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ABSTRACT

The article describes the design of  the Community Seismic Network, which

is a dense open seismic network based on low cost sensors. The inputs are

from sensors hosted by volunteers from the community by direct connection

to their personal computers, or through sensors built into mobile devices.

The server is cloud-based for robustness and to dynamically handle the load

of  impulsive earthquake events. The main product of  the network is a

map of  peak acceleration, delivered within seconds of  the ground shaking.

The lateral variations in the level of  shaking will be valuable to first

responders, and the waveform information from a dense network will allow

detailed mapping of  the rupture process. Sensors in buildings may be useful

for monitoring the state-of-health of  the structure after major shaking.

Introduction

The most important information that can be provided

to emergency responders in the minutes to hours following

an earthquake is an assessment of  damage, and the best

proxy we have to produce estimates on this time scale are

measurements of  ground shaking. Products such as

ShakeMap [Wald et al. 1999a] do this with near real-time

sensors that are available from traditional seismic networks

such the Southern California Seismic Network (SCSN).

However, the sensors are sparsely distributed and the

resulting maps have low-resolution and require model-driven

interpolation, which means they need to know the

earthquake hypocenter and magnitude. Sensors are typically

separated by several kilometers (approximately 10 km in the

case of  the SCSN). Increasing the density of  seismic

networks beyond that needed for their basic function of

earthquake location is cost prohibitive under their current

paradigm of  operation of  closed networks with high-quality

(expensive) sensors. The capital and maintenance costs,

permitting and data analysis are the usual limiting factors.

Another approach to providing this information is to use

crowd-sourcing to obtain the measurements. The “Did You

Feel It” (DYFI) product of  the US Geological Survey (USGS)

[Wald et al. 1999b] does this with a simple post-earthquake

web interface, where users enter intensity observations with

postal codes providing the location information. The sheer

numbers of  reports largely overcome the simple and subjective

measurement scale and crude location mechanism. Recent

mild but widely-felt, earthquakes in the Los Angeles region

have produced over 40,000 entries. When the inverse-distance

dependency is removed from these maps such as in Figure 1,

there is surprising level of  detail revealed about the lateral

variations in shaking intensity. One drawback to this form of

sensing is the human responders in the areas of  heavy shaking

usually do not make the data entry their first priority, and hence

information from the most critical areas is usually late in arriving.

In this paper we describe an alternative way to achieve

the goal of  providing detailed and rapid assessment of

ground shaking in urban areas. The method is based on an

open-network of  low-cost sensors that are hosted by

volunteers and the telemetry is provided by the internet.

The Community Seismic Network (CSN) (http://www.

communityseismicnetwork.org) described here can be viewed

as a quantitative version of  DYFI. The primary product of  the

CSN is a map of  ground shaking that can be delivered within

seconds of  major shaking. With a dense network this can be

generated before accurate estimates of  the location and

magnitude are obtained. The measurement of  moderate

earthquakes will provide maps of  anomalous ground

amplification. The waveforms from the network will provide

the information to determine the dynamic slip on the fault.
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The concept of  basing a seismic network on micro-

electromechanical systems (MEMS) sensors was proposed

by Evans et al. [2005]. In the time since that suggestion, the

sensors have become much more sensitive (and cheaper).

The Quake-Catcher Network [Cochran et al. 2009a,

Cochran et al. 2009b, Chung et al. 2011] and the Home

Seismometer Network [Horiuchi et al. 2009] are also based

on low-cost MEMS sensors. The oil-industry has been

increasing the use of  MEMS accelerometers in their surveys,

driven by the need for low-cost compact three-component

sensors [Hons et al. 2008, Mougenot et al. 2011].

The CSN described herein is under development with

approximately 100 sensors deployed, and thus far no felt

earthquakes have occurred. Consequently, the system has

not been tested under real event conditions. The CSN is

embedded in the reporting region of  the SCSN, which is

jointly operated by Caltech and the USGS. The CSN is not

intended as a replacement for traditional networks, but

rather as a supplement to increase the resolution of  ground

shaking measurements. The MEMS sensors that are

currently used by the CSN are not sensitive enough to detect

regional or small local earthquakes.

COMMUNITY SEISMIC NETWORK

Figure 2. Effect of a dense array. The upper row shows the output of  simulated motion in southern California, and a perfect point source. The middle
row shows the current seismic network density (the SCSN) and the reconstruction of  the point source. The bottom row shows the results for a dense array
of  1000 stations.



Advantages of a dense network

With the CSN, the quality of  an individual sensor is

traded-off  against the density of  the network. The tradeoff  is

common in the seismic exploration industry, where the goal is

to measure the wavefield in an unaliased manner. For

earthquake monitoring, a dense network is important when

there are significant lateral variations in the intensity of

ground shaking [Field and Hough 1997]. This is likely the case

when there are near surface structures such as micro-basins or

when there are variations in soil conditions. In Figure 2, a

synthetic example shows the effect of  a sparse and dense

network on an interpolated wavefield. Analysis methods that

utilize sampled wavefields will not work with sparse networks.

One advantage of  a dense network is that the real-

time processing is generally simpler. The first group of

responding stations provides a fairly accurate location of

the hypocenter of  the event if  it occurs within the

network. Also a map of  shaking can be produced directly

from the observations rather than from a model-based

interpolation that depends on knowing the epicenter of

the event.

In Figure 3, a real example of  a dense network is shown.

In this case, it is an exploration network that happened to

capture a nearby earthquake. The recorded wavefield is

unaliased, and it is clear that there are significant and rapid

lateral variations in the peak accelerations.

CLAYTON ET AL.
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Figure 3. A real example of a dense array. The array consists of  over 5,000 sensors in a 7 × 10 km area. It was deployed by NodalSeismic Inc. on behalf
of  Signal Hill Oil Co. and was designed for active source imaging of  the Signal Hill oil field. The upper panels show the location of  the stations. The lower
left panel shows a time-slice of  the S-wave wave field due to a magnitude 2.5 earthquake located approximately 5 km to the west of  the array (red is
positive and the numbers refer to the frame and time of  the slice). The lower right panel shows the variations in peak acceleration due to this earthquake.
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Low-cost sensors

The technology change that has produced low-cost

sensors is MEMS. The accelerometer version of  these

‘sensor-on-a-chip’ devices uses capacitance variations

induced by motions and were developed in 1960’s. Their

development as low-cost devices was driven by their wide-

spread use in air-bag systems, disk-drive protection devices

and computer game controls. They are now commonly

included in smart phones and mobile computers.

MEM accelerometers vary from very low-cost low-

resolution high-noise devices to sensors that have performance

that is comparable to expensive force-feedback sensors

[Holland 2003]. Sensors with 70 mgal sensitivity at 1 Hz are

available for US$100. Cell phones are typically equipped with

sensors that are about ¼ of  this sensitivity. In the CSN, the

initial deployment of  Phidget sensors (www.phidgets.com)

have a sensitivity of  70 mgal with a 16-bit digitizer and a

dynamic range of  ± 2g. The packaged sensor is shown in

Figure 4, along with its noise curve. For comparison, the

response of  a smart phone sensor is also shown.

Communications with the sensors

Communications with the sensors is generally over the

Internet. This reduces costs but does introduce some security

and robustness issues. To connect the sensors to the network,

there are a number of  options, but for most sites a host

computer is used. The sensor package connects to the host

via a USB port, and a client program analyzes the samples

and communicates with the central server. The client

program has minimal impact on the performance of  the

host, but it does require the host be functioning all the time

to provide real time monitoring. The advantage of  using a

host computer is that network connectivity problems are

solved by others. This allows the client installation program

and process to be fairly simple.

Ideally, the sensors would not use a host computer, but

would rather directly connect to the Internet. We have

successfully ported the client software to a small single board

computers (SBC) but this does not solve the Internet

connectivity problem. The SBC’s, whether using wired or

wireless connections, need to negotiate a variety of  protocols

that often require passwords. This makes volunteer (i.e. non-

expert) installation problematic. Using the cell-phone

infrastructure would obviate a number of  these problems,

but with the current price structure for this type of

communication, this is not practical. It may be suitable in

countries outside of  the USA. Some form of  the SBC-based

sensor will likely become the preferred configuration as

always-on desktop computers become less popular.

Software design

The CSN software is divided into client and server

components. At the moment, the server part is also

subdivided into real-time and archiving sub-systems,

although our longer-term plan is to join these. 

Client software

The purpose of  the client software is to retrieve the

sampled data from the sensor system, perform a limited set

of  processing on the data, and send the results (and

COMMUNITY SEISMIC NETWORK

Figure 4. Low-cost MEM sensor used in the CSN. The sensor used is a Phidget 1056. The response of  this sensor and that of  a typical smart phone are
compared to a standard high-quality force-balance accelerometer in the right panel. The response for various sized earthquakes at two distances is shown
for reference, which is adapted from Clinton and Heaton [2002].



possibly the data) to the central server. In the current

implementation, the data samples are decimated to a data

rate of  50 samples per second (sps) and placed in a ring

buffer. A detector algorithm that uses a variation of  the

standard ratio of  short-term-average over long-term average

[Earle and Shearer 1994] is used to pick events. The

adjustable parameters in the detector are the lengths of  the

short- and long-term averages and the threshold of

detection. We plan to dynamically adjust these parameters

through machine learning, which will be discussed later.

Time for the hosted sensors is determined by a local

Network Time Protocol (NTP) server [Mills 1990, Frassetto

et al. 2003]. We tested the local clocks on the host computers,

which were supposed to sync to an NTP server and to

generally available NTP servers, but found that neither were

sufficiently accurate. We are currently running our own NTP

server and this has stabilized most of  the clocks, but we still

occasionally have 1-10 second jumps that appear to be

introduced by some older operating systems.

When the client has detected an event, it measures the

peak amplitude in the next second and sends this information

along with the time of  the detection to the server. We believe

that it is important that this initial information be sent as

quickly as possible in order to precede a possible (maybe

likely) failure of  the network infrastructure. The client

continues to look for the peak amplitude and send updates as

the event proceeds.

The clients will send their raw data to the server when

they are requested to do so. For some sensors, the

parameters are set such that all of  the data are sent every few

minutes, forming a continuous stream of  data. These data

streams are very important for research on the detection and

processing algorithms and for scientific research on the

earthquakes themselves. In other cases, when bandwidth is

an issue, the sensors will send a time window of  the data

when requested by the server. The request is communicated

as part of  the ‘call-home’ procedure.

When initially downloaded, the client software performs

the installation task and requests certain information from

the volunteer such as location as determined by a Google

map, floor of  the building, building type, and contact

information. An identification key is also obtained from the

server to authenticate future data exchange.

The final task for the client is to contact the server at

regular intervals (e.g. hourly) to report its state of  health

and request any software or parameter updates. With this

‘call-home’ or ‘heartbeat’ mechanism, the entire client

code can be changed, and various parameters updated.

This is also the mechanism whereby the server can request

that the client send the raw waveform data for a particular

time segment. This task also fills the important role of

letting the server know which sensors are functioning at

any given time.

Server software

The role of  the server is to receive detection and

parametric data from the sensors and to process it to produce

a map of  the peak ground motion, along with other related

products. This information will then be broadcast to the

general public and emergency responders. To handle the very

impulsive load generated by earthquakes, the server needs to

be able to dynamically add computational and I/O resources.

It also needs to be robust with respect to failure by the very

event that it is attempting to report on, which means it

probably needs to be located outside the region of  concern.

To achieve the dynamic and robust qualities, it was

decided to use distributed cloud computing [Armbrust et al.

2010, Mell and Grace 2011] for the server. In our initial

configuration, we are using the Google cloud, with the

Google App Engine as a development platform. The

robustness is achieved through the global distribution of

redundant ground servers, and the dynamic loading is

through the structure of  the database of  the Google App

Engine. The database is highly denormalized (i.e. one table

instead of  several separate tables) which is a change for most

seismic software. Tutorials on the Google database (Big

Table) and programming the App Engine can be found at

http://labs.google.com/papers/. In theory the cloud will

automatically handle the redundant storage of  data, so we

only need to deal with one system (i.e. no backup system). In

measurements provided by Google engineers, but otherwise

undocumented, the redundant storage will occur very

rapidly. One other features of  the cloud is the ability to create

additional networks anywhere in the world by simply

replicating the particular instance. The downside of  the

cloud is that some aspects of  the environment change with

time as is to be expected with an evolving system.

In standard (sparse) network software the picks are

normally associated with events with a fairly complex code

that is often termed an ‘associator’. With the CSN, the

density of  the network allows us to use a simpler system

based on ‘geo-cells’ (latitude–longitude boxes). The system

simply counts the numbers of  detections within the geo-cells

within time slices, and when that number exceeds a

threshold number, the geo-cell declares an event. When a

sufficient number of  geo-cells detect an event, a map of  the

ground motion for the whole region is produced. Thresholds

are determined in order to maximize the detection

probability, while minimizing the number of  false alarms.

Since this map is not dependent on the location of  the event,

only that its effects are within the area of  interest, there is no

need to initially do the association and location steps. The

geo-cells can be used in a telescoping multi-scale approach

to determine how widespread the shaking it is. The size of

the geo-cells and time slices are tunable parameters of  the

network. In the initial Pasadena test the geo-cells are the size

of  a few blocks, and the time slice is the transit time of  a

CLAYTON ET AL.
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P-wave across the cell. The threshold count is also a

parameter that is likely to vary laterally across the network.

The system can respond very quickly, and the goal is

produce the map within seconds of  the shaking, so it has the

potential of  reaching emergency responders before the

network connectivity fails. However, even if  this is not the

case, the use of  the cloud environment should allow the

information to be sent to outside responders. A schematic of

the server implementation is shown in Figure 5.

The server also requests and receives the waveform

data, which is archived. Presently a conventional land-based

server handles this, because cloud-based storage is too

expensive. However, it is expected that this will evolve so that

the waveform archive is also maintained in the cloud.

Data archive

The waveform and other parametric data are sent to a

standard archive shortly after they are received and

processed. The waveform data are entered into an archive

wave pool and the metadata into a database. They are then

available to scientists working on the CSN project for further

analysis. Due to privacy concerns of  the sensor-hosting

entities, these waveform data are not generally available,

however, the waveforms for detected events will be made

available to the scientific community. One challenge of  the

archive is the mobility of  the sensors and the ‘naming’ of

stations. With the use of  mobile devices as the sensing

platform, we need to be able to handle rapidly changing

station coordinates, which also has implications for the

naming of  stations. In traditional networks, the stations are

re-named when they are moved, but that is not practical

where the stations are frequently on the move, such as the

case with cell phones with MEMS sensors that are discussed

below. At the moment, the station location is kept as an

attribute of  a particular waveform and not the station (i.e.

the database is denormalized), but the station name is kept

fixed. This approximates the station location, by its position

at the start of  the waveform. Keeping consistent names for

stations in a network where the sensors move around (and

disappear) is a challenge that we have not completely solved.

The solution may be to abandon names and use the

coordinates as the station tag.

COMMUNITY SEISMIC NETWORK

Figure 5. A schematic of the client/server interaction. The functionality of  the server is shown. The event detection  is done by geo-cells as described
in the text.  The heartbeat is database of  regular check-ins by the sensors. The datastore is the cloud database. The advantage of  a ‘cloud-based’ server is
robustness and extensible load capability.



Security issues

There are a number of  security and privacy issues that

are not normally encountered in a closed seismic network.

The first is ensuring that the host computers are not

compromised by entities spoofing as the server. To minimize

this issue, all communications in the CSN system are

initiated by the clients themselves and only with a trusted

host. This means that software updates and request for the

waveforms wait until the client makes a regular state-of-

health contact. To minimize spoofing the server with bogus

earthquakes, the server only accepts information from clients

that have a key, which is assigned at the time of  registration

(software installation) of  client.

Privacy issues

The privacy of  information on the sensor host is

increasingly becoming a major issue. It is relatively

straightforward to keep the contact information separate from

the seismic database and in a secure place available only to the

administrators of  the network, but the precise location

information is a necessary part of  the meta data for the seismic

system. To minimize the broadcast of  this information, public

displays of  the network show only sensor locations at the

resolution of  a geo-cell (about one block in area), and within a

geo-cell only the number of  sensors is shown, not the

individual locations. This still gives an overall impression of  the

distribution of  the network, but doesn’t give precise locations.

Note that we chose this procedure after experimenting with

adding a small random component to the displayed locations,

which seemed to confuse people more than it helped. The geo-

cell display concept is further enhanced for mobile devices such

that only geo-cells that have two or more mobile devices will

be displayed, which should make tracking of  people through

their sensors practically impossible.

To minimize the issues of  distributing the real time

waveform (with locations), we plan to only make available

extracts of  the data for felt earthquakes, and only after a

delay. This appears to be an unfortunate consequence of  an

open network in a privacy-concerned environment.

Prototype network

A prototype of  the CSN network is currently being

installed in the vicinity of  Pasadena, California, USA. The

purpose of  this network is to demonstrate the viability of  the

community-hosted sensors and the open network design of

the CSN. To date, approximately 100 sensors have been

distributed. A map of  the distribution and the current size of

the network is at http://map.communityseismicnetwork.org.

The sensing, detecting and archiving aspects of  the network

have been implement and are being tested. In Figure 6, one

of  the few events recorded by the CSN is shown. The event

is a magnitude 4.1 at a distance of  38 km from the center of

the network. The data show the general noise level on the

sensors that can be expected on this type of  network. The

timing error that is evident on one of  the stations is due to

the problems mentioned above. The sensors did not detect

the April 4, 2010, 7.2 El Mayor Cucapah earthquake in Baja,

Mexico some 300 km away.

Future directions

The prototype CSN network represents a small part

of  the envisioned scope of  the planned CSN network. The

CLAYTON ET AL.
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Figure 6. Sample recording from CSN. The earthquake is a Ml 4.1 near Newhall, CA, USA, approximately 38 km from the center of  the CSN network.
The east component of  data is shown. The left panel shows the data in distance from the earthquake, while the right panel shows a blowup of  the region
denoted by arrows. The traces in the left panel are self-normalized, while those in the right panel have a single scale factor. The data are band-passed at
1-10 Hz. The amplitude variations in the right panel are the main effect that the CSN is trying to measure. There is clearly one station in the right panel
that has a timing error of  about one second.
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future plan is to expand over the entire urban Los Angeles

region, and eventually other urban areas that are subject

to significant seismic hazard. In terms of  developing the

network software and sensors, we are working on tuning

the network parameters with machine learning, detecting

the state of  health of  buildings, and adding the sensors in

cell-phones.

Machine learning

The sensors for the CSN are installed by the volunteers

themselves and as a result it is expected they will be placed

in a wide variety of  noise and vibrational environments. The

sensors themselves have some self-configuration ability for

orientation. They can detect the vertical component

because they can sense the acceleration of  gravity and do a

software rotation to align it with the z-component.

Currently, the horizontals are not oriented, other than they

are in the horizontal plane and are perpendicular to each

other. In the future, if  an onboard magnetic compass is

available (as it is with the Phidget sensor), it can be used for

determining the compass directions of  the accelerometer

horizontal axes.

The network will use machine learning in order to

optimize the detection parameters. This will be implemented

when the network has densified. The algorithm for setting

the thresholds or sensitivity of  picking takes into account the

detection history for a particular sensor. It adjusts the

threshold up or down to bring the sensor in line with the

average for the whole network. This could even be made

time-of-day dependent as its performance characteristics

become more evident with time. Adjusting the parameters

of  the picking algorithm (such as the short and long-term

filters) will be more complex because these will depend on

the performance relative to the background noise and on the

history of  detecting earthquakes of  different sizes (hence

frequency content). A first approach towards using machine

learning to optimize detection performance in the CSN is

described in Faulkner et al. [2011]. In addition to tuning the

sensors themselves, machine learning can also be exploited

to optimize the network parameters such as the size of  the

geo-cells and the thresholds within each cell.

One planned feature of  the network is to incorporate

the ability of  the clients to initiate a test earthquake to

perform end-to-end test of  the system; something that is

not possible with most seismic networks. To accomplish

this, the details of  the event, including synthetic waveforms

will be downloaded into the clients the day before the

scheduled time as part of  their regular call-home

communications. Then at the scheduled time the synthetic

data will replace the real data stream, and the test

earthquake will be simulated. The entire system including

the detection functions on the clients and the capacity of

the server will be tested.

Networks in buildings

One of  the proposed applications of  the CSN is in

providing dense instrumentation of  buildings. This is to

measure the level of  acceleration that the individual floors

have experienced in an earthquake, and also to monitor the

state of  health of  the building by looking at the variations in

the modes of  the building before, during and after an

earthquake [Clinton et al. 2006]. This is a new area of

research that will require a dense array such as the CSN to

provide the necessary observations. We have installed such a

network in the Millikan Library (a ten story building at

Caltech) for structural monitoring. The sensors are capable

of  detecting the fundamental modes of  the building with

both forced vibrations and ambient noise. Communications

within buildings can be challenging for a variety of  technical

and practical reasons, so we are currently investigating using

the electrical wiring system as a communication network

(IP over power), but at the moment, noise appears to

significantly limit the range. If  this can be made to work, it

will greatly simplify the placement of  sensors, and their

communications in buildings.

Cellphones and mobile devices

Smartphones are ubiquitous in today’s society, and most

are equipped with a motion sensor. While the quality of  this

sensor is not as good as that of  the stationary sensors, its use

for gaming and other applications is demanding more

precision. The newest generation of  phones and mobile

devices allow programs to be run in the background, which

allows a modified version of  the client described above to

function on these devices.

The obvious problem with mobile devices is that they

routinely generate signals that are much larger than

earthquakes through regular activities. One straightforward

solution is to detect when the phone is at rest, and only use

data from the sensors when the phone is in this state. This is

the approach of  the iShake project [Dashti et al. 2011]. A

more challenging problem is to separate the human-

generated motion from the earthquake signals.We have

developed a prototype algorithm to make this separation and

discriminate between earthquake motion and acceleration

due to regular activities. The algorithm and its evaluation are

described in Faulkner et al. [2011]. A CSN app for Google

Android phones implementing these algorithms is available

as a free download through the Android Market store

(https://market.android.com/details?id=edu.caltech.android).

Examples from a dense network

During the first half  of  2011, NodalSeismic Inc.,

installed a dense seismic network in Long Beach for the

Signal Hill Oil Company. This network consisted of

approximately 5,000 autonomous sensors distributed over

a 7 × 10 km area. This network recorded a few small

COMMUNITY SEISMIC NETWORK



earthquakes that were within a few kilometers of  its center.

While the sensors on this network are the standard

seismic exploration velocity sensors, this deployment gives

some indication of  what might be observable with a dense

earthquake network such as CSN. Figure 3 shows the

distribution of  receivers and shows a snapshot of  the S-wave

as it crosses the network. The peak accelerations are also

shown. It is the variability that we see in this figure that

confirms the premise of  the CSN – that there is significant

lateral variability of  ground shaking and that it needs to be

measured on a fine scale. This network has also been an

excellent test bed for the picking algorithms and the geo-cell

concept for detecting events.
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