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Abstract

Background: The variation of tick abundance on ruminants had received little attention in West Africa before

Rhipicephalus (Boophilus) microplus started to invade this region in the early 2000s. Ten years later, R. microplus

was suspected to have replaced the native ticks. In addition to testing this hypothesis, this study investigated the

interactions between native and invasive ticks and the relative role of climatic and geographical variables in the

variations of tick community composition (beta diversity) on cattle herds.

Methods: A one-year-long survey was performed in Benin and Burkina Faso during which adult ticks were

collected from 144 steers from 12 localities in four different areas once a month. Morphological features were

used to assign the collected ticks to different species (A. variegatum, R. annulatus, R. decoloratus, R. microplus and

R. geigyi). Beta diversity analyses and generalized linear models allowed characterizing the geographical variations

in species assemblage and the effect of co-infestation patterns on the seasonal variations in the abundance and

incidence rates of each taxon.

Results: About 68 % (22,491/32,148) of all the adult ticks collected in one year were R. microplus. The most

heterogeneously distributed taxa were Hyalomma spp and R. microplus and the lowest specific diversity was found

in Central Burkina Faso. Although climatic variables did not provide any additional information on the variation in

species assemblages compared with the sampling geography, adult tick abundance tended to peak during the late

(Boophilus subgenus) or early (other taxa) rainy season. In most taxon-per-locality analyses, the abundance and

incidence rate of a given tick taxon significantly increased when the host was co-infested by other taxa. The comparison

with previous estimates (when possible) did not support the hypothesis that R. microplus invasion led to a decrease in

native tick species abundance.

Conclusions: The co-infestation patterns among native and invasive tick species are key factors for the determination of

the community structure and the infestation dynamics of each tick taxon in West African cattle.
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Background
In Benin and Burkina Faso, livestock production repre-

sents the second contribution after crops to the gross

domestic product, without leading to self-sufficiency in

animal protein production [1, 2]. In both countries,

semi-intensive farming systems and the use of exotic

breeds remain exceptional and 95 % of the livestock in-

dustry relies on extensive and low-input systems. In

Benin, half of the livestock production is concentrated in

the north-east where herd rotation among communal

pastures, post-harvested crops, savannahs and wood-

lands optimizes the use of the rare grazing resources

[3, 4]. In Burkina Faso, extensive and low-input sys-

tems include the transhumant system where part or

whole cattle herds move to the south in the dry season

and come back to the north in mid-May when the

rainy season starts [5]. Traditional farming systems in

Burkina Faso also include sedentary systems where cat-

tle, sheep and goats forage together on communal pas-

tures. In such low-input systems, herders cannot afford

expensive tick control strategies [6]. As a result, ticks

and tick-borne pathogens hamper the development of

livestock production in these areas.

The variations in tick biodiversity and abundance on

domestic ruminants have been poorly studied in West

Africa, with the exception of few surveys performed in

Benin or Burkina Faso [7–11]. These studies showed

that Amblyomma variegatum, a three-host tick that in-

fests cattle and small ruminants, was the native species

responsible for the highest economic costs. This species

impairs animal growth [12], decreases milk yield [13, 14]

and is the vector of Ehrlichia ruminantium, a virulent

pathogen for sheep and goats that was detected in 10 %

of A. variegatum adults in several Beninese regions [11].

Three native species of the Boophilus subgenus (R.

annulatus, R. decoloratus and R. geigyi) transmit Babesia

bigemina (the agent of African redwater) and Ana-

plasma marginale in this region [15, 16]. Seven other na-

tive species, of little veterinary health concern, were also

recorded in these studies: three Hyalomma species (H.

impressum, H. marginatum rufipes and H. truncatum)

and four other Rhipicephalus species (R. muhsamae, R.

sanguineus, R. senegalensis and R. sulcatus) [7–9]. These

surveys also highlighted geographical variations in the

predominant species: A. variegatum and H. marginatum

rufipes were the only species found on cattle in Central

Burkina Faso [7], while A. variegatum and R. geigyi rep-

resented between 70 and 99 % of the ticks infesting cat-

tle in North Benin [8, 9].

To the best of our knowledge, it is not known whether

and how co-infestation patterns influence the abundance

of each native tick species. Moreover, the recent invasion

of West Africa by the Asian cattle tick Rhipicephalus

(Boophilus) microplus could have modified these tick

communities and consequently also the threats to the

health of domestic ruminants. R. microplus is associated

with the highest economic losses where it occurs be-

cause of its direct deleterious effects on cattle health and

its vector competence for Babesia bigemina, B. bovis

and A. marginale [17]. R. microplus was introduced in

Ivory Coast [18, 19] and Benin [20] in the early 2000s

and within a decade it has spread to Togo, Mali, Burkina

Faso and along the north-eastern border between

Nigeria and Cameroon [21–25]. A nationwide survey

performed in Benin found that R. microplus was the pre-

dominant Boophilus species in the southern half of the

country in late 2011 [25]. As a consequence, this inva-

sive species was suspected to have outcompeted and re-

placed its native competitors [19, 25], as it did in South

Africa (see [26, 27]). This hypothesis remains neverthe-

less to be tested. Indeed, as the data from the Beninese

survey were expressed in percentages of invasive and na-

tive species among the collected ticks, it was not pos-

sible to determine whether R. microplus invasion has

actually decreased the native competitor burden [25].

This was carried out to update the information on tick

infestation in domestic ruminants in Benin and Burkina

Faso, West Africa, as well as to compare the current

abundances of native ticks with those observed before

the arrival of R. microplus. In addition, the effect of geo-

graphical changes on species abundance and tick species

assemblages was investigated. To this end, the variations

in the composition of tick communities (beta diversity),

the contribution of each species and/or each site to the

beta diversity and the relative contribution of geograph-

ical and climatic variables (mean monthly rainfall and

temperature) to the spatio-temporal variations in beta

diversity were quantified.

Methods

Sampling areas

Four areas with different climate were considered (Fig. 1).

South Benin has a Guinean climate characterized by a

long rainy season from April to July, a short dry season

in August, a short rainy season between September and

November and a long dry season from December to

March. North Benin included two sites where a rainy

season (May to October) is followed by a dry season

(November to April). Overall, the amount of annual

rainfall is 1400 mm in South Benin and 1300 mm in

North. In South-West Burkina Faso and Central Burkina

Faso the rainy season lasts from June to September and

the dry season from October to May. Overall, the

amount of maximum rainfall is higher in North Benin

(i.e., 1300 mm) than in Burkina Faso (1200 mm) and the

most arid area is Central Burkina Faso. These four areas

also represent different steps in R. microplus invasion of

West Africa. The state farm Kpinnou in South Benin
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(site 1 K, Fig. 1) was the place where the invasive tick

was introduced in 2004 [20]. R. microplus reached North

Benin by 2008 [19, 20] and South-West Burkina Faso in

late 2011 [24]. R. microplus has never been observed in

Central Burkina Faso before the beginning of this study.

Two to four herds were monitored in each of these four

areas. Hereafter, each sampling site is designated by a

number that identifies the geographical area (South

Benin: area #1; North Benin: area #2; South-West Bur-

kina Faso: area #3; Central Burkina Faso: area #4)

followed by the initial of the site name (e.g., site 1 K cor-

responds to Kpinnou in South Benin) (Fig. 1).

Tick sampling

Twelve sentinel steers were randomly chosen within

each monitored herd. Sampling started in February 2012

in areas #1 and #2, in April 2012 in area #3 and in May

2012 in area #4. At each of the monthly tick collection

events, each sentinel steer was kept with one flank on

the ground for 15 min to allow the collection of all the

ticks attached on the other half of the body. Ticks were

stored in 70 % ethanol. Sampling date, host ID number

and attachment site on the host (i.e., head, legs, flank,

perineum or tail) were recorded as well as information

on the mean monthly rainfall and temperature obtained

from ASECNA (Benin) and the “Direction Générale de

la Météorologie” (Burkina Faso).

Tick identification

Although immature ticks were also collected, the ana-

lysis focused only on the adult stage to minimize the

risks of counting errors [28] and of misidentification

within the Boophilus sub-genus [16]. Tick identification

was performed in two steps: i) identification of

Amblyomma variegatum ticks and discrimination be-

tween the Hyalomma genus (hereafter referred to as

Hyalomma spp), the Boophilus subgenus (Boophilus spp)

and the other Rhipicephalus species (Rhipicephalus spp),

using a stereoscopic microscope at x60 magnification; ii)

discrimination of the four Boophilus species (i.e., the in-

vasive R. microplus species and the three native species

R. annulatus, R. decoloratus and R. geigyi) at x100 mag-

nification for more precision, since Boophilus species are

morphologically very similar. The differentiation criteria

were classically based on the number of teeth rows on

the hypostome, the form of the male ventral plates as

Fig. 1 Sampling geography. Sampling sites are represented by triangles and identified by the number of the area followed by the first letter of

the locality name. Thus, in area #1 (South Benin), ticks were collected in Athiémé (1A; N 6.5864; E 1.6653), Kpinnou (1 K; N 6.5681; E 1.781) and

Ouidah (1O; N 6.3336; E 2.0064). In North Benin (area #2), sampling sites were in Okpara (2O; N 9.305; E 2.7314) and Gogounou (2G; N 10.7383; E

2.9233). In South-West Burkina Faso (area #3), samples were collected in Farnifaso (3 F; N 10.07338; W 4.94975), Kimini (3 K; N 10.07162; W 4.808)

and Ouangolodougou (3O; N 10.0858; W 4.77828). In Central Burkina Faso (area #4), sample collection took place in Fada N’gourma (4 F; N 12.05;

E 0.35), Kikideni (4 K; N 11.9167; E 0.3833), Loumbila (4 L; N 12.5167; W 1.35) and Zagtouli (4Z; N 12.3167; W 1.6333). Stars indicate the localities

where tick abundance on cattle was studied before the arrival of R. microplus (one locality from area #4 in 1996 [7]; two localities in the east of

area #2 between 2003 and 2004 [9] and two localities in the west of area #2 between 2004 and 2005 [8])
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well as the presence (absence) of setae on the internal

protuberance of the first segment of palps, of external

spur on coxa II and III and of a caudal appendage [16].

Analysis of the tick community structure and its spatio-

temporal variations

The species x locality matrix was computed after Hellin-

ger transformation of the abundance data [29] to esti-

mate the beta diversity (BD), as described in [30]. Such

estimate varies between 0 (no geographical variation in

species assemblage) and 1 (each surveyed locality hosts a

distinct species assemblage). BD was then partitioned

into Local Contributions to Beta Diversity (LCBD) or

Species Contributions to Beta Diversity (SCBD) [30].

Null LCBD estimates define the null hypothesis of a ran-

dom distribution of species among localities (i.e., a state

where the community occupying any given locality is

formed independently from the species assemblages en-

countered elsewhere) [30]. Significant LCBD deviations

from zero were tested by performing 999 random per-

mutations (nperm = 999) of the matrix columns [30].

The largest SCBD estimates are associated with the most

heterogeneously distributed taxa, and sites where com-

munities are dominated by species associated with large

SCBD estimates tend to display significantly non-null

LCBD [30]. The spatio-temporal variations in the com-

munity structure and the relative contribution of cli-

matic variables and sampling sites to LCBD variations

were investigated as previously described [31]. The cor-

relations between species richness and LCBD estimates

were computed to accurately interpret non-null LCBD

estimates. A negative correlation is expected when sig-

nificantly non-null estimates indicate species-poor sam-

pling events [31].

Tick abundance dynamics

The temporal variations in the abundance of each taxon

were analyzed using generalized linear models with a

negative binomial structure (i.e., using the glm.nb function

from the MASS package in R; http://cran.r-project.org/

web/packages/MASS/index.html). In model comparisons,

preference was given to models that minimized the Akaike

information criterion (AIC), while maximizing the per-

centage of explained variance. The first step of simplifica-

tion focused on the seasonal variations in abundance: the

months associated with not significantly different (P >

0.05) estimates were merged into the same level of the

‘seasonal’ factor sx [32]. The second step tested whether

the tick co-infection pattern interacted with sx to deter-

mine the abundance dynamics of a given taxon X. H, A, R,

Rm, Ra, Rd and Rg were defined as categorical variables

with a value of 1 or 0 to describe the presence or absence

of Hyalomma spp, Amblyomma variegatum, Rhipicepha-

lus spp, R. microplus, R. annulatus, R. decoloratus and R.

geigyi, respectively. In R language, H*A*R*Rm*Ra*Rd*Rg

included all additive and interactive effects among these

explanatory variables. For simplicity, Πall-but-x defined

the term H*A*R*Rm*Ra*Rd*Rg from which the contri-

bution of the taxon X was removed. In R language, the

maximal model to explain the abundance variations of

taxon X was sx * Πall-but-x. Model simplification was

achieved by removing the terms without significant ef-

fect (P > 0.05) on the analyzed abundance.

Variations in the tick incidence rates

The mean values of the H, A, R, Rm, Ra, Rd and Rg vari-

ables defined above correspond to the incidence rates

per steer and per month of Hyalomma spp, Amblyomma

variegatum, Rhipicephalus spp, R. microplus, R. annula-

tus, R. decoloratus and R. geigyi, respectively [32]. Their

variations among sites (factor SITE), seasons (factor sx)

and/or hosts with different co-infestation patterns (Πall-

but-x) were analyzed using generalized linear models with

a binomial structure [33]. The maximal model was ~

SITE*sx +Πall-but-x. Model simplification was achieved by

removing the terms with no significant effect (P > 0.05).

The possibility of over dispersion (and thus the necessity

to perform a new analysis using a quasibinomial model

structure) was checked a posteriori by computing the ra-

tio of residual deviance onto the residual freedom

degrees [31].

Analysis of tick attachment sites on the host body

Cattle tick species have evolved preferences concerning

their attachment sites on the host body: Rhipicephalus

spp prefers attaching on the head and legs, while A. var-

iegatum, Hyalomma spp and Boophilus ticks favor at-

tachments on trunk and perineum [8, 9, 16]. To

investigate the relationships between co-infestation pat-

terns and the distribution of a given tick taxon on the

host body, R x C contingency tables were defined in

which the C columns describe the distribution of a given

tick species across the host body parts (C = 2, when con-

sidering the ‘preferred’ vs’not preferred’ body part cat-

egories; C = 5, when considering head, legs, flank,

perineum and tail as different categories) and the R rows

(R = 2) the presence/absence of a co-infesting tick spe-

cies. Then, the independence between rows and columns

was tested using the Fisher’s exact test. Finally, the possi-

bility of a global tendency was tested by combining the

obtained P-values for a given pair of tick species across

sites. Given the low number of P-values to combine, the

Stouffer’s combination method was preferred [32, 34],

using the R process developed by Burns [35].

Ethics statement

Herders received full information on the study objectives

and procedures before signing a written informed
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consent. Sampling was systematically coupled with veter-

inary inspection of the herd; in the case of infection, ani-

mals received free treatment. All study procedures were

reviewed and approved by the CSIRO Social Science

Human Research Committee under approval number

Ref 038/12.

Results

Predominance of the invasive R. microplus species

Overall, 144 animals were monitored monthly for one

year and 32,148 adult ticks were collected. They all

could be identified (genus, subgenus or species), but for

120 specimens (0.37 %). Ticks belonging to the

Amblyomma variegatum species (n = 2,806; 8.76 %), the

Hyalomma species (n = 2,458; 7.67 %) and the Rhipice-

phalus genus, excluding the Boophilus subgenus, (n =

2,436; 7.60 %) showed a comparable abundance. Ticks

belonging to the Boophilus subgenus (n = 24,328) repre-

sented 76 % of the whole collection. Even when taking

into account the 842 Boophilus ticks that could not be

assigned to a species, this subgenus was predominantly

represented by the invasive species. Indeed, 22,491 of

these ticks were identified as R. microplus, 510 as R.

annulatus, 308 as R. decoloratus and 177 as R. geigyi.

Geographical variation in tick assemblages

The overall BD estimate was 0.37. It decreased to ~0.20

and ~0.05, when the data from the four different areas

were used separately (Table 1). Area #4 was the only

area associated with a significantly non-null LCBD esti-

mate (P = 0.013; LCBD ~ 0.68 versus < 0.20 for the other

areas). Considering the within-area BD distribution, a

significant non-null LCBD estimate was found only at

site 4 L (P = 0.037, LCBD ~0.64 versus < 0.20 for the

other sites). The correlations between species richness

and LCBD were significantly negative for the whole

dataset (r = -0.57, P < 10-6), area #2 (r = -0.44, P = 0.03)

and area #4 (r = -0.35, P = 0.01).

Overall, R. microplus (SCBD = 0.49) and Hyalomma

spp (SCBD = 0.38) showed the highest distribution

heterogeneity, while the other taxa were more homoge-

nously distributed (SCBD < 0.04, Table 1). In area #1,

Rhipicephalus spp and A. variegatum (SCBD = 0.40 and

0.37) were the most heterogeneously distributed ticks,

followed by R. microplus (SCBD = 0.19). In area #2, R.

microplus and A. variegatum (SCBD = 0.38 and 0.32, re-

spectively) showed the highest distribution heterogen-

eity, followed by Hyalomma spp (SCBD = 0.16). In area

#3, Rhipicephalus spp (SCBD = 0.35), R. microplus and

Hyalomma spp (SCBD = 0.23 and 0.22, respectively)

were the most heterogeneously distributed taxa. Area#4

was characterized by high heterogeneity in A. variega-

tum distribution (SCBD = 0.66) and the absence of

three taxa (Rhipicephalus spp, R. annulatus and R.

microplus).

Tick assemblage dynamics

Within-area LCBD dynamics are detailed in Fig. 2. In

area #1, the only significant increase in LCBD was ob-

served at site 1O in September 2012. This sampling

event was characterized by a one-off over-representation

of A. variegatum ticks (48 % of all adults ticks collected

in September 2012 compared to 5 % on average in this

area). In area #2, significantly higher LCBD values were

Table 1 Beta diversity

Parameter Overall Sampling areas

Area 1 Area 2 Area 3 Area 4

BD 0.37 0.18 0.21 0.053 0.042

SCBD H. spp 0.38 0.0072 0.16 0.21 0.032

A. variegatum 0.0068 0.37 0.32 0.19 0.66

R. spp 0.060 0.40 0.010 0.35 NA

R. annulatus 0.036 0.011 0.059 0.0045 NA

R. decoloratus 0.018 0.024 0.049 NA 0.25

R. microplus 0.491 0.19 0.38 0.23 NA

R. geigyi 0.0031 0.00081 0.016 0.0057 0.061

LCBD Area 1: 0.17 1A: 0.37 2G: 0.50 3 F: 0.21 4 F: 0.14

Area 2: 0.08 1 K: 0.43 2 K: 0.50 3 K: 0.61 4 K: 0.03

Area 3: 0.07 1O: 0.19 3O: 0.19 4 L: 0.65*

Area 4: 0.68* 4Z: 0.18

Correlation (P-value) -0.57* (<10-6) -0.03 (0.85) -0.44* (0.03) -0.09 (0.58) -0.35* (0.01)

BD, SCBD and LCBD refer to beta diversity, species-contribution to the beta diversity and local-contribution to the beta diversity. ‘NA’ indicates areas where the

taxon was absent. The correlation between species richness and LCBD was assessed using the Pearson’s correlation coefficient. Asterisks(*) and bold characters indicate

significant(P<0.05) positive correlations
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recorded twice at site 2G. Both were associated with

over-representation of one taxon. Specifically, Hya-

lomma spp represented 74 % of all ticks collected in

April 2012 (versus 13 % on average in this area) and R.

decoloratus represented 58 % of all ticks collected in

January 2013 (versus 8 % on average). In area #3, a sig-

nificant LCBD increase was recorded in April 2012 at

site 3O. This sampling event was different from the others

at site 3O because: (i) R. microplus, which was otherwise

the most common species in area #3 (75 % of all ticks col-

lected in this area), was absent and (ii) Hyalomma spp

ticks represented up to 85 % of all sampled ticks (versus

10 % on average). The LCBD values in area #4 were

smaller than those recorded in the other areas (Fig. 2).

Nevertheless, a significant LCBD increase was observed at

site 4Z in June 2012, when A. variegatum represented

100 % of all collected ticks (versus 16 % on average).

Variations in the mean rainfall and temperature ex-

plained only 3 % of LCBD variations (R2
adj-climate = 0.03),

while the sampling geography explained 54 % of LCBD

variations (R2
adj-sites = 0.54, R2

adj-climate & sites joined = 0.54).

Seasonal tick abundance patterns

Models failed to converge, and thus to provide seasonal

patterns, when all sites of a given area were considered

together. Conversely, model convergence, and thus pat-

terns of seasonal variation in abundance, was usually ob-

tained when each site was considered individually.

Generally, the abundance of adult ticks of a given

species at a given site could be described by a null esti-

mate or at most by three non-null estimate levels (high,

medium or low abundance) (Fig. 3 and Table 2). The ex-

ception to this rule occurred when a taxon was sporadic-

ally present at a site. Such sporadic distribution

characterized the three native species of the Boophilus

subgenus at most sites, but for area #2. Similarly, Hya-

lomma spp was also sporadically present in the most

southern sites (Fig. 3).

Analysis of the abundance patterns of Rhipicephalus

spp and R. microplus showed that they were absent in

area #4, whereas they were collected in the other three

areas all year round (Fig. 3). Rhipicephalus spp showed

either one long abundance peak or two-three short

peaks between March and August (Fig. 3), with the high-

est abundance level estimates in area #1 (site 1A: 18 ±

0.9 ticks/steer per month) (Table 2). R. microplus abun-

dance showed several uncoordinated peaks in the herds

from area #1, but peaked once per year in the other areas

where it was observed (from September to December in

area #2, and from July to January in area #3, Fig. 3). Its

monthly abundance reached 98 ± 11 ticks/steer at site

3 K, but remained below 50 ticks/steer elsewhere

(Table 2).

Hyalomma spp abundance peaked twice during the year

(from February to June and from August to December),

with adults collected all year around except in two of

the four sites of area #4 (4 L and 4Z). During the high

abundance season, abundance estimates were highest in

Fig. 2 Spatio-temporal LCBD dynamics. The circle size is proportional to the LCBD value. Black rims indicate a significant deviation from the

homogeneous distribution (5 % risk; P < 0.05). The first sampling month was February 2012 in areas #1 and #2, April 2012 in area #3 and May

2012 in area #4
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area #3 (site 3 F: 7.7 ± 1.0 ticks/steer per month) and

lowest in area #4 (site 4 K: 4.3 ± 1.5 ticks/steer per

month) (Table 2).

A. variegatum adults were generally collected every-

where and all year round. Its abundance tended to peak

once in the most arid sites and twice in area #1 (Fig. 3),

Fig. 3 Seasonal variations in abundance. Three panels are shown for each monitored herd/site with the tick taxa listed as follows: Hyalomma spp

(H spp), A. variegatum (A v), Rhipicephalus spp (R spp), R. annulatus (R a), R. decoloratus (R d), R. microplus (R m) and R. geygyi (R g). The first panel

illustrates the variation in abundance during the 12 months of the survey (one rectangle for each month; the first sampling month being February

2012 in areas #1 and #2, April 2012 in area #3 and May 2012 in area #4), color-coded as follows: white, absence (empty rectangle) or sporadic (rectangle

with an “x”) distribution; light grey, low abundance; dark grey, medium abundance; and black, high abundance of the taxon (see Table 2). The second

panel refers to the correlations computed between each possible pair of tick taxa (same ranking order of the taxa). The third panel shows the

correlation between the temporal distribution of a taxon and the monthly rainfall (first column) or the monthly temperature (second column).

Significant correlations are in green (positive) or in red (negative)
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with the highest estimates in area #3 (site 3 F: 10.1 ± 2.0

ticks/steer per month) (Table 2).

Congruence in the seasonal variation patterns was

observed between A. variegatum and Rhipicephalus spp

and their burdens were significantly and positively cor-

related at seven of the eight sites were they were both

present (Fig. 3; combined P-value across herds: P = 8.

10-36). For these two species, abundance peaks were ob-

served at the beginning of the rainy season (i.e., in

April-May in area #1, May-June in area #2 and March-

April in area #3) and their abundance dynamics were

positively correlated with the rainfall variations (Fig. 3;

A. variegatum: five significantly positive correlations;

combined P-values across herds: P = 5. 10-11; Rhipice-

phalus spp: three significantly positive correlations;

combined P-value across herds: P = 3. 10-20). Similarly,

A. variegatum and Hyalomma spp abundance dynamics

were positively correlated (Fig. 3; three significantly

positive correlations; combined P-value: P = 9. 10-13).

Differently from these native ticks, R. microplus abun-

dance peaked a few months after the beginning of the

rainy season. This resulted in a significantly negative

correlation between A. variegatum and R. microplus

abundance dynamics in area #3 (Fig. 3; site 3 F). Con-

versely, significantly positive correlations were detected

between the abundance of the native Boophilus species

and that of R. microplus in area #2 (Fig. 3; site 2O), al-

though the small number of native ticks weakened the

statistical power of the analysis.

Effect of co-infestation patterns on adult tick abundances

and incidence rates

Besides seasonality, the host co-infestation pattern also

significantly structured the within-site abundance varia-

tions in 19 of the 33 (57 %) taxon-by-site combinations

defined by the four predominant taxa (Hyalomma spp,

A. variegatum, Rhipicephalus spp and R. microplus).

Significant effects of competitors were less frequently

observed on Hyalomma spp abundance than on other

tested taxa (two significant interactions out of seven

tested sites; 28 % vs ≥ 50 % for the other taxa). Specific-

ally, Hyalomma spp abundance at site 2G during the

medium and high abundance seasons was significantly

(P < 0.05) higher in the case of co-infestation by A. varie-

gatum and R. microplus than in the absence of co-

infestation (Fig. 4). A similar, but more pronounced ef-

fect of co-infestation by A. variegatum on Hyalomma

Table 2 Seasonal abundance estimates (number of ticks per

host and per month)

Site Taxon Seasonal abundance estimates

High Medium Low

1A A. variegatum 9.3 ± 1.9 2.6 ± 0.6 0.8 ± 0.2

Rhipicephalus spp 18 ± 1.0 6.2 ± 1.0 0.6 ± 0.4

R. microplus 16 ± 4.0 4.8 ± 0.7 0.5 ± 0.2

1 K A. variegatum 0.6 ± 0.2 0.2 ± 0.1 0.04 ± 0.02

Rhipicephalus spp 2.3 ± 0.4 0.7 ± 0.2 0.08 ± 0.08

R. annulatus 0.9 ± 0.2

R. decoloratus 0.8 ± 0.1

R. microplus 30 ± 5.5 18 ± 3.7

1O A. variegatum 4.0 ± 0.4 2.5 ± 0.6 0.3 ± 0.3

Rhipicephalus spp 1.4 ± 0.4 0.2 ± 0.07

R. annulatus 3.3 ± 0.2

R. microplus 15 ± 1.34 8 ± 1.0 1.5 ± 0.7

2G Hyalomma spp 2.9 ± 0.5 0.3 ± 0.2 0.07 ± 0.2

A. variegatum 8.3 ± 1.3 2.7 ± 0.5 0.5 ± 0.1

Rhipicephalus spp 2.6 ± 0.4

R. annulatus 6.2 ± 3.9 2.8 ± 0.5 0.2 ± 0.1

R. decoloratus 1.9 ± 0.6

R. microplus 9.2 ± 1.8 2.5 ± 1.0 0.4 ± 0.2

R. geigyi 1.0 ± 0.4

2O A. variegatum 1.5 ± 0.2 0.3 ± 0.1

Rhipicephalus spp 5.5 ± 1.0 1.2 ± 0.3 0.2 ± 0.1

R. annulatus 3.2 ± 1.6 1.3 ± 0.4 0.3 ± 0.1

R. decoloratus 2.3 ± 0.9 0.10 ± 0.05

R. microplus 39 ± 5.5 20 ± 2.5 4.9 ± 1.1

R. geigyi 0.5 ± 0.1

3 F Hyalomma spp 7.7 ± 1.0 4.6 ± 0.7 2.3 ± 0.8

A. variegatum 10 ± 2.0 2.8 ± 0.7 0.5 ± 0.1

Rhipicephalus spp 7.2 ± 1.2 0.9 ± 0.3 0.06 ± 0.02

R. microplus 34 ± 4.7 5.4 ± 0.8 1.2 ± 0.3

3 K Hyalomma spp 6.8 ± 0.8 3.0 ± 0.5 1.0 ± 0.2

A. variegatum 8.5 ± 1.4 0.5 ± 0.2

Rhipicephalus spp 4.2 ± 0.7 0.2 ± 0.03

R. microplus 98 ± 11 7.3 ± 1.2 1.5 ± 0.5

3O Hyalomma spp 3.5 ± 0.5 1.7 ± 0.2 0.5 ± 0.1

A. variegatum 6.3 ± 1.3 1.0 ± 0.4 0.3 ± 0.1

Rhipicephalus spp 15 ± 1.7 2.3 ± 0.6 1.2 ± 0.1

R. microplus 23 ± 4.2 4.4 ± 0.8 1.1 ± 0.2

4 F Hyalomma spp 3.0 ± 0.5 1.9 ± 0.4 0.7 ± 0.2

A. variegatum 3.0 ± 0.6

4 K Hyalomma spp 4.3 ± 1.5 1.5 ± 0.3 0.2 ± 0.1

A. variegatum 1.1 ± 0.4 0.1 ± 0.1

Table 2 Seasonal abundance estimates (number of ticks per

host and per month) (Continued)

4 L Hyalomma spp 1.5 ± 0.3 0.3 ± 0.1

4Z Hyalomma spp 0.4 ± 0.1

A. variegatum 0.1 ± 0.1
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spp abundance was observed at site 3O during the low

and high abundance season (Fig. 4).

Similarly, A. variegatum abundance significantly in-

creased on hosts that were co-infested by Hyalomma

spp at sites 2G, 3 K and 3 F (Fig. 5). At site 3 F, this ef-

fect was further increased when the host was simultan-

eously co-infected with Rhipicephalus spp and

Hyalomma spp (Fig. 5). At three other sites (1A, 1 K and

2O), host co-infestation by Rhipicephalus spp also had a

season-dependent, positive effect on A. variegatum

abundance (Fig. 5), with some exceptions. Specifically,

Rhipicephalus spp co-infestation had no significant ef-

fect at sites 1A and 2O in the medium abundance

seasons (Fig. 5).

Fig. 4 Significant impacts of the host co-infestation pattern in Hyalomma spp abundance. The minimal models (i.e., involving factors with

significant effects; P < 0.05) are indicated: sh refers to the seasonal abundance variations of Hyalomma spp while A and Rm describe the presence or

absence of co-infestation by A. variegatum and R. microplus, respectively. The histograms refer to the observed distributions. The indications ‘alone’, ‘+X’

or ‘+ both’ refer to the absence of competitors on the individual-host, or the presence of one or both co-infesting taxa, respectively

Fig. 5 Significant impacts of the host co-infestation pattern in A. variegatum abundance. The minimal models (i.e., involving factors with significant

effects) are indicated: sa refers to the seasonal abundance variations of A. variegatum while H and R describe the presence or absence of co-infestation

by Hyalomma spp and Rhipicephalus spp, respectively. The histograms refer to the observed distributions (see Fig. 4 legend)
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Analysis of the co-infestation effect on Rhipicephalus

spp abundance indicated that the presence of A. variega-

tum and/or R. microplus increased Rhipicephalus spp

abundance in five of the eight herds where it was found

(sites 1A, 1 K, 2G, 3 F and 3O) (Fig. 6). Conversely, at

2G, the season-dependent effect of co-infestation by R.

microplus resulted in a decrease of Rhipicephalus spp

abundance in the low season (from 0.2 to 0.1 tick/steer

per month) and in an increase in the high season (from

2 to 5.5 ticks/steer per month; Fig. 6).

Finally, R. microplus abundance significantly changed

with co-infestation by native tick taxa in six out of eight

sites (Fig. 7). Co-infestation by A. variegatum signifi-

cantly increased R. microplus abundance at sites 1O and

2O in all seasons and at site 3 F in the medium abun-

dance season (Fig. 7). Conversely, at site 3 K, A. variega-

tum co-infestation decreased R. microplus monthly

abundance from 62 to 5.1 ticks/steer in the low abun-

dance season (Fig. 7). Three other native taxa signifi-

cantly (P < 0.05) increased R. microplus abundance. At

site 1A, co-infestation by Rhipicephalus spp increased R.

microplus abundance in all abundance seasons (Fig. 7).

At site 1 K, co-infestation by R. annulatus and/or R.

decoloratus increased R. microplus abundance during the

low and high abundance seasons (Fig. 7).

The minimal models retained to explain the within-

areas of the tick incidence rates involve the additive and/

or interactive significant effects of sites, seasonal pattern

of abundance and co-infestation patterns. The minimal

models retained for A. variegatum in area #4 and Hya-

lomma spp in areas # 3 and 4 were not considered since

they explained less than 10 % of the variation in the tick

incidence rates. The ten others are presented with the

observed variations in incidence rates in Figs. 8 and 9. In

eight cases, the incidence rates of the studied taxon sig-

nificantly increased with its seasonal abundance levels

(Figs. 8 and 9). Besides seasonality, the incidence rate of

Hyalomma spp significantly increased upon co-

infestation by three other taxa in site 2G. Similarly, the

incidence rate of A. variegatum significantly increased

upon co-infestation by Rhipicephalus spp and R. micro-

plus in area #1 and #2 and upon co-infestation by Hya-

lomma spp in area #3 (Fig. 8) Co-infestation by A.

variegatum and/or R. microplus increased Rhipicephalus

spp incidence rate also in area #1 (sites 1A, 1 K and 1O)

in the high abundance season, and in area #2 in all three

abundance seasons (Fig. 9).

R. microplus incidence rates also significantly (P <

0.05) increased with co-infestation by Rhipicephalus spp

in area #1, by R. decoloratus in area #2 and by both A.

Fig. 6 Significant impacts of the host co-infestation pattern in Rhipicephalus spp abundance. The minimal models (i.e., involving factors with

significant effects) are indicated: sR refers to the seasonal abundance variations of A. variegatum while A, H and Rm describe the presence or

absence of co-infestation by A. variegatum, Hyalomma spp and R. microplus, respectively. The histograms refer to the observed distributions

(see Fig. 4 legend)
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variegatum and Hyalomma spp in area #3 (Fig. 9). Such

effect was particularly visible at site 2O, where R. micro-

plus incidence rate reached 100 % among hosts already

infested by R. decoloratus, irrespective of the season

(Fig. 9). R. microplus incidence rates of 100 % (high

abundance season) were also observed in the three sites

of area #3 only in hosts co-infested by both A. variega-

tum and Hyalomma spp (Fig. 9).

Impact of co-infestation patterns on tick distribution at

attachment-sites

Analysis of the effect of co-infestation by the four pre-

dominant taxa (Hyalomma spp, A. variegatum, Rhipice-

phalus spp or R. microplus) indicated that the presence

of competitors often affected the distribution of other

ticks on the five host body parts considered (head, legs,

flanks, perineum and tail) (see for details the distribution

in P1-values in Additional file 1). Specifically, co-

infestation by Hyalomma spp significantly affected the

distribution of A. variegatum, R. microplus and R. geigyi

microplus (in all cases, combined P-value across herds <

0.05). Co-infestation by A. variegatum significantly af-

fected the distribution of Rhipicephalus spp, R. annula-

tus, R. decoloratus and R. microplus (in all cases,

combined P-value across herds < 0.05). Co-infestation by

Rhipicephalus spp significantly affected the distribution

of all other taxa (in all cases, combined P-value across

herds < 0.02) and co-infestation by R. microplus signifi-

cantly affected the distribution of all other taxa (com-

bined P-value across herds < 0.05), but for Rhipicephalus

spp (combined P-value across herds P = 1).

However, such effects rarely influenced the probability

of a taxon to reach its favorite attachment sites (see the

distribution in P2-values in Additional file 1). Only R.

microplus showed a significant decrease in the probabil-

ity of reaching its favorite attachment sites across the

monitored herds upon host co-infestation by Hyalomma

spp or A. variegatum (in both cases, combined P-value

across herds < 0.05). Similarly, co-infestation by Rhipice-

phalus spp decreased the probability of R. microplus and

R. geigyi to reach their favorite attachment sites (in both

cases, combined P-value across herds P < 0.05), whereas

co-infestation by R. microplus decreased the probability

of R. annulatus to reach its favorite attachment sites

(combined P-value across herds P < 0.05).

Discussion

This study investigated the determinants in the commu-

nity structure of ticks infesting cattle in Benin and Bur-

kina Faso. The tick community compositions varied

Fig. 7 Significant impacts of the host co-infestation pattern in R. microplus abundance. The minimal models (i.e., involving factors with significant

effects) are indicated: sRm refers to the seasonal abundance variations of A. variegatum while A, R, Ra and Rd describe the presence or absence of

co-infestation by A. variegatum, Rhipicephalus spp, R. annulatus and R. decoloratus, respectively. The histograms refer to the observed distributions

(see Fig. 4 legend)
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significantly both within and among areas and the lowest

diversity was observed in Central Burkina Faso (area #4)

(Table 1; Fig. 2). Climatic differences are likely to explain

the between-areas variations but not the within-areas

variations, given that the variations in the mean rainfall

and temperature explained only 3 % of the spatio-

temporal LCBD variation. The alternation of dry and

rainy seasons represents nevertheless a factor structuring

the significant increases in LCBD punctually observed

since they occurred in the early rainy season in Benin

and South-West Burkina Faso (April- June), in the late

rainy season in South Benin (September) and during the

early dry season (December) in North Benin (Fig. 2).

Furthermore, tick abundance tended to peak during the

rainy seasons, although some delay was observed for the

Boophilus species relatively to the other taxa. Such delay

is related to the life cycle specificity of this one-host tick

species. Eggs and unfed larvae are the only stages of the

Boophilus species living away from the host. Conversely,

the other taxa are two- and three-host ticks and not only

the eggs and freshly hatched larvae but also other stages

can leave the host after complete blood-feeding, thus fa-

cing the risk of desiccation in the local habitat [16].

Whatever their life cycle and status (native or invasive

species), two infestation dynamic features were common

to all tick taxa. First, their infestation dynamics were

determined not only by abiotic parameters (seasonal pat-

terns, Table 1), but also by inter-species interactions

among cattle ticks (Figs. 4, 5, 6 and 7). Second, positive

relationships were observed between their local abun-

dance and incidence rate (Figs. 8 and 9); in other words,

the tick probability to infect a new host increases with

its local mean abundance. This reminds the positive re-

lationships between local mean abundance and preva-

lence previously reported for fleas [36], nematodes [37]

or monogeneans [38].

In Central Burkina Faso (area #4), A. variegatum and

Hyalomma spp were the only adult ticks collected. Dif-

ferently from what observed in other taxon-by-climatic

area combinations, their seasonal abundance variation

was not affected by the host co-infestation pattern in

this area. In a previous survey performed in 1996 in

three cattle herds from Central Burkina Faso, the

monthly abundances of H. marginatum rufipes (the only

Hyalomma species observed) and A. variegatum were

estimated to be 7.21 and 7.50 adult ticks/steer (Table 3)

[8]. Such estimates are higher than those of the present

survey (1.22 and 0.73 adult ticks/steer per month)

(Table 3), indicating a decrease in the abundance of na-

tive ticks during the last decades in an area not colo-

nized by R. microplus. Such a decrease might be the

result of global warming in this Sahelian region located

Fig. 8 Within-area variations in incidence rates for A. variegatum and Hyalomma spp. The minimal models (i.e., involving factors with significant

effects) are indicated. The histograms refer to the observed distribution in incidence rates among sites, seasons and/or co-infestation patterns
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along the limit of the geographical distribution of these

species [16]. Moreover, the recycling for tick control of

the chemicals designed for agricultural pest control [6]

might also have partly contributed to such a decrease.

Although absent from Central Burkina Faso (area #4),

R. microplus represented 70 % of all the adult ticks col-

lected in this survey. This confirms the invasion success

of R. microplus in West Africa [17–25] and further sup-

ports the hypothesis that the Sahelian climate is not suit-

able to R. microplus [33], although this species was

detected along the Cameroon-Nigeria border [22, 23].

Moreover, the high R. microplus abundance in North

Benin (area #2) suggests that the presumed ecological

niche of this species in West Africa [39] should be re-

evaluated. The analysis of the tick attachment sites on

the host indicated that R. microplus success to reach its

favorite attachment sites significantly decreased upon

co-infestation by Hyalomma spp and Rhipicephalus spp.

Conversely, co-infestation by R. microplus did not affect

the success of native tick species to attach on their fa-

vorite sites (but for R. annulatus) (Additional file 1). As

the favorite attachment sites are likely to be the result of

evolution, these results suggest that the native tick spe-

cies impose higher competitive constraints on the inva-

sive species than the invasive species on the native ones.

Experimental manipulation of host co-infestation and

tick fertility monitoring would be required to settle this

point. However, the competition exerted by R. microplus

on native tick species can be assessed by comparing the

present abundance estimates with those obtained before

R. microplus arrival [7–9]. The surveys performed in

North Benin in the early 2000s led to different estimates

in the adult abundance of the native tick taxa than the

present study (Table 3). Interestingly, R. decoloratus was

not detected in these earlier studies, while our survey

found that it was the predominant native species of the

Boophilus sub-genus. Moreover, the abundance of R. gei-

gyi adults has decreased since the early 2000s, whereas

the abundance of R. annulatus adults has increased

(Table 3). Overall, the abundance of adult ticks from the

native Boophilus species (R. decoloratus, R. geygyi and R.

annulatus) has increased from 2003 to 2013 (Table 3).

This does not support the hypothesis that R. microplus

is replacing the native sister-species. The same

Fig. 9 Structure of the within-area variations in incidence rates for Rhipicephalus spp and R. microplus. The minimal models (i.e., involving factors

with significant effects) are indicated. The histograms refer to the observed distribution in incidence rates among sites, seasons and/or

co-infestation patterns
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conclusion is reached when considering all native tick

taxa (Table 3). The composition of the tick communities

has changed over the years; however these changes do

not translate in an overall decrease in the abundance of

native taxa. Therefore, rather than displacing the native

tick taxa and the associated veterinary health concerns,

the successful demographic increase of R. microplus in

West Africa has added new tick-associated risks for cat-

tle health.

Aggregated distributions of tick taxa among herds

were recurrently observed in Benin and South-West

Burkina Faso (areas #1 to 3) because the local abun-

dances and/or incidence rates of each taxon increased

with the co-infestation by other taxa. This is a character-

istic shared by several mammalian ectoparasite commu-

nities [39–43]. As genetic bases for this trait exist in

cattle, this may open the road to the selection of breeds

with lower susceptibility to tick infestation [17]. This

feature may also facilitate the communication to local

stakeholders regarding tick control. Indeed, the eco-

nomic advantage of focusing tick control programs on

animals that are infested above a threshold burden

might counter-balance the average loss in animal growth

and milk yield in places where cattle production rely

mainly on low input systems and tick burden remains

moderate, such as in West Africa. It remains to deter-

mine whether the aggregated distribution of tick taxa

also affects the distribution of the tick-borne pathogens

circulating among West African cattle. Variable patterns

have been previously reported. Competitive exclusion

among tick-borne pathogens was observed in Algerian

cattle [44]. Conversely, aggregative distribution seems to

be the rule in South Africa for tick-borne pathogens

monitored in mammalian blood samples or in the tick

salivary glands [45, 46].

Conclusion

This study is the first attempt to quantify the impact of

co-infestation patterns among native and invasive tick

species. It shows that these patterns are key factors in

the determination of the infestation dynamics of each

tick taxon in West African cattle. It also shows that the

R. microplus-related risks for cattle health in West Africa

are not replacing but are adding to those caused by na-

tive tick taxa.

Additional file

Additional file 1: Effect of the co-infestation patterns on the

distribution of tick attachment sites. (XLS 98 kb)
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