
Community Trend Outlier Detection using Soft

Temporal Pattern Mining

Manish Gupta1, Jing Gao2, Yizhou Sun1, and Jiawei Han1

1 UIUC, IL ({gupta58, sun22, hanj}@illinois.edu)
2 SUNY, Buffalo, NY (jing@buffalo.edu)

Abstract. Numerous applications, such as bank transactions, road traf-
fic, and news feeds, generate temporal datasets, in which data evolves
continuously. To understand the temporal behavior and characteristics
of the dataset and its elements, we need effective tools that can capture
evolution of the objects. In this paper, we propose a novel and impor-
tant problem in evolution behavior discovery. Given a series of snapshots
of a temporal dataset, each of which consists of evolving communities,
our goal is to find objects which evolve in a dramatically different way
compared with the other community members. We define such objects
as community trend outliers. It is a challenging problem as evolutionary
patterns are hidden deeply in noisy evolving datasets and thus it is dif-
ficult to distinguish anomalous objects from normal ones. We propose
an effective two-step procedure to detect community trend outliers. We
first model the normal evolutionary behavior of communities across time
using soft patterns discovered from the dataset. In the second step, we
propose effective measures to evaluate chances of an object deviating
from the normal evolutionary patterns. Experimental results on both
synthetic and real datasets show that the proposed approach is highly
effective in discovering interesting community trend outliers.

1 Introduction

A large number of applications generate temporal datasets. For example, in our
everyday life, various kinds of records like credit, personnel, financial, judicial,
medical, etc. are all temporal. Given a series of snapshots of a temporal dataset,
analysts often perform community detection for every snapshot with the goal
of determining the intrinsic grouping of objects in an unsupervised manner. By
analyzing a series of snapshots, we can observe that these communities evolve in
a variety of ways – communities contract, expand, merge, split, appear, vanish,
or re-appear after a time period. Most of the objects within a community follow
similar evolution trends which define the evolution trends of the community.
However, evolution behavior of certain objects is quite different from that of
their respective communities. Our goal is to detect such anomalous objects as
Community Trend Outliers (or CTOutliers) given community distributions of
each object for a series of snapshots. In the following, we present CTOutlier
examples and discuss importance of identifying such outliers in real applications.



2

CTOutlier Examples
Consider the co-authorship network for the four areas in CS: data min-

ing (DM), information retrieval (IR), databases (DB) and machine learning
(ML). Every author can be associated with a soft distribution of their be-
longingness to each of these areas. One such sequence of distributions could
be ⟨1:(DB:1 , DM:0) , 2:(DB:0.8 , DM:0.2) , 3:(DB:0.5 , DM:0.5) , 4:(DB:0.1 ,

DM:0.9)⟩. Such a pattern represents the trend of a part of DB researchers
gradually moving into the DM community. While most of the authors follow
one of such popular patterns of evolution with respect to their belongingness
distributions across different snapshots, evolution of the distributions associated
with some of the other authors is very different. Such authors can be considered
as CTOutliers.

As another example, consider all the employees working for a company. For
each employee, one can record the amount of time spent in Office work, House-
hold work, Watching TV, Recreation and Eating, for a month. Across different
days, one can observe a trend where a person spends most of his time in office
work on weekdays and in household work on weekends. Similarly, there could
be different patterns for night workers. However, there could be a very few em-
ployees who follow different schedule for a few days (e.g., if an employee is sick,
he might spend a lot of his time at home even on weekdays). In that case, that
employee can be considered as a CTOutlier.

Besides these examples, interesting examples of CTOutliers can be commonly
observed in real-life scenarios. A city with a very different sequence of land
use proportion (agriculture, residential, commercial, open space) changes across
time, compared to change patterns for other cities can be a CTOutlier. E.g., most
of the cities show an increase in residential and commercial areas and reduction in
agriculture areas over time. However, some cities may get devastated by natural
calamities disturbing the land use drastically. Applications where CTOutliers
could be useful depends on the specific domain. Outlier detection may be useful
to explain future behavior of outlier sequences. E.g., one may analyze the diet
proportion of carbohydrates, proteins and fats for a city across time. A city
showing trends of increasing fats proportion in diet, may have a population with
larger risk of heart attacks. CTOutlier detection may be used to trigger action
in monitoring systems. E.g., in a chemical process, one may expect to observe
a certain series of distribution of elements across time. Unexpected deviations
from such a series, may be used to trigger a corrective action.
Brief Overview of CTOutlier Detection

We study the problem of detecting CTOutliers given community distribu-
tions of each object for a series of snapshots of a temporal dataset. Input for our
problem thus consists of a soft sequence (i.e., a sequence of community distribu-
tions across different timestamps) associated with each object. For example, in
DBLP, an author has a sequence of research-area distributions across years. The
number of communities could change over time, so a soft sequence can consist
of distributions of different sizes at different timestamps.

This problem is quite different from trajectory outlier detection [8,14,19]
because: (1) In this problem, soft sequences consist of distributions obtained



3

by community detection rather than locations in trajectory outlier detection.
(2) Soft patterns could be gapped and multi-level while trajectories are usually
continuous. (3) Unlike trajectory based systems, we cannot rely on additional
features such as speed or direction of motion of objects. Moreover, existing ef-
forts on detecting outliers in evolving datasets [4,15] cannot detect temporal
community trend based outliers because they do not involve any notion of com-
munities. In the first step of discovering normal trends, probabilistic sequential
pattern mining methods [9,21] can be used to extract temporal patterns, however
the patterns detected by these methods are “hard patterns” which are incapable
of capturing subtle trends, as discussed in Sec. 2.

We propose to tackle this problem using a two-step approach: pattern ex-
traction and outlier detection. In the pattern extraction phase, we first perform
clustering of soft sequences for individual snapshots. The cluster centroids ob-
tained for each timestamp represent the length-1 frequent soft patterns for that
timestamp. Support of a length-1 pattern (cluster centroid) is defined as the sum
of a function of the distance between a point (sequence) and cluster centroid,
over all points. The Apriori property [5] is then exploited to obtain frequent
soft patterns of length ≥ 2. After obtaining the frequent soft patterns, outlier
detection is performed. A sequence is considered a CTOutlier if it deviates a lot
from its best matching pattern for many combinations of timestamps.

In summary, we make the following contributions in this paper.

– We introduce the notion of Community Trend Outliers CTOutliers. Such a
definition tightly integrates the notion of deviations with respect to both the
temporal and community dimensions.

– The proposed integrated framework consists of two novel stages: efficient
discovery of a novel kind of patterns called soft patterns, and analysis of
such patterns using a new outlier detection algorithm.

– We show interesting and meaningful outliers detected from multiple real and
synthetic datasets.

Our paper is organized as follows. CTOutliers are defined as objects that
deviate significantly from a novel kind of patterns. Thus, pattern discovery is
the basis of the outlier detection step. Hence, first we introduce the notion of
soft patterns and develop our method to extract temporal community trends
in the form of frequent soft patterns in Sec. 2. Then, in Sec. 3, we discuss
the algorithm for CTOutlier detection which exploits the extracted patterns
to compute outlier scores. We discuss the datasets and results with detailed
insights in Sec. 4. Finally, related work and conclusions are presented in Sec. 5
and 6 respectively.

2 Temporal Trends Extraction

In this section, we discuss how to extract soft patterns as temporal trends,
which serve as the basis of community trend outlier detection in Sec. 3. We first
introduce important definitions in Sec. 2.1. Next, we will carefully define support



4

for such soft patterns and discuss how to extract them from the soft sequence
data in Sec. 2.2 and Sec. 2.3.

2.1 Problem Formulation

Let us begin with a few definitions. We will use the toy dataset shown in Fig. 1
as a running example. The toy dataset has 15 objects which consist of 4 patterns
(▲,◀,▼,▶) and two outliers (∎,☀) across 3 timestamps. There are 3 (A,B,C),
3 (D,E,F ) and 4 (G,H, I, J) clusters for the 3 timestamps respectively.

Soft Sequence: A soft sequence for object o is denoted by So = ⟨S1o , S2o ,

. . . , STo
⟩ where Sto denotes the community belongingness probability distribu-

tion for object o at time t. In Fig. 1, for the point marked with a → across
all 3 timestamps, the soft sequence is ⟨1: (A:0.1 , B:0.8 , C:0.1) , 2: (D:0.07 ,

E:0.08 , F:0.85) , 3: (G:0.08 , H:0.8 , I:0.08 , J:0.04)⟩. Soft sequences for all ob-
jects are defined on the same set of T timestamps; all sequences are synchro-
nized in time. For a particular timestamp, the data can be represented as

St = [St1 , St2 , . . . , StN ]T .
Soft Pattern: A soft pattern p = ⟨P1p , P2p , . . . , PTp

⟩ is a sequence of probabil-
ity distributions across Lp (possibly gapped) out of T timestamps, with support
≥min sup. Here, Ptp denotes the community (probability) distribution at times-
tamp t. A soft pattern p defined over a set τp of timestamps is a representative
of a set of sequences (similar to each other for timestamps ∈ τp) grouped to-
gether by clustering over individual snapshots. Support of p is naturally defined
proportional to the number of sequences it represents (Sec. 2.2 and 2.3). E.g.,
the pattern p = ⟨1:(DB:1 , DM:0) , 2:(DB:0.5 , XML:0.3 , DM:0.2) , 4:(DB:0.1 ,

DM:0.9)⟩ is defined over 3 timestamps 1, 2 and 4 and so Lp=3. In Fig. 1,

⟨1:(A:0.2 , B:0.2 , C:0.6) , 2:(D:0.9 , E:0.05 , F:0.05) , 3:(G:0.9 , H:0.03 , I:0.03 ,

J:0.04)⟩ is a soft pattern covering the ▶ points.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

A

B

C

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

D

E

F

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

G

H

I

J

Timestamp 1 Timestamp 2 Timestamp 3

Fig. 1. Three Snapshots of a Toy Dataset



5

CTOutlier: An object o is a CTOutlier if its outlier score ranks within the
top-k. The outlier score of an object o captures the degree to which it deviates
from the best matching soft pattern across different combinations of timestamps
(details in Sec. 3). E.g., outliers ☀ and ∎ deviate from the ▶ and ◀ patterns
for the first and the third timestamps respectively.

The CTOutlier detection problem can then be specified as follows.

Input: Soft sequences (each of length T ) for N objects, denoted by matrix S.

Output: Set of CTOutlier objects.

Before presenting the soft pattern discovery problem and the methodology
for their efficient discovery, we discuss the reasons why we use soft rather than
hard patterns to represent temporal trends.

Why use Soft Patterns?

Given soft sequence data, one can use probabilistic sequential pattern min-
ing [9,21] to discover hard sequential patterns. In the DBLP example, a hard
pattern can be ⟨1:DB , 2:DB , 3:DM , 4:DM⟩, which expresses major transitions
for an author changing his research area from DB to DM. However, most trends
in temporal datasets are subtle and thus cannot be expressed using hard pat-
terns. E.g., in Fig. 1, evolution of ▶ objects can be characterized by hard pattern⟨1:C , 2:D , 3:G⟩. However, at the first timestamp, ▶ objects lie on the bound-
ary of cluster C and are much different from the core cluster-C ▼ objects. Such
subtle difference cannot be encoded in hard patterns.

Different from hard patterns, soft patterns contain a richer set of information.
Consider two soft patterns which are not related to such drastic changes: p1 =⟨1:(DM:0.8 , IR:0.2) , 2:(DM:0.6 , IR:0.4)⟩ and p2 = ⟨1:(DM:0.48 , DB:0.42 , IR:0.1) ,

2:(DM:1)⟩ both of which map to the same hard pattern ⟨1:DM , 2:DM⟩. This
is not reasonable because clearly the two patterns represent two different se-
mantic trends. On the other hand, let ⟨1:DB , 2:DM⟩ denote a hard pattern,
from which we cannot identify how the communities indeed evolve. The tem-
poral trend could be that ⟨1:(DB:0.5 , Sys:0.3 , Arch:0.2) , 2:(DM:0.5 , DB:0.3 ,

Sys:0.2)⟩ is frequent but ⟨1:(DB:0.9 , Sys:0.1) , 2:(DM:0.9 , DB:0.1)⟩ is not fre-
quently observed. Therefore, soft patterns are more desirable because they can
express that core-DB authors did not move to DM, although some non-core-
DB researchers started showing interest in DM. In Fig. 1, hard pattern based
detection will miss ☀ outlier, while soft pattern based detection will correctly
identify it. To prevent such loss of information when using hard patterns, we
propose to model temporal trends as soft patterns.

Soft Pattern Discovery Problem

The soft pattern discovery problem can be summarized as follows.

Input: Soft sequences (each of length T ) for N objects, denoted by matrix S.

Output: Set P of frequent soft patterns with support ≥min sup.

Next, we will carefully define support for such soft patterns and discuss how
to extract them from the soft sequence data. We will first discuss how to find
length-1 patterns, and then discuss how to find patterns with length ≥ 2.



6

2.2 Extraction of Length-1 Soft Patterns

The task of discovering length-1 soft patterns for a particular timestamp is
to find representative distributions from a space of N probability distributions
where N = #objects. We solve this problem by performing clustering (we use
XMeans [22]) on distributions. The cluster centroids for such clusters are a rep-
resentative of all the points within the cluster. Thus, a cluster centroid can
be used to uniquely represent a length-1 soft pattern. In the example shown
in Fig. 1, for the first timestamp, XMeans discovers 4 clusters with centroids(A ∶ 0.85,B ∶ 0.05,C ∶ 0.1), (A ∶ 0.03,B ∶ 0.9,C ∶ 0.07), (A ∶ 0.03,B ∶ 0.02,C ∶ 0.95)
and (A ∶ 0.2,B ∶ 0.2,C ∶ 0.6). Each of these cluster centroids represents a length-1
soft pattern (▲, ◀, ▼, ▶ resp).

Defining Support for Length-1 Soft Patterns

Traditionally, support for a sequential pattern is defined as the number of
sequences which contain that pattern. Similarly, we can define support for a
soft pattern (cluster centroid) Ptp in terms of the degree to which the sequences
(points) belong to the corresponding cluster (Eq. 1). Let Dist(Ptp , Sto) be some
distance measure (we use Euclidean distance) between the sequence distribution
for object o at time t and the cluster centroid for pattern p at time t. Let
maxDist(Ptp) be the maximum distance of any point in the dataset from the
centroid Ptp . Then the support for the length-1 pattern p can be expressed as
follows.

sup(Ptp) =
N

∑
o=1

[1 − Dist(Ptp , Sto)
maxDist(Ptp)] (1)

From Eq. 1, one can see that an object which is closer to the cluster centroid
contributes more to the support of a pattern (corresponding to that cluster
centroid) compared to objects far away from the cluster centroid. E.g., at the
first timestamp, cluster centroid (A ∶ 0.85,B ∶ 0.05,C ∶ 0.1) gets good support
from all the ▲ points because they are very close to it, but gets small amount
of support from other points, based on their distance from it. Patterns with
support ≥min sup are included in the set of frequent patterns P .

A clustering algorithm may break a semantic cluster into multiple sub-
clusters. Hence, some of the resulting clusters may be very small and so if we
define support for a cluster centroid based on just the points within the cluster,
we might lose some important patterns for lack of support. Hence, we define sup-
port for a cluster centroid using contributions from all the points in the dataset.
To prevent the impact of distance based outliers (when computing maxDist),
it might be beneficial to remove such outliers from each snapshot, as a prepro-
cessing step.

2.3 Extraction of Longer Soft Patterns

Here we will discuss how to define support for longer patterns and compute them
efficiently.

Defining Support for Longer Soft Patterns



7

The support by an object o for a pattern p is defined in terms of its support
with respect to each of the timestamps in τp as shown below.

sup(p) = N

∑
o=1
∏
t∈τp

[1 − Dist(Ptp , Sto)
maxDist(Ptp)] (2)

Intuitively, an object for which the community distribution lies close to the
cluster centroids of the pattern across a lot of timestamps will have higher sup-
port contribution for the pattern compared to objects which lie far away from
the pattern’s cluster centroids. As an example, consider the pattern ⟨1:(A:0.85 ,
B:0.05 , C:0.1) , 2:(D:0.1 , E:0.2 , F:0.7) , 3:(G:0.01 , H:0.02 , I:0.03 , J:0.94)⟩.
The ▲ points contribute maximum support to this pattern because they lie very
close to this pattern across all timestamps. Patterns with support ≥min sup are
included in the set P of frequent patterns.

Apriori Property

From Eqs. 1 and 2, it is easy to see that a soft pattern cannot be frequent
unless all its sub-patterns are also frequent. Thus, the Apriori property [5] holds.
This means that longer frequent soft patterns can be discovered by considering
only those candidate patterns which are obtained from shorter frequent patterns.
This makes the exploration of the sequence pattern space much more efficient.

Candidate Generation

According to Apriori property, candidate patterns of length ≥ 2 can be ob-
tained by concatenating shorter frequent patterns. For each ordered pair (p1, p2)
where p1 and p2 are two length-l frequent patterns, we create a length-(l + 1)
candidate pattern if (1) p1 excluding the first timestamp, matches exactly with
p2 excluding the last timestamp; and (2) the first timestamp in p1 is earlier
than the last timestamp in p2. A candidate length-(l + 1) pattern is generated
by concatenating p1 with the last element of p2.

3 Community Trend Outlier Detection

In this section, we will discuss how to exploit set P of frequent soft patterns
obtained after pattern extraction (Sec. 2) to assign an outlier score to each
sequence in the dataset. When capturing evolutionary trends, length-1 patterns
are not meaningful, as they are defined on single snapshots. So, we remove them
from set P . Although the input sequences are all of length T , each pattern could
be of any length ≤ T and could be gapped. While a sequence represents a point
distribution at each timestamp, a pattern represents a cluster centroid for each
timestamp. Each cluster is associated with a support, and there might be other
statistics to describe the cluster, such as maximum distance of any point from
the centroid and average distance of all points within cluster from the centroid.
Intuitively, patterns consisting of compact clusters (clusters with low average
distances) with high support are the most important for outlier detection.

Outlier Detection Problem

Input: Set P of frequent soft patterns with support ≥min sup.

Output: Set of CTOutlier objects.



8

3.1 Pattern Configurations and Best Matching Pattern

A non-outlier object may follow only one frequent pattern while deviating from
all other patterns. Hence, it is incorrect to compute outlier score for an object by
adding up its outlierness with respect to each pattern, weighted by the pattern
support. Also, it is not meaningful to compute outlier score just based on the
best matching pattern. The reason is that often times, even outlier sequences
will follow some length-2 pattern; but such a short pattern does not cover the
entire length of the sequence. Therefore, we propose to analyze the outlierness
of a sequence with respect to its different projections by dividing the pattern
space into different configurations.

Configuration: A configuration c is simply a set of timestamps with size ≥ 2.
Let Pc denote the set of patterns corresponding to the configuration c.

Finding Best Matching Pattern

A normal sequence generally follows a particular trend (frequent pattern)
within every configuration. A sequence may have a very low match with most
patterns but if it matches completely with even one frequent pattern, intuitively
it is not an outlier. (Here we do not consider the situation of group outliers,
where all sequences following a very different pattern could be called outlier.)
Hence, we aim at finding the pattern which matches the sequence the most for
that configuration. Note that patterns corresponding to big loose clusters match
a large number of sequences, and thus we should somehow penalize such patterns
over those containing compact clusters.

Based on the principles discussed above, we design the following matching
rules. Let a pattern p be divided into two parts φpo and θpo. φpo (θpo) consists of
the set of timestamps where sequence for object o and pattern p match (do not
match) each other. E.g., considering pattern p =▶ and sequence o =☀, θpo = {1}
and φpo = {2,3}.
Match Score: We define the match score between an object o and a pattern p

as follows.

match(p, o) = ∑
t∈φpo

sup(Ptp) × sup(Ptp , Sto)
avgDist(Ptp) (3)

where avgDist(Ptp) is the average distance between the objects within the clus-

ter and the cluster centroid Ptp , and sup(Ptp , Sto) = 1 − Dist(Ptp ,Sto)

maxDist(Ptp)
. This defi-

nition is reasonable because the score is higher if (1) the object and the pattern
match for more timestamps; (2) pattern has higher support; (3) pattern contains
compact clusters; and (4) object lies closer to the cluster centroid across various
timestamps.

Best Matching Pattern: The best matching pattern bmpco is the pattern p ∈
Pc with the maximum match score match(p, o). In the toy example, the best
matching pattern for sequence☀ with respect to configuration {1,2,3} is ▶.



9

3.2 Outlier Score Definition

Given a sequence, we first find the best matching pattern for every configuration
and then define the outlier score as the sum of the scores of the sequence with
respect to each configuration. The outlier score of object o is thus expressed as:

outlierScore(o) = ∣C∣∑
c=1

outlierScore(c, o) = ∣C∣∑
c=1

outlierScore(bmpco, o) (4)

where bmpco is the best matching pattern for configuration c and object o, and
C is the set of all configurations.

Let p̃ denote the best matching pattern bmpco in short. Then we can express

the mismatch between p̃ and o by ∑t∈θp̃o sup(Ptp̃)× Dist(Ptp̃
,Sto)

maxDist(Ptp̃
)
. Thus, mismatch

between the pattern and the soft sequence for o is simply the timestamp-wise
mismatch weighted by the support of pattern at that timestamp. Finally, the
importance of the pattern is captured by multiplying this mismatch score by the
overall support of the pattern. As can be seen, outlierScore(p̃, o) as expressed
in Eq. 5 takes into account the support of the pattern, number of mismatching
timestamps, and the degree of mismatch.

outlierScore(bmpco, o) = outlierScore(p̃, o) = sup(p̃) × ∑
t∈θp̃o

sup(Ptp̃
) ×

Dist(Ptp̃
, Sto)

maxDist(Ptp̃
)
(5)

Time Complexity Analysis
Finding best matching patterns for all sequences takes O(N ∣P ∣TK) time

where ∣P ∣ is the number of patterns. Number of configurations ∣C ∣ = 2T − T − 1.
So, outlier score computation using the best matching patterns takes O(N(2T −
T −1)KT ) time where K is the maximum number of clusters at any timestamp.
Thus, our outlier detection method is O(NTK(2T − T − 1 + ∣P ∣)) in time com-
plexity, i.e., linear in the number of objects. Generally, for real datasets, T is
not very large and so the complexity is acceptable. For larger T , one may use
sampling from the set of all possible configurations, rather than using all con-
figurations. Our results (Sec. 4) show that considering only length-2 ungapped
configurations can also provide reasonable accuracy.

Note that we did not include the pattern generation time in the time com-
plexity analysis. This is because it is difficult to analyze time complexity of al-
gorithms using Apriori pruning. However it has been shown earlier that Apriori
techniques are quite efficient for pattern generation [5].

3.3 Summing Up: CTOutlier Detection Algorithm (CTODA)

The proposed CTOutlier Detection Algorithm (Algo. 1) can be summarized as
follows. Given a dataset with N soft sequences each defined over T timestamps,
soft patterns are first discovered from Steps 1 to 12 and then outlier scores are
computed using Steps 13 to 20.

Next, we discuss two important practical issues in implementing the proposed
community trend outlier detection algorithm.
Effect of Varying min sup



10

Algorithm 1 CTOutlier Detection Algorithm (CTODA)
Input: (1) Soft sequences for N objects and T timestamps (represented using matrix S). (2) Mini-

mum Support: min sup.
Output: Outlier Score for each object.

1: Set of frequent patterns P ← φ ▷ Pattern Extraction
2: Let Ll be the set of length-l frequent patterns. {Ll}

T
l=1 ← φ.

3: Let Cl be the set of length-l candidate patterns. {Cl}
T
l=1 ← φ.

4: for each timestamp t do

5: C1 ← Cluster St (i.e., part of S for timestamp t).
6: L1 ← L1 ∪ {f ∣f ∈ C1 and sup(f) ≥min sup}
7: end for

8: for l=2 to T do

9: Cl ← getCandidates(Ll−1).
10: Ll ← {f ∣f ∈ Cl and sup(f) ≥min sup}.
11: P ← P ∪Ll.
12: end for

13: C ← Set of configurations for T timestamps. ▷ Outlier Detection
14: for each object o do

15: for each configuration c ∈ C do

16: Compute the best matching pattern p̃ ∈ P for object o and configuration c using Eq. 3.
17: Compute outlierScore(p̃, o) using Eq. 5.
18: end for

19: Compute outlierScore(o) using Eq. 4.
20: end for

min sup decides the number of patterns discovered, given a temporal dataset.
Higher min sup implies that some patterns may not get detected and hence
even non-outlier sequences may get marked as outliers. However, their outlier
scores will still be lower than the scores of extreme outliers because they are
closer to the cluster centroids for each individual timestamp. Also, the number of
configurations for which normal sequences deviate from patterns, will be smaller
than the number of configurations for outlier sequences. However, a very high
min sup might mean that no patterns get discovered for a lot of configurations.
In that case, many sequences might be assigned same high outlier scores, which
is undesirable.

If min sup is too low, then the discovered patterns may represent an overfit-
ted model of the data. Thus, even outliers may get modeled as normal patterns,
and then we may not be able to discover many outliers. Also a lower value of
min sup will generate a bigger set of patterns so that the overall pattern gener-
ation may become very inefficient with respect to time and memory.

Therefore, there is a tradeoff between lower and higher min sup. The best
way to select min sup is to determine what percentage of sequences can be con-
sidered to represent a significant pattern. This could be quite domain dependent.
In some domains, it might be completely fine even if a very few objects demon-
strate a pattern while in other domains, one might need to use a larger min sup

value.

Hierarchical Clustering

In this paper, we performed single-level clustering of the distributions cor-
responding to the community detection results. However, one can also perform
hierarchical clustering. Multi-level soft patterns discovered using such a hierar-
chical clustering per snapshot, could be more expressive. Using DBLP example



11

again, one may be able to express that a sub-area in timestamp 1 (lower level
cluster) evolved into a mature research area in timestamp 2 (higher level cluster).
We plan to explore the benefits of using such hierarchical clustering methods as
part of future work.

4 Experiments

Evaluation of outlier detection algorithms is quite difficult due to lack of ground
truth. We generate multiple synthetic datasets by injecting outliers into normal
datasets, and evaluate outlier detection accuracy of the proposed algorithms on
the generated data. We also conduct case studies by applying the method to
real data sets. We perform comprehensive analysis to justify that the top few
outliers returned by the proposed algorithm are meaningful. The code and the
data sets are available at: http://blitzprecision.cs.uiuc.edu/CTOutlier

4.1 Synthetic Datasets

Dataset Generation
We generate a large number of synthetic datasets to simulate real evolution

scenarios, each of which consists of 6 timestamps. We first create a dataset with
normal points and then inject outliers. The accuracy of the algorithms is then
measured in terms of their effectiveness in discovering these outliers. For each
dataset, we first select the number of objects (N), the number of full-length (i.e.,
length=6) patterns (∣F ∣), the percentage of outliers (Ψ) and the outlier degree
(γ). Next, we randomly select the number of clusters per timestamp. Each cluster
is represented by a Gaussian distribution with a fixed mean and variance. Figure
2 shows the clusters with their 2σ boundaries. For each full pattern, we first
choose a cluster at each timestamp and then select a Gaussian distribution with
small variance within the cluster. Once we have fixed the Gaussian distribution
to be used, we generate N/∣F ∣ points per timestamp for the pattern. Each full-
length pattern results into 26 − 6 − 1 = 57 patterns. We ensure that each cluster
is part of at least one pattern. Once patterns are generated, we generate outliers
as follows. For every outlier, first we select the base pattern for the outlier. An
outlier follows the base pattern for ⌈T × γ⌉ timestamps and deviates from the
pattern for the remaining timestamps. We fix a set of ⌈T × γ⌉ timestamps and
randomly select a cluster different from the one in the pattern for the remaining
timestamps. Figure 2 shows the first 4 timestamps (out of 6 – for lack of space)
of a dataset created with N=1000, ∣P ∣=570 (∣F ∣=10), Ψ=0.5 and γ=0.6. Colored
points are normal points following patterns while larger black shapes (∎, ▼, ◀,
▲, ⧫) are the injected outliers. For example, the outlier (▼) usually belongs to
the ☀ pattern, except for the third timestamp where it switches to the yellow
▶ pattern.
Results on Synthetic Datasets

We experiment using a variety of settings. We fix the minimum support to
(100/∣F ∣−2)%. For each setting, we perform 20 experiments and report the mean

http://blitzprecision.cs.uiuc.edu/CTOutlier


12

10

12

14

18

16

10

12

14

18

16

10

12

14

18

16

10

12

14

18

16

- - - -

Fig. 2. First Four Snapshots of our Synthetic Dataset

N Ψ ∣γ∣ = 0.5 ∣γ∣ = 0.8
∣F ∣ = 5 ∣F ∣ = 10 ∣F ∣ = 15 ∣F ∣ = 5 ∣F ∣ = 10 ∣F ∣ = 15

(%) CTO BL1 BL2 CTO BL1 BL2 CTO BL1 BL2 CTO BL1 BL2 CTO BL1 BL2 CTO BL1 BL2

1000
1 95.0 92 89 92.5 86 90 93.5 83 92 95.5 85.5 92 83 76.5 84.0 92.0 77 86.0
2 98.0 94.2 95.5 94.0 88.2 92 95.5 87.2 93.2 98.2 94.5 96.5 91.2 86.5 90 95.5 76 94.0
5 99.5 96.8 97.4 96.5 95.3 96.2 97.9 93.1 97.1 99.0 95.7 97.3 96.3 91 95.9 97.4 79.3 96.7

5000
1 97.0 90.6 91.5 91.9 86 89.4 91.8 84.3 89.9 95.8 83.5 89.8 84.4 76.6 84.4 88.4 73.1 86.1
2 97.2 92 92.8 94.0 91.2 93 96.4 89 94 97.9 89.6 94 89.4 85.6 88.4 95.4 79.8 93.1
5 99.4 96.9 97.3 96.3 94.7 96.3 97.6 91 96.3 98.8 95.4 97.6 95.0 90.5 94.7 97.7 79.7 96.9

10000
1 97.4 90 90.4 90.8 85.4 88.1 92.8 84.5 88.2 95.6 84.2 89.5 81.8 76.4 82.8 91.8 76.5 87.6
2 98.2 91.6 92.6 93.2 90.5 92.7 95.0 89.3 92.4 98.0 91.1 95 89.9 86.9 90.7 95.8 80.6 93.3
5 99.0 96.8 97.1 96.2 94.4 96.2 97.9 89.6 96.8 99.1 95.8 98 95.3 90.1 95.3 97.3 76.4 96.6

Table 1. Synthetic Dataset Results (CTO=The Proposed Algorithm CTODA,
BL1=Consecutive Baseline, BL2=No-gaps Baseline) for Outlier Degree=0.5 and 0.8,
i.e., Outliers follow Base Pattern for 3/6 and 5/6 Timestamps respectively.

values. We compare with two baselines: Consecutive (BL1) and No-gaps (BL2).
Often times evolution is studied by considering pairs of consecutive snapshots of
a dataset, and then integrating the results across all pairs. One can use such a
method to compute outliers across each pair of consecutive snapshots and then
finally combine results to get an outlier score across the entire time duration.
We capture this in our BL1 baseline. Note that we consider only those con-
figurations which are of length-2 and which contain consecutive timestamps in
this baseline. Thus, BL1 will mark an object as outlier if its evolution across
consecutive snapshots is much different from observed length-2 patterns (with
no gaps). For the BL2 baseline, we consider all configurations corresponding to
patterns of arbitrary length without any gaps. Note that this baseline simulates
the trajectory outlier detection scenario with respect to our framework. Recall
that our method is named as CTODA.

We change the number of objects from 1000 to 5000 to 10000. We vary
the percentage of outliers injected into the dataset as 1%, 2% and 5%. The
outlier degree is varied as 0.5, 0.6 and 0.8 (i.e., 3, 4 and 5 timestamps). Finally,
we also use different number of full-length patterns (∣F ∣ = 5,10,15), i.e., ∣P ∣ =
285,570,855, to generate different datasets. Table 1 shows the results in terms
of precision when the number of retrieved outliers equals to the actual number



13

of injected outliers for γ=0.5 and 0.8. Average standard deviations are 3.11%,
4.85% and 3.39% for CTODA and the two baselines respectively. Results with
γ=0.6 are also similar; we do not show them here for lack of space. On an average
CTODA is 7.4% and 2.3% better than the two baselines respectively.

The reasons why the proposed CTODA method is superior are as follows.
Consider a soft sequence ⟨S1o , S2o , S3o⟩. Both the soft patterns ⟨S1o , S2o⟩ and⟨S2o , S3o⟩ might be frequent while ⟨S1o , S2o , S3o⟩ might not be frequent. This
can happen if the sequences which have the pattern ⟨S1o , S2o⟩ and the sequences
with the pattern ⟨S2o , S3o⟩ are disjoint. This case clearly shows why our method
which computes support for patterns of arbitrary lengths is better than baseline
BL1 which considers only patterns of length two with consecutive timestamps.
Now let us show that gapped patterns can be beneficial even when we consider
contiguous patterns of arbitrary lengths. Consider two soft gapped patterns p =⟨P1p , P2p , P4p⟩ and q = ⟨P1q , P3q , P4q⟩ such that P1p = P1q and P4p = P4q . Now
p might be frequent while q is not. However, this effect cannot be captured if
we consider only contiguous patterns. This case thus shows why our approach is
better than BL2.

We ran our experiments using a 2.33 GHz Quad-Core Intel Xeon proces-
sor. On an average, the proposed algorithm takes 83, 116 and 184 seconds for
N=1000, 5000 and 10000 respectively. Of this 74, 99 and 154 seconds are spent
in pattern generation while the remaining time is spent in computing outliers
given these patterns.

4.2 Real Datasets

Dataset Generation
We perform experiments using two real datasets: GDP and Budget.

GDP : TheGDP dataset consists of (Consumption, Investment, Public Expendi-
ture and Net Exports) components for 89 countries for 1982-91 (10 snapshots)3.
Budget : The Budget dataset consists of (Pensions, Health Care, Education, De-
fense, Welfare, Protection, Transportation, General Government, Other Spend-
ing) components for 50 US states for 2001-10 (10 snapshots)4.
Results on Real Datasets

CTOutliers are objects that break many temporal community patterns. We
will provide a few interesting case studies for each dataset and explain the intu-
itions behind the identified outliers on how they deviate from the best matching
patterns.
GDP : We find 3682 patterns when minimum support is set to 20% for the 89
countries. The top five outliers discovered are Uganda, Congo, Guinea, Bulgaria
and Chad, and we provide reasonings about Uganda and Congo as examples
to support our claims as follows. National Resistance Army (NRA) operating
under the leadership of the current president, Yoweri Museveni came to power
in 1985-86 in Uganda and brought reforms to the economic policies. Uganda

3http://www.economicswebinstitute.org/ecdata.htm
4http://www.usgovernmentspending.com/

http://www.economicswebinstitute.org/ecdata.htm
http://www.usgovernmentspending.com/


14

showed a sudden change of (45% consumption and 45% net exports) to (80%
consumption and 1-2% net exports) in 1985. Unlike Uganda, other countries
like Iceland, Canada, France with such ratios of consumption and net export
maintained to do so. Like many other countries, Congo had 45-48% of its GDP
allocated to consumption and 36-42% of GDP for government expenditure. But
unlike other countries with similar pattern, in 1991, consumption decreased (to
29% of GDP) but government expenditure increased (56% of GDP) for Congo.
This drastic change happened probably because opponents of the then President
of Congo (Mobutu Sese Seko) had stepped up demands for democratic reforms.
Budget : We find 41545 patterns when minimum support is set to 20% for the
50 states. The top five outliers discovered are AK, DC, NE, TN and FL, and the
case on AK is elaborated as follows. For states with 6% pension, 16% healthcare,
32% education, 16% other spending in 2006, it has been observed that healthcare
increased by 4-5% in 2009-10 while other spending decreased by 4%. However,
in the case of Arkansas (AK) which followed a similar distribution in 2006,
healthcare decreased by 3% and other spending increased by 5% in 2009-10.
More details can be found in Fig. 3. The right figure shows the distribution of
expenses for AK for the 10 years, while the left part shows similar distribution
averaged over 5 states which have a distribution very similar to AK for the
years 2004-09. One can see that Arkansas follows quite a different distribution
compared to the five states for other years especially for 2002.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

Other Spending

General Government

Transportation

Protection

Welfare

Defense

Education

Health Care

Pensions

Soft Pattern Outlier (Arkansas)

Fig. 3. Average Trend of 5 States with Distributions close to that of AK for 2004-09
(Left – Pattern), Distributions of Budget Spending for AK (Right – Outlier)

In summary, the proposed algorithm is highly accurate in identifying injected
outliers in synthetic datasets and it is able to detect some interesting outliers
from each of the real datasets.

5 Related Work

Outlier (or anomaly) detection [10,18] is a very broad field and has been studied
in the context of a large number of application domains. Outliers have been dis-



15

covered in high-dimensional data [1], uncertain data [3], stream data [4], network
data [13] and time series data [11].
Temporal Outlier Detection

Recently, there has been significant interest in detecting outliers from evolv-
ing datasets [4,14,15], but none of them explores the outliers with respect to
communities in a general evolving dataset. Outlier detection methods for data
streams [2,7] have no notion of communities. CTOutlier detection could be con-
sidered as finding outlier trajectories across time, given the soft sequence data.
However as discussed in Sec. 1, there are major differences, making trajectory
outlier detection techniques unsuitable for the task.
Community Outlier Detection

Community outlier detection has been studied for a static network setting [13]
or for a setting of two network snapshots [17], but we develop an algorithm for
a general evolving dataset with multiple snapshots. Group (community) iden-
tification in evolving scenarios has been studied traditionally in the context of
hard patterns [16,20], while we discover soft patterns capturing subtle community
evolution trends.

Thus, though significant literature exists both for temporal as well as commu-
nity outlier detection, we discover novel outliers by considering both the temporal
and the community dimensions together.

6 Conclusions

In datasets with continuously evolving values, it is very important to detect ob-
jects that do not follow normal community evolutionary trend. In this paper,
we propose a novel concept of an outlier, denoting objects that deviate from
temporal community norm. Such objects are referred to as Community Trend
Outliers (CTOutliers), and are of great practical importance to numerous ap-
plications. To identify such outliers, we proposed an effective two-step outlier
detection algorithm CTODA. The proposed method first conducts soft pattern
mining efficiently and then detects outliers by measuring the objects’ deviations
from the normal patterns. Extensive experiments on multiple synthetic and real
datasets show that the proposed method is highly effective and efficient in de-
tecting meaningful community trend outliers. In the future, we plan to further
our studies on evolutionary outlier detection by considering various evolution
styles in different domains.
Acknowledgements Research was sponsored in part by the Cyber Security
project (W911NF-11-2-0086) and NSCTA project (W911NF-09-2-0053) of U.S.
Army Research Laboratory, NSF IIS-0905215, MIAS, a DHS-IDS Center for Mul-
timodal Information Access and Synthesis at UIUC and U.S. Air Force Office of
Scientific Research MURI award FA9550-08-1-0265. The views and conclusions
contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Army Re-
search Laboratory or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation here on.



16

References

1. C. C. Aggarwal and P. S. Yu. Outlier Detection for High Dimensional Data.
SIGMOD Records, 30:37–46, May 2001.

2. C. C. Aggarwal. On Abnormality Detection in Spuriously Populated Data Streams.
In SDM, pages 80–91. 2005.

3. C. C. Aggarwal and P. S. Yu. Outlier Detection with Uncertain Data. In SDM,
pages 483–493, 2008.

4. C. C. Aggarwal, Y. Zhao, and P. S. Yu. Outlier Detection in Graph Streams. In
ICDE, pages 399–409. 2011.

5. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In VLDB, pages 487–499. 1994.

6. J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering Clusters in Motion
Time-Series Data. In CVPR, pages 375–381. 2003.

7. F. Angiulli and F. Fassetti. Detecting Distance-based Outliers in Streams of Data.
In CIKM, pages 811–820. 2007.

8. A. Basharat, A. Gritai, and M. Shah. Learning Object Motion Patterns for
Anomaly Detection and Improved Object Detection. In CVPR. pages 1–8. 2008.

9. T. Bernecker, H. P. Kriegel, M. Renz, F. Verhein, and A. Zuefle. Probabilistic
Frequent Itemset Mining in Uncertain Databases. In KDD, pages 119–128. 2009.

10. V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey. ACM
Computing Surveys, 41(3), 2009.

11. A. J. Fox. Outliers in Time Series. Journal of the Royal Statistical Society. Series
B (Methodological), 34(3):350–363, 1972.

12. J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han. Graph-based Consensus Maxi-
mization among Multiple Supervised and Unsupervised Models. In NIPS, pages
585–593. 2009.

13. J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han. On Community Outliers
and their Efficient Detection in Information Networks. In KDD, pages 813–822,
2010.

14. Y. Ge, H. Xiong, Z. hua Zhou, H. Ozdemir, J. Yu, and K. C. Lee. Top-Eye: Top-K
Evolving Trajectory Outlier Detection. In CIKM, pages 1733–1736, 2010.

15. A. Ghoting, M. E. Otey, and S. Parthasarathy. LOADED: Link-Based Outlier and
Anomaly Detection in Evolving Data Sets. In ICDM, pages 387–390, 2004.

16. J. Gudmundsson, M. Kreveld, and B. Speckmann Efficient Detection of Motion
Patterns in Spatio-temporal Data Sets. In GIS, pages 250–257. 2004.

17. M. Gupta, J. Gao, Y. Sun, and J. Han. Integrating Community Matching and
Outlier Detection for Mining Evolutionary Community Outliers. In KDD, To
appear, 2012.

18. V. J. Hodge and J. Austin. A Survey of Outlier Detection Methodologies. AI
Review, 22(2):85–126, 2004.

19. J.-G. Lee, J. Han, and X. Li. Trajectory Outlier Detection: A Partition-and-Detect
Framework. In ICDE, pages 140–149. 2008.

20. Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining Relaxed Temporal Moving
Object Clusters. In VLDB, pages 723–734. 2010.

21. M. Muzammal and R. Raman. Mining Sequential Patterns from Probabilistic
Databases. In PAKDD, pages 210–221. 2011.

22. D. Pelleg and A. W. Moore. X-means: Extending K-means with Efficient Estima-
tion of the Number of Clusters. In ICML, pages 727–734. 2000.

23. Y. Sun, J. Tang, J. Han, M. Gupta, and B. Zhao. Community Evolution Detection
in Dynamic Heterogeneous Information Networks. In KDD-MLG, pages 137–146.
2010.


	Community Trend Outlier Detection using Soft Temporal Pattern Mining
	1 Introduction
	2 Temporal Trends Extraction
	2.1 Problem Formulation
	2.2 Extraction of Length-1 Soft Patterns
	2.3 Extraction of Longer Soft Patterns

	3 Community Trend Outlier Detection
	3.1 Pattern Configurations and Best Matching Pattern
	3.2 Outlier Score Definition
	3.3 Summing Up: CTOutlier Detection Algorithm (CTODA)

	4 Experiments
	4.1 Synthetic Datasets
	4.2 Real Datasets

	5 Related Work
	6 Conclusions


