COMMUTATION PROPERTIES OF OPERATOR POLYNOMIALS

S. R. CARADUS
(Received 5 May 1969; revised 8 August 1969)
Communicated by E. Strzelecki

Suppose A and B are continuous linear operators mapping a complex Banach space X into itself. For any polynomial p over C, it is obvious that when A commutes with B, then $p(A)$ commutes with B. To see that the reverse implication is false, let A be nilpotent of order n. Then A^{n} commutes with all B but A cannot do so. Sufficient conditions for the implication: $p(A)$ commutes with B implies A commutes with B : were given by Embry [2] for the case $p(\lambda)=\lambda^{n}$ and Finkelstein and Lebow [3] in the general case. The latter authors proved in fact that if f is a function holomorphic on $\sigma(A)$ and if f is univalent with non-vanishing derivative on $\sigma(A)$, then A can be expressed as a function of $f(A)$.

In this paper, similar questions are studied when A and B are closed operators with domain and range in X. Immediately the question of the definition of commutativity arises. Several definitions appear in the literature. A well-known approach is
$C_{1}: B$ commutes with A iff $D(B)$, the domain of B is all of X and $A B$ is an extension of $B A$.
See, for example, [5].
More recently, Marti [4] used the condition:
$C_{2}: B$ commutes with A iff $D(A) \subseteq D(B), B D(A) \subseteq D(A)$ and

$$
A B x=B A x
$$

for all $x \in D(B A)$.
It is a simple exercise to show that C_{1} implies C_{2}. Both C_{1} and C_{2} suffer from an evident lack of symmetry. A symmetrical definition appears in [1]:
$C_{3}: B$ commutes with A iff $D(A) \cap D(A B)=D(B) \cap D(B A)$ and

$$
A B x=B A x
$$

for all $x \in D(A B) \cap D(B A)$.
Again, it is straightforward to verify that C_{2} implies C_{3}. Moreover, if $D(B)=X$, then C_{3} implies C_{1}. If A and B are closed operators with non empty resolvent sets,
then from [1], we know that C_{3} is a necessary and sufficient condition for the commutativity of the resolvent operators.

In that which follows, we obtain a sufficient condition that the C_{3}-commutativity of $p(A)$ with B should imply the C_{3}-commutativity of A with B when A and B are closed operators with non empty resolvent sets. Suppose that p is a monic polynomial of degree n and let $\lambda_{0} \in \rho(A)$. If $\mu_{1}, \mu_{2}, \cdots, \mu_{n}$ denote the roots of $p(\mu)=p\left(\lambda_{0}\right)$ with $\mu_{1}=\lambda_{0}$ then, since $\rho(A)$ is an open set we can assume without loss of generality that $p^{\prime}\left(\mu_{k}\right) \neq 0$ for $k=1,2, \cdots, n$ and that the μ_{k} are distinct. In these terms we can state

Theorem. Suppose that $p(A)$ commutes with B in the C_{3} sense. Suppose also that for some $\lambda_{0} \in \rho(A)$ we have

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{p^{\prime}\left(\mu_{k}\right)\left(\lambda_{1}-\mu_{k}\right)\left(\lambda_{2}-\mu_{k}\right)} \neq 0 \tag{1}
\end{equation*}
$$

for all $\lambda_{1}, \lambda_{2} \in \sigma(A)$. Then A commutes with B in the C_{3} sense.
Proof. Since $p(\mu)-p\left(\lambda_{0}\right)=\prod_{k=1}^{n}\left(\mu-\mu_{k}\right)$ and the μ_{k} are distinct, we can write $\left[p(\mu)-p\left(\lambda_{0}\right)\right]^{-1}=\sum_{k=1}^{n} a_{k}\left(\mu-\mu_{k}\right)^{-1}$ and hence

$$
a_{k}=\lim _{\mu \rightarrow \mu_{k}} \frac{\mu-\mu_{k}}{p(\mu)-p\left(\lambda_{0}\right)}=\lim _{\mu \rightarrow \mu_{k}} \frac{\mu-\mu_{k}}{p(\mu)-p\left(\mu_{k}\right)}=\frac{1}{p^{\prime}\left(\mu_{k}\right)} .
$$

Moreover

$$
\begin{aligned}
\left(A-\mu_{k}\right)^{-1} & =\left[\left(A-\mu_{1}\right)\left[I+\left(A-\mu_{1}\right)^{-1}\left(\mu_{1}-\mu_{k}\right)\right]\right]^{-1} \\
& =\left[I+\left(A-\lambda_{0}\right)^{-1}\left(\mu_{1}-\mu_{k}\right)\right]^{-1}\left(A-\lambda_{0}\right)^{-1}
\end{aligned}
$$

so that

$$
\left[p(A)-p\left(\lambda_{0}\right)\right]^{-1}=\sum_{k=1}^{n} \frac{\left[I+\left(A-\lambda_{0}\right)^{-1}\left(\mu_{1}-\mu_{k}\right)\right]^{-1}\left(A-\lambda_{0}\right)^{-1}}{p^{\prime}\left(\mu_{k}\right)}
$$

If we define

$$
f(\lambda)=\sum_{k=1}^{n} \frac{\lambda}{p^{\prime}\left(\mu_{k}\right)\left[1-\left(\mu_{1}-\mu_{k}\right) \lambda\right]}
$$

then $\left[p(A)-p\left(\lambda_{0}\right)\right]^{-1}=f\left[\left(A-\lambda_{0}\right)^{-1}\right]$. If f fulfils the requirements of the result of Finkelstein and Lebow, then we can conclude that $\left(A-\lambda_{0}\right)^{-1}$ is a function of $\left[p(A)-p\left(\lambda_{0}\right)\right]^{-1}$ and hence the result follows.

Consider now the properties of f. Evidently f is analytic except when $\lambda=$ $\left(\mu_{k}-\lambda_{0}\right)^{-1}$. Now since $p(A)-p\left(\lambda_{0}\right)=\prod_{k=1}^{n}\left(A-\mu_{k}\right)$ it is evident that all μ_{k} belong to $\rho(A)$. Hence $\left(\mu_{k}-\lambda_{0}\right)^{-1} \in \rho\left[\left(A-\lambda_{0}\right)^{-1}\right]$ so that f is analytic on $\sigma\left[\left(A-\lambda_{0}\right)^{-1}\right]$. It remains to show that the restriction of f to $\sigma\left[\left(A-\lambda_{0}\right)^{-1}\right]$ is univalent with nonvanishing derivative. Straightforward calculations show that this requirement is precisely the assumed property (1). For example, if $\theta_{1}, \theta_{2} \in \sigma\left[\left(A-\lambda_{0}\right)^{-1}\right]$ then there exists $\lambda_{1}, \lambda_{2} \in \sigma(A)$ such that $\left(\lambda_{i}-\lambda_{0}\right)^{-1}=\theta_{i}, i=1,2$. Suppose $\theta_{1} \neq \theta_{2}$ but $f\left(\theta_{1}\right)=f\left(\theta_{2}\right)$; then

$$
\sum_{k=1}^{n}\left\{\left(\lambda_{1}-\lambda_{0}\right) p^{\prime}\left(\mu_{k}\right)\left[1+\frac{\mu_{1}-\mu_{k}}{\lambda_{1}-\lambda_{0}}\right]\right\}^{-1}=\sum_{k=1}^{n}\left\{\left(\lambda_{2}-\lambda_{0}\right) p^{\prime}\left(\mu_{k}\right)\left[1+\frac{\mu_{1}-\mu_{k}}{\lambda_{1}-\lambda_{0}}\right]\right\}^{-1}
$$

which reduces to

$$
\begin{align*}
& \sum_{k=1}^{n}\left[p^{\prime}\left(\mu_{k}\right)\left(\lambda_{1}-\mu_{k}\right)\right]^{-1}=\sum_{k=1}^{n}\left[p^{\prime}\left(\mu_{k}\right)\left(\lambda_{2}-\mu_{k}\right)\right]^{-1} \text { i.e. } \\
& \sum_{k=1}^{n}\left[p^{\prime}\left(\mu_{k}\right)\left(\lambda_{1}-\mu_{k}\right)\left(\lambda_{2}-\mu_{k}\right)\right]^{-1}=0 \tag{2}
\end{align*}
$$

Since this contradicts (1), we know that f is univalent on $\sigma\left[\left(A-\lambda_{0}\right)^{-1}\right]$. In a similar way, the assumption that $f^{\prime}\left(\theta_{1}\right)=0$ leads to equation (1) with $\lambda_{1}=\lambda_{2}$. This concludes the proof.

Remark. The relation of the result of our theorem and the results of [2] and [3] seems obscure. Even when A and B are in $B(X)$ and $p(\lambda)=\lambda^{n}$, (1) reduces to

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\omega^{k}}{\left(\omega^{k} \lambda_{1}-\lambda_{0}\right)\left(\omega^{k} \lambda_{2}-\lambda_{0}\right)} \neq 0 \quad \text { for } \lambda_{1}, \lambda_{2} \in \sigma(A) \tag{3}
\end{equation*}
$$

where $\omega=\exp (2 i \pi / n)$. It is not obvious that this condition is related in any simple way to that of [2]: $\sigma(A) \cap \sigma\left(\omega^{k} A\right)=\phi, k=2,3, \cdots, n$. However when $n=2$, (3) reduces to $\lambda_{0}\left(\lambda_{1}+\lambda_{2}\right) \neq 0$ so that (1) is equivalent to the condition of [2].

Corollary. If $\sigma(A)=\phi$ and $p(A)$ commutes with B in the C_{3} sense, then A commutes with B in the C_{3} sense.

References

[1] S. R. Caradus, 'A Note on a Paper by J. T. Marti', Comment. Math. Helv. 44 (3) (1969), 282-283.
[2] M. R. Embry, 'Nth Roots of Operators', Proc. Amer. Math. Soc. 19 (1) (1968), 63-68.
[3] M. Finkelstein and A. Lebow, 'A Note on Nth Roots of Operators', Proc. Amer. Math. Soc. 21 (1969), 250.
[4] J. T. Marti, 'Operational Calculus for Two Commuting Closed Operators', Comment. Math. Helv. 43 (1968), 87-97.
[5] M. H. Stone, 'On Unbounded Operators in Hilbert Space', J. Indian Math. Soc. (N.S.) 15 (1951), 155-192.

Australian National University, Canberra Queen's University at Kingston

