_{h}^{w} y_{h}\right)\left[\frac{\partial \log G_{w}\left(u_{0}^{w}, H\right)}{\partial H} \frac{\partial H}{\partial p_{j}}+\frac{\partial \log B}{\partial \log p_{j}}\right] \tag{63}
\end{align*}
$$

where

$$
\frac{\partial \log G_{w}\left(u_{0}^{w}, H\right)}{\partial H}=\left(\sum \beta_{h}^{w} \frac{\partial G_{h}}{\partial H}\right) / \sum \beta_{h}^{w} G_{h}
$$

and u_{0}^{w} is the "socially weighted representative level of utility". Recall from (22) that the market weighted representative utility level u_{0} is defined by

$$
\frac{\partial \log G\left(u_{0}, H\right)}{\partial H}=\left(\sum \frac{\partial G_{h}\left(u_{h}, H\right)}{\partial H}\right) / \sum G_{h}\left(u_{h}, H\right)
$$

If $W\left(\right.$) embodies egalitarian values, β_{h}^{w} will be higher for "low" u_{h} and lower for "high" u_{h}. Then $u_{0}^{w}<u_{0}$ with the difference greater, the more egalitarian is $W\left(\right.$). Since the term in square brackets in (63) is the budget share at u_{0}^{w}, we have

$$
\sum \beta_{h}^{w} q_{j h}=\left(\frac{\sum_{h} \beta_{h}^{w} y_{h}}{p_{j}}\right) w_{j}\left(u_{0}^{w}, p\right)=\left(\frac{\sum_{h} \cdot \beta_{h}^{w} y_{h}}{y_{0}^{w}}\right) q_{j}\left(y_{0}^{w}, p\right)
$$

where $q_{j}\left(y_{0}^{w}, p\right)$ is the amount purchased by an individual with the cost function $M_{w}(u, p)=G_{w}(u, H(p)) B(p)$ at an income y_{0}^{w} or a utility level u_{0}^{w}. Thus the rule becomes

$$
\begin{equation*}
\frac{\left(\sum_{i} t_{i} \partial Q_{i} / \partial p_{j}+Q_{j}\right)}{q_{j}\left(y_{0}^{w}, p\right)}=\text { constant } \tag{64}
\end{equation*}
$$

Since $Q_{i}=\left(w_{i}\left(y_{0}, p\right) Y\right) / p_{i}$, it is clear that the numerator (the "revenue-efficiency term') is evaluated at y_{0} which is the market weighted representative income level. The denominator (the "equity term"), on the other hand, is evaluated at y_{0}^{w} which is the socially weighted representative income level.

As is easy to see, the rule implies that other things (substitution effects) being similar, t_{j} ought to be low if $q_{j}\left(y_{0}^{w}, p\right) / Q_{j}$ is high. But this will happen precisely when j is a good which has a big weight in the consumption patterns of the poor, i.e., is a "necessity". The more egalitarian is W, the bigger is the difference between y_{0}^{w} and y_{0} and hence, in general, the more will the ratio $q_{j}\left(y_{0}^{w}, p\right) / Q_{j}$ differ from unity. Thus the operational significance of the degree of egalitarianism in the $W($) function is made very clear.

This example well illustrates the striking informational economy for welfare judgements which is implied by the assumption that individual preferences are such that community preferences exist.

Contrast this case with the one-consumer case where the rule is

$$
\begin{equation*}
\frac{\sum_{i} t_{i} \partial Q_{i} / \partial p_{j}+Q_{j}}{Q_{j}}=\text { constant } \tag{65}
\end{equation*}
$$

There the implication is that goods with low substitution possibilities tend to be taxed heavily, which may well place a heavy burden on "necessities".

Finally, an observation which brings to full circle the analysis begun in my paper on the representativeness of official price indices, Muellbauer [18]. Suppose that, instead of being so sophisticated as to have a Bergson-Samuelson welfare function, the government just wants to minimize the inflationary impact as measured in the official consumer price index of its indirect taxes. If the index uses fixed quantity weights, the problem is

$$
\min P=\frac{\sum q_{i}^{0} p_{i}}{\sum q_{i}^{0} p_{i}^{0}} \quad \text { subject to } \quad \sum_{i}\left(p_{i}-r_{i}\right) Q_{i}=T
$$

The optimal rule is given by

$$
\begin{equation*}
\frac{\sum_{i} t_{i} \partial Q_{i} / \partial p_{j}+Q_{j}}{q_{j}^{0}}=\text { constant } \tag{66}
\end{equation*}
$$

The formal similarity between (66) and (64) brings out most strikingly the point made in my earlier paper, that the choice of weights in the official price index is an important political matter and, indeed, implies value judgements just as does the choice of welfare function.

Birbeck College, London.

Manuscript received June, 1974; revision received February, 1975.

APPENDIX

Here we analyze the implications for preferences of the form $v(y)=y^{\varepsilon(p)}$ which arises in Theorem 4. Maximizing behavior implies $y=m(u, p)$. Hence, $p_{i} q_{i}=(m(u, p))^{\varepsilon(p)+1} A_{i}(p)+m(u, p) D_{i}(p)$. By the symmetry of compensated cross-price effects, we know that $\partial q_{i} /\left.\partial p_{j}\right|_{u} \equiv \partial q_{j} /\left.\partial p_{i}\right|_{u}$ under maximizing behavior. Hence,

$$
\begin{align*}
& \frac{1}{p_{i}}\left[(\varepsilon+1) m^{\varepsilon} \frac{\partial m}{\partial p_{j}} A_{i}+m^{\varepsilon+1} \frac{\partial A_{i}}{\partial p_{j}}+m^{\varepsilon} \log m \frac{\partial \varepsilon}{\partial p_{j}} A_{i}+m \frac{\partial D_{i}}{\partial p_{j}}+D_{i} \frac{\partial m}{\partial p_{j}}\right] \tag{A1}\\
& \quad \equiv \frac{1}{p_{j}}\left[(\varepsilon+1) m^{\varepsilon} \frac{\partial m}{\partial p_{i}} A_{j}+m^{\varepsilon+1} \frac{\partial A_{j}}{\partial p_{i}}+m^{\varepsilon} \log m \frac{\partial \varepsilon}{\partial p_{i}} A_{j}+m \frac{\partial D_{j}}{\partial p_{i}}+D_{j} \frac{\partial m}{\partial p_{i}}\right] .
\end{align*}
$$

We know that $\partial m / \partial p_{j}=q_{j}$ and $\partial m / \partial p_{i}=q_{i}$ and these do not involve any terms in $\log m$. Therefore, equating terms in $\log m$ in (A1), we find that

$$
\frac{\partial \varepsilon}{\partial p_{j}} \frac{A_{i}}{p_{i}} \equiv \frac{\partial \varepsilon}{\partial p_{i}} \frac{A_{j}}{p_{j}}
$$

This is the only interesting restriction obtained by equating different terms in (A1).

Thus,

$$
\begin{equation*}
A_{i} / A_{j}=\frac{\partial \varepsilon}{\partial \log p_{i}} / \frac{\partial \varepsilon}{\partial \log p_{j}} . \tag{A2}
\end{equation*}
$$

The solution to (A2) must take the form $A_{i}=F(B, \varepsilon)\left(\partial \varepsilon / \partial \log p_{i}\right)$ where $B=B(p)$. But since

$$
\begin{align*}
& w_{i}=m^{\varepsilon(p)}(u, p) A_{i}(p)+D_{i}(p), \tag{A3}\\
& A_{i} / A_{j}=\frac{\partial w_{i}}{\partial u} / \frac{\partial w_{j}}{\partial u}=\frac{\partial}{\partial u}\left(\frac{\partial \log m}{\partial \log p_{i}}\right) / \frac{\partial}{\partial u}\left(\frac{\partial \log m}{\partial \log p_{j}}\right) .
\end{align*}
$$

Thus

$$
\begin{equation*}
\frac{\partial \varepsilon}{\partial \log p_{i}} / \frac{\partial \varepsilon}{\partial \log p_{j}}=\frac{\partial}{\partial \log p_{i}}\left(\frac{\partial \log m}{\partial u}\right) / \frac{\partial}{\partial \log p_{j}}\left(\frac{\partial \log m}{\partial u}\right) . \tag{A4}
\end{equation*}
$$

The most general solution to (A4), can be written in the form $\partial \log m / \partial u=\mathcal{Z}(u, \varepsilon(p))$. Hence,
(A5) $\quad \log m=\log Z(u, \varepsilon(p)) \log B(p)$.
The budget share equations corresponding to (A5) are

$$
\begin{equation*}
\frac{\partial \log m}{\partial \log p_{i}}=w_{i}=(\partial \log Z / \partial \varepsilon) \frac{\partial \varepsilon}{\partial \log p_{i}}+\frac{\partial \log B}{\partial \log p_{i}} \equiv m^{\varepsilon(p)}(u, p) A_{i}(p)+D_{i}(p) \quad \text { from (A33). } \tag{A6}
\end{equation*}
$$

Since by (A5) $m=Z B,(Z B)^{\ell} F(B, \varepsilon)=\partial \log Z / \partial \varepsilon$, therefore

$$
\begin{equation*}
\left(B^{\varepsilon}\right) F(B, \varepsilon)=\frac{1}{Z^{\varepsilon}} \frac{\partial \log Z}{\partial \varepsilon} . \tag{A7}
\end{equation*}
$$

The left-hand side is a function of ε, B only; the right-hand side is a function of u, ε only. Hence, the left-hand side equals the right-hand side which equals $K(\varepsilon)$. Hence we need to solve

$$
K(\varepsilon)=\frac{1}{Z^{\varepsilon}} \frac{\partial \log Z}{\partial \varepsilon}=\frac{1}{Z^{\varepsilon+1}} \frac{\partial Z}{\partial \varepsilon} .
$$

Hence,

$$
\begin{equation*}
\frac{\partial Z}{\partial \varepsilon}=Z^{\varepsilon+1} K(\varepsilon) . \tag{A8}
\end{equation*}
$$

Let $Z=G^{-1 / \varepsilon}$. Then $Z^{\varepsilon}=1 / G$,

$$
\frac{\partial \log Z}{\partial \varepsilon}=\frac{1}{\varepsilon^{2}}\left(\log G-\frac{\varepsilon}{G} \frac{\partial G}{\partial \varepsilon}\right)=\frac{K(\varepsilon)}{G} .
$$

Therefore,

$$
\begin{equation*}
K(\varepsilon)=\frac{1}{\varepsilon^{2}}\left[G \log G-\frac{\partial G}{\partial \log \varepsilon}\right] . \tag{A9}
\end{equation*}
$$

A substantial step towards a closed form solution to (A9) can be taken in the special case $K(\varepsilon)=\gamma / \varepsilon^{2}$ where γ is a constant. Then
(A10)

$$
G \log G-\gamma=\frac{\partial G}{\partial \log \varepsilon} .
$$

Let $W(G)=\int(1 /(G \log G-\gamma)) d G=\log \varepsilon+\log L(u)$. Hence,

$$
\begin{equation*}
G=W^{-1}(\log \varepsilon u) \tag{A11}
\end{equation*}
$$

since $L(u)$ can be replaced by u without loss of generality.

However, I have not been able to solve the integral which defines W. Consideration of a Lipschitz condition makes it clear that a global solution to the differential equation $d W / d G=1 /(G \log G-\gamma)$ does not exist. Since $G=Z^{-\varepsilon}=(m / B)^{-\varepsilon}$, the implied form of the cost function is

$$
\begin{equation*}
m(u, p)=W^{-1}(\log \varepsilon(p) u) B(p) \tag{A12}
\end{equation*}
$$

Because W may not exist for all u and because of possible concavity problems for some u, there are likely to be income ranges for which (A12) is not defined. Finally, I have not been able to push further the analysis of (A9) when $K(\varepsilon)$ does not have the special form γ / ε^{2}.

REFERENCES

[1] Arrow, K. J.: Social Choice and Individual Values, New York: Wiley, 1963.
[2] Carlevaro, F.: "A Generalization of the Linear Expenditure System," in Private and Collective Consumption, Fifth Colloquium of ASEPELT, ed. by J. N. du Pasquier and L. Solari. Amsterdam: North-Holland, forthcoming.
[3] Christensen, L. R., D. W. Jorgensen, and L. J. LaU: "Transcendental Logarithmic Utility Functions," American Economic Review, 65 (1975), 367-383.
[4] Deaton, A. S.: "Equity, Efficiency, and the Structure of Indirect Taxation," Cambridge Growth Project Paper 419, March, 1975.
[5] Debreu, G.: "Excess Demand Functions," Journal of Mathematical Economics, 1 (1974), 15-21.
[6] Diamond, P. A., and D. L. McFadden: "Some Uses of the Expenditure Function in Public Finance," Journal of Public Economics, 3'(1974), 3-22.
[7] Diamond, P. A., and J. A. Mirrlees: "Optimal Taxation and Public Production: II," American Economic Review, 61 (1971), 261-278.
[8] Diewert, W. E.: "Generalized Slutsky Conditions for Aggregate Consumer Demand Functions," Technical Report 109, September 1973, Institute for Mathematical Studies in the Social Sciences, Stanford.
[9] ___: "Applications of Duality Theory," in Frontiers of Quantitative Economics, ed. by M. D. Intriligator and D. A. Kendrick. Amsterdam: North-Holland, 1974.
[10] Gorman, W. M.: "Community Preference Fields," Econometrica, 21 (1953), 63-80.
[11] —_: "On a Class of Preference Fields," Metroeconomica, 13 (1961), 53-56.
[12] ——: "Duality and Its Applications," mimeograph notes, London School of Economics.
[13] —: "Separable Utility and Aggregation," Econometrica, 27 (1959), 469-481.
[14] Hotelling, H.: "Edgeworth's Taxation Paradox and the Nature of Demand and Supply Functions," Journal of Political Economy, 40 (1932), 577-616.
[15] Jorgensen, D. W., and L. J. Lau: "The Structure of Consumer Preferences," Annals of Economic and Social Measurement, 4 (1975), 49-102.
[16] Karlin, S.: Mathematical Methods and Theory in Games, Programming and Economics, vol. 1. Palo Alto, California: Addison-Wesley, 1959.
[17] McFadden, D., A. Mas-Colell, R. Mantel, and M. K. Richter: "A Characterization of Community Excess Demand Functions," Journal of Economic Theory, 9 (1974), 361-374.
[18] Muellbauer, J.: "The Political Economy of Price Indices," Birkbeck Discussion Paper 22, March, 1974.
[19] -: "Aggregation, Income Distribution and Consumer Demand," Review of Economic Studies, 42 (1975), 525-543.
[20] Pearce, I. F.: A Contribution to Demand Analysis. Oxford: Clarendon Press, 1964.
[21] Samuelson, P. A.: "The Transfer Problem and Transport Costs: The Terms of Trade When Impediments Are Absent," Economic Journal, 62 (1952), 278-304.
[22] :-: "Social Indifference Curves," Quarterly Journal of Economics, 70 (1956), 1-22.
[23] Scitovsky, T.: "A Reconsideration of the Theory of Tariffs," Review of Economic Studies, 9 (1942), 89-110.
[24] Shephard, R. W.: Cost and Production Functions. Princeton, 'N.J.: Princeton University Press, 1953 (Revised and extended edition, 1970).
[25] Sonnenschein, H.: "The Utility Hypothesis and Market Demand Theory," Western Economic Journal, 12 (1974), 404-410.
[26] Theil, H.: Linear Aggregation of Economic Relations. Amsterdam: North-Holland, 1954.
[27] Wicksell, K.: Value, Capital and Rent. Originally published in 1893. English edition: London: Allen and Unwin, 1954.

[^0]: ${ }^{1}$ This paper owes much to friends and colleagues. In rough chronological order, Angus Deaton's challenge that earlier results would be hard to generalize began it all. Early discussions with Gerald Kennally proved to be very important. At Birkbeck, Hugh Davies, Ben Fine, Sue Himmelweit, and Richard Portes made valuable contributions. Searching questions raised at a seminar at the IIES and by Peter Hammond and Jim Mirrlees were very useful in sorting out some issues. Finally, I must acknowledge my debt to Terence Gorman, a pioneer of this kind of analysis. He showed me that in an earlier version I had not reached the most general form of individual preferences. He is also responsible for suggesting the form of the direct utility function for generalized linearity.
 ${ }^{2}$ Gorman's results do not, of course, spring out of a vacuum. Samuelson [21] showed that the same condition is necessary in the two-commodity case to solve a related problem. This is the "transfer problem": when two consumers trade, under what conditions are the prices independent of the distribution of initial endowments? As Samuelson [21] points out, Keynes was already aware of the solution. Also Samuelson's 1952 paper was an extended version of an unpublished pre-war paper of his. Theil [26] independently dealt with linear aggregation theorems in general: However, as far as I am aware, Gorman was the first explicitly to set up and solve the community preference problem per se. His paper is noteworthy for the explicit way in which the restriction on the lower bound of utility is linked to convexity rather than merely to the nonnegativity of demands, and for deriving the Hicksian demand functions. Though Gorman does not point this out, adding these functions times the prices gives the cost functions.

[^1]: ${ }^{3}$ In this paper, I shall use the words "income", "budget", and "total expenditure" synonymously. Redefining the q 's as consumption in different time periods, all the aggregation theorems can be reinterpreted for savings or consumption functions defined on wealth.
 ${ }^{4}$ This is not a terribly stringent requirement.
 ${ }^{5}$ Also see his elegant notes "Duality and Its Applications" [12].

[^2]: ${ }^{6}$ Then the concavity region C includes all y_{h} for which $u_{h} \geqslant 0$.

[^3]: ${ }^{7}$ See below for further discussion.
 ${ }^{8}$ A recent paper by Carlevaro [2] contains a generalization of the linear expenditure system which is a special case of this form.

[^4]: ${ }^{9}$ Diewert [9, pp. 129-130] gives a specific indirect utility function whose cost function is a member of the class defined by (13). In the context of identical preferences, he points out that his special case aggregates consistently. A similar example is given in Diewert [8]. This interesting paper also shows that if the number of consumers is less than the number of goods, individual maximizing behavior does impose some restrictions on aggregate behavior other than adding-up. Finally, an indirect utility form, (13) belongs to the "polar-form" class arising in Gorman's [13] price aggregation theorem.

[^5]: ${ }^{10}$ A special case of the indirect translog utility function-see Jorgensen and Lau [15] and Christensen, et al. [3]-is a member of this class.

[^6]: ${ }^{11}$ There is also some discussion of generalization to taste differences including an approximation theorem for stochastic differences in tastes. Although forms (15) and (16) are discussed there, no necessity results for these forms are attempted.

[^7]: ${ }^{12}$ Constants of integration must be independent of i since v_{r} is independent of i.

