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Abstract. T. Arakawa, in his unpublished note, constructed and studied a theta lifting
from elliptic cusp forms to automorphic forms on the quaternion unitary group of signature
(1, q). The second named author proved that such a lifting provides bounded (or cuspidal)
automorphic forms generating quaternionic discrete series. In this paper, restricting ourselves
to the case of q = 1, we reformulate Arakawa’s theta lifting as a theta correspondence in
the adelic setting and determine a commutation relation of Hecke operators satisfied by the
lifting. As an application, we show that the theta lift of an elliptic Hecke eigenform is also a
Hecke eigenform on the quaternion unitary group. We furthermore study the spinor L-function
attached to the theta lift.

1. Introduction. The prototype of our study in this paper is the classical work [E] by
Eichler on the commutation relation of Hecke operators for theta series associated with spher-
ical polynomials on a definite quaternion algebra over Q. This result has been generalized in
various cases. For example, Yoshida [Y] constructed a theta lifting from a pair of automor-
phic forms on a multiplicative group of a definite quaternion algebra to holomorphic Siegel
modular forms of degree two, and determined a commutation relation for his lift. Kudla [Ku]
studied such a relation for a theta lifting from elliptic cusp forms to holomorphic automor-
phic forms on SU(2, 1). Moreover, we note that Rallis [Ra] investigated in great generality
a commutation relation via the Weil representation for symplectic-orthogonal dual pairs. Our
concern here is a theta lifting from elliptic cusp forms to automorphic forms on the quaternion
unitary group Sp(1, q)R of signature (1, q), originally formulated by Arakawa ([Ar-1]). We
study this lifting for the case of q = 1 along the same line as [Y] and [Ku].

Let us recall that Arakawa formulated the theta lifting mentioned above by considering
the restriction of a theta correspondence of SL2(R) × SO(4, 4q) to SL2(R) × Sp(1, q)R
(cf. [Ar-1], [N-1] and [N-3]). We henceforth confine ourselves to the case of q = 1. It turned
out that Arakawa’s formulation is not appropriate for proving a commutation relation, since
we do not have sufficient Hecke operators. Following T. Ikeda’s suggestion, we formulate
our lift as a theta correspondence between (GL2 ×B×) andGSp(1, 1), where B is a definite
quaternion algebra over Q. This amounts to the same as taking a certain average of Arakawa’s
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original lifts over the ideal classes of B. In this setting, we have enough Hecke operators to
show a good commutation relation.

On the other hand, we note that our lift can be viewed as a theta correspondence of
similitude groups. For references in this direction see [Ge], [H-K], [Ro], [Sz] and [W] etc.
In fact, the pair of the groups (GL2 × B×) and GSp(1, 1) comes from the dual reductive
pair O∗(4)× Sp(1, 1), whereO∗(4) is the inner form of the orthogonal group of degree four
which is realized as the quaternion unitary group associated with a skew-Hermitian form of
degree two over B. In addition we remark that there is a work by Pitale [P] on a lifting from
elliptic Maass forms of weight 1/2 to some class one automorphic forms on GSp(1, 1) �
GSpin(1, 4), which is inspired by Saito-Kurokawa lifting or Duke-Imamoḡlu-Ikeda lifting
on holomorphic Siegel modular forms.

We now explain more precisely our reformulation of the lifting, which is given in the
adelic setting. Let κ > 6 be an even integer and D a divisor of the discriminant dB of B. We
denote by Sκ(D) the space of elliptic cusp forms onGL2(A) of weight κ and levelD, and let
Aκ be the space of automorphic forms on B×

A (for the definition of Sκ(D) and Aκ , see Defini-
tion 2.2). Furthermore, using a metaplectic representation of GSp(1, 1)A × GL2(A)× B×

A

(cf. Sections 3 and 4), we define a theta kernel θκ on GSp(1, 1)A × GL2(A) × B×
A under

a special choice of a test function (cf. (4.1)). For (f, f ′) ∈ Sκ(D) × Aκ , we construct an
automorphic form L(f, f ′) on GSp(1, 1)A by integrating (f, f ′) against θκ (cf. (4.2)). Then
L(f, f ′) belongs to the space Sκ of bounded (or cuspidal) automorphic forms onGSp(1, 1)A
given in Definition 2.1 (cf. Theorem 4.1). Note that F ∈ Sκ generates, at the infinite place,
a quaternionic discrete series in the sense of Gross and Wallach [G-W] (cf. [N-2, Theorem
8.7]).

Our main result is a formula for Hecke eigenvalues of L(f, f ′) stated in Theorem 5.1.
For all finite places of Q, we provide such a formula in terms of Hecke eigenvalues of f
and f ′. This follows from our formula for the commutation relations of Hecke operators in
Propositions 6.1 and 6.2. Then we discuss an application of this formula to the study of the
spinor L-functions of L(f, f ′). We define an Euler factor of the spinor L-function at a prime
p � dB (resp. p | dB), using the formula for the denominator of the Hecke series by Shimura
[Shim-1, Theorem 2] (resp. Hina and Sugano [H-S, Section 4, (I)], [Su, (1-34)]). Among our
formulas for the L-function, the case D = 1 seems to be the most interesting. Indeed, if we
assume that f and f ′ are Hecke eigenforms, the spinor L-function L(L(f, f ′), spin, s) for
that case admits the following simple decomposition (cf. Corollary 5.3)

L(L(f, f ′), spin, s) = L(f, s)LdB (f ′, s) ,

where L(f, s) (resp. LdB (f ′, s)) denotes Hecke’s classical L-function for f (resp. some par-
tial L-function for f ′ whose Euler factors range only over p � dB).

This paper is organized as follows. In Section 2 we give basic notations and define
the automorphic forms we need. In Section 3 we introduce a metaplectic representation of
GSp(1, 1)×GL2×B× over local fields. Then we define a global metaplectic representation of
the adele group and provide the adelic reformulation of the Arakawa lifting for the case of q =
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1 in Section 4. Section 5 is devoted to the statement of our main results, i.e., Hecke eigenvalues
and spinor L-functions for the lifting. In Section 6 we state our result on the commutation
relations of Hecke operators, from which our main results are deduced immediately. Finally,
we prove the commutation relations at unramified finite places (resp. ramified finite places)
of Q in Section 7 (resp. Section 8).

NOTATION. For an algebraic group G over Q, Gv stands for the group of Qv-points of
G, where Qv denotes the p-adic field (resp. the field of real numbers) when v = p is a finite
place of Q (resp. v = ∞). By GA (resp. GA,f ), we denote the adelization of G (resp. the group
of finite adeles in GA). Let ψ be the additive character of QA/Q such that ψ(x∞) = e(x∞)
for x∞ ∈ R, where we put e(z) = exp(2πiz) for z ∈ C. We denote by ψv the restriction of ψ
to Qv for a place v of Q. We denote by diag(a1, . . . , an) the diagonal matrix of degree n with
the i-th diagonal component ai . For a finite dimensional vector space V over Qv , we denote
by S(V ) the space of Schwartz-Bruhat functions on V . We also let S(Q×

p ) be the space of
locally constant and compactly supported functions on Q×

p . Given a condition S, we set

δ(S) :=
{

1 if S is satisfied ,
0 otherwise.

2. Automorphic forms. Let B be a definite quaternion algebra over Q. In what fol-
lows, we fix an identification between B∞ := B ⊗Q R and the Hamilton quaternion algebra
H , and an embedding H ↪→ M2(C). Let B � b 	→ b̄ ∈ B be the main involution of B, and
put tr(b) := b + b̄ and n(b) := bb̄ for b ∈ B. Let B× := B \ {0} be the multiplicative group
of B. The center Z(B×) of B× is Q× · 1. Let dB be the discriminant of B. By definition, dB
is the product of primes p such that Bp := B ⊗Q Qp is a division algebra.

We let G = GSp(1, 1) be an algebraic group over Q defined by

GQ = {g ∈ M2(B) | t ḡQg = ν(g)Q, ν(g) ∈ Q×} ,
whereQ = (0 1

1 0

)
. Denote by ZG the center of G.

The Lie group G1∞ := {g ∈ G∞ | ν(g) = 1} acts on the hyperbolic 4-space X :=
{z ∈ H | tr(z) > 0} by linear fractional transformations

g · z := (az+ b)(cz+ d)−1 , g =
(
a b

c d

)
∈ G1∞ , z ∈ X .

Let µ : G1∞ × X → H× be the automorphy factor given by µ(
(
a d
c d

)
, z) := cz + d . The

stabilizer subgroup K∞ of z0 := 1 ∈ X in G1∞ is a maximal compact subgroup of G1∞,
which is isomorphic to Sp∗(1)× Sp∗(1), where Sp∗(1) := {z ∈ H | n(z) = 1}.

Let κ be a positive integer. Denote by (σκ , Vκ) the representation of H given as

H ↪→ M2(C) → End(Vκ) ,

where the second arrow indicates the κ-th symmetric power representation of M2(C). Then

τκ(k∞) := σκ(µ(k∞, z0)) , k∞ ∈ K∞
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gives rise to an irreducible representation of K∞ of dimension κ + 1.
Define ωκ : G1∞ → End(Vκ) by

ωκ(g) := σκ(D(g))−1n(D(g))−1 , g ∈ G1∞ ,

where D(g) := 2−1(g · z0 + 1)µ(g, z0). It is known that ωκ is a matrix coefficient of the
discrete series representation with minimal K∞-type (τκ, Vκ) (cf. [Ar-3, Section 2.6]). This
discrete series is a quaternionic discrete series in the sense of Gross and Wallach [G-W]. We
note that ωκ is integrable if κ > 4 (cf. [Ar-2, Lemma 1.1 (ii)], [Ar-3, Lemma 2.10 (ii)]).

Throughout the paper, we fix a maximal order O of B. We also fix a divisorD of dB and
let A be a two-sided ideal of O such that, for each p < ∞, the p-adic completion Ap of A is
equal to Op (resp. Pp) if p � D−1dB (resp. p |D−1dB), where Pp denotes the maximal ideal
of Op for p | dB .

Let L := t (O ⊕ A−1). Then L is a maximal lattice of B⊕2. Namely, if L′ is a lattice of
B⊕2 with L ⊂ L′ and {tX̄QX | X ∈ L′} = Z, we have L′ = L. For a finite place p of Q,
Kp = {k ∈ Gp | kLp = Lp} is a maximal compact subgroup of Gp, where Lp := L⊗Z Zp.
We set Kf := ∏

p<∞Kp.

DEFINITION 2.1. For an even integer κ > 4, let Sκ be the space of smooth functions
F : GA → Vκ satisfying the following conditions:

1. For any (z, γ, g, kf , k∞) ∈ ZG,A ×GQ ×GA ×Kf ×K∞, we have

F(zγ gkf k∞) = τκ(k∞)−1F(g) .

2. F is bounded.
3. For any fixed (gf , g∞) ∈ GA,f ×G∞, we have

cκ

∫
G1∞

ωκ(h
−1∞ g∞)F (gf h∞)dh∞ = F(gf g∞) ,

where cκ := 2−4π−2κ(κ−1) and dh∞ is the normalized invariant measure ofG1∞ introduced
in [Ar-3, 1.2].

Here we note that this automorphic form has been shown to be cuspidal (cf. [Ar-3, Propo-
sition 3.1]) and generates a quaternionic discrete series at the infinite place (cf. [N-2, Theorem
8.7]).

Next, let H and H ′ be algebraic groups over Q defined by HQ = GL2(Q) and H ′
Q =

B×, respectively, and denote by ZH and ZH ′ the centers ofH andH ′, respectively. We define
an action of SL2(R) on the complex upper half plane h := {τ ∈ C | Im(τ ) > 0} as usual.
Let U∞ := {h ∈ SL2(R) | h · i = i} = SO(2) and U ′∞ := {h′ ∈ H | n(h′) = 1} = Sp∗(1).
Moreover, we put Uf = ∏

p<∞Up and U ′
f = ∏

p<∞U ′
p, where Up := {u = (uij ) ∈

GL2(Zp) | u21 ∈ DZp} and U ′
p := O×

p .

DEFINITION 2.2. (1) Let Sκ(D) be the space of smooth functions f on HA satisfy-
ing the following conditions:

1. We have f (zγ huf u∞) = j (u∞, i)−κf (h) for any (z, γ, h, uf , u∞) ∈ ZH,A ×
HQ ×HA × Uf × U∞.
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2. For any fixed hf ∈ HA,f , h � h∞ · i 	→ j (h∞, i)κf (hf h∞) is holomorphic for
h∞ ∈ SL2(R).

3. f is bounded.
Here j (

(
a b
c d

)
, τ ) := cτ +d denotes the standard C-valued automorphy factor of SL2(R)×h.

(2) Let Aκ denote the space of smooth Vκ -valued functions f ′ on H ′
A such that

f ′(z′γ ′h′u′
f u

′∞) = σκ(u
′∞)−1f (h′)

holds for any (z′, γ ′, h′, u′
f , u

′∞) ∈ ZH ′,A ×H ′
Q ×H ′

A × U ′
f × U ′∞.

3. Metaplectic representation. In this section, we fix a place v of Q. When v = p is
a finite place (resp. v = ∞), | ∗ |v denotes the p-adic valuation (resp. the usual absolute value
for R). ForX = t (x, y) ∈ B⊕2

v , we putX∗ := (x̄, ȳ). For a finite place p of Q, let V p be the
space of functions on B⊕2

p × Q×
p generated by ϕ1(X)ϕ2(t), where ϕ1 ∈ S(B⊕2

p ) (= S(Q8
p))

and ϕ2 ∈ S(Q×
p ). We also let V ∞ be the space of smooth functions ϕ : B⊕2∞ ×Q×∞ = H⊕2 ×

R× → End(Vκ) such that, for any fixed t ∈ R×, X 	→ ϕ(X, t) is in S(H⊕2) ⊗ End(Vκ)
(= S(R8)⊗ End(Vκ)). We define a partial Fourier transform I by

Iϕ(
(
x1
x2

)
, t) =

∫
Bv

ψv(−t tr(ȳx1))ϕ(

(
y

x2

)
, t)dy , ϕ ∈ V v ,

where dy is the Haar measure on Bv self-dual with respect to the pairing Bv ×Bv � (x, y) 	→
ψv(tr(x̄y)).

For (g, h, h′) ∈ Gv × Hv × H ′
v , define a linear operator rv(g, h, h′) on V v as follows:

For ϕ ∈ V v , X ∈ B⊕2
v and t ∈ Q×

v ,

rv(g, h, h′) = rv(g, 1, 1) ◦ rv(1, h, 1) ◦ rv(1, 1, h′) ,

where

rv(g, 1, 1)ϕ(X, t) = |ν(g)|−3/2
v ϕ(g−1X, ν(g)t) , g ∈ Gv ,(3.1)

rv(1, 1, h′)ϕ(X, t) = |n(h′)|3/2v ϕ(Xh′, n(h′)−1t) , h′ ∈ H ′
v ,(3.2)

(I ◦ rv(1, h, 1)ϕ)(X, t) = | deth|−1/2
v Iϕ((det h) · h−1X, (deth)−1t) , h ∈ Hv .(3.3)

A straightforward calculation shows that

r(1,

(
1 b

0 1

)
, 1)ϕ(X, t) = ψv

(
bt

2
tr(X∗QX)

)
ϕ(X, t) , b ∈ Qv ,(3.4)

r(1,

(
a 0
0 a′

)
, 1)ϕ(X, t) = |a|7/2v |a′|−1/2

v ϕ(aX, (aa′)−1t) , a, a′ ∈ Q×
v ,(3.5)

r(1,

(
0 1

−1 0

)
, 1)ϕ(X, t) = |t|4v

∫
B⊕2
v

ψv(t tr(Y ∗QX))ϕ(Y, t)dQY .(3.6)

Here dQY is the Haar measure on B⊕2
v self-dual with respect to the pairing

B⊕2
v × B⊕2

v � (Y, Y ′) 	→ ψv(tr(Y ∗QY ′)) .
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This shows that the actions of Gv,Hv and H ′
v mutually commute, and that rv gives rise to a

smooth representation of Gv ×Hv ×H ′
v on V v .

When v = p < ∞, we put

ϕ0,p(X, t) := charLp(X) charZ×
p
(t) ,

where charLp (resp. charZ×
p

) is the characteristic function of Lp = t (Op ⊕ A−1
p ) (resp. Z×

p ).
When v = ∞, we put

ϕκ0,∞(X, t) :=

 t

(κ+3)/2σκ((1, 1)X)e
(
it

2
tr(X∗X)

)
, t > 0 ,

0 , t < 0 .

The following fact is easily verified.

LEMMA 3.1. Let v = p < ∞. Then we have

r(kp, up, u
′
p)ϕ0,p = ϕ0,p

for kp ∈ Kp, up ∈ Up and u′
p ∈ U ′

p.

LEMMA 3.2. Let v = ∞. Then we have

r(k∞, u∞, u′∞)ϕκ0,∞ = j (u∞, i)−κτκ(k∞)−1 · ϕκ0,∞ · σκ(u′∞)

for k ∈ K∞, u∞ ∈ U∞ and u′ ∈ U ′∞.

PROOF. The transformation law with respect to the U∞-action immediately follows
from [N-3, Lemma 3.8] (see also [N-1, Lemma 4.3]). The other transformation laws are
verified in a straightforward way. �

4. Arakawa lift. Let V A be the restricted tensor product of V v with respect to
{ϕ0,p}p<∞. By rA we denote a smooth representation of GA × HA × H ′

A on V A given
by

rA(g, h, h′)ϕ :=
⊗
v

rv(gv, hv, h′
v)ϕv

for ϕ = ⊗
v ϕv ∈ VA and (g = (gv), h = (hv), h

′ = (h′
v)) ∈ GA × HA × H ′

A. Define a
function ϕκ0 ∈ V A by

ϕκ0 (X, t) := ϕκ0,∞(X∞, t∞)
∏
p<∞

ϕ0,p(Xp, tp)

for X = (Xv) ∈ B⊕2
A and t = (tv) ∈ Q×

A.
Set

θκ(g, h, h′) :=
∑

(X,t)∈B⊕2×Q×
rA(g, h, h′)ϕκ0 (X, t) , (g, h, h′) ∈ GA ×HA ×H ′

A .(4.1)
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LetC be any compact subset ofGA×HA×H ′
A. Then there exist positive real numbers c1, c2,

a lattice L of B⊕2 and a finite set S of Q×
>0 such that∑

(X,t)∈B⊕2×Q×
|rA(g, h, h′)ϕκ0 (X, t)| ≤ c1

∑
X∈L,t∈S

exp(−c2tX
∗X)

holds for (g, h, h′) ∈ C. This implies that the series (4.1) is absolutely convergent on any
compact subset ofGA×HA×H ′

A. By the definition of r and the Poisson summation formula,
we see that θκ is left GQ ×HQ ×H ′

Q-invariant. We also have, by Lemmas 3.1 and 3.2,

θκ(gkf k∞, huf u∞, h′u′
f u

′∞) = τκ(k∞)−1j (u∞, i)−κθ(g, h, h′)σκ (u′∞)

for (g, kf , k∞) ∈ GA × Kf × K∞, (h, uf , u∞) ∈ HA × Uf × U∞ and (h′, u′
f , u

′∞) ∈
H ′

A × U ′
f × U ′∞. Note that (g∞, h∞, h∞) 	→ r∞(g∞, h∞, h′∞)ϕ0,∞(X∞, t∞) is ZG,∞ ×

ZH,∞ × ZH ′,∞-invariant. We then see that θκ is ZG,A × ZH,A × ZH ′,A-invariant, since
Q×

A = Q× · R>0 · Z×
f with Z×

f := ∏
p<∞ Z×

p .
For f ∈ Sκ(D) and f ′ ∈ Aκ , we set

L(f, f ′)(g) :=
∫
ZH,AHQ\HA

dh

∫
ZH ′,AH ′

Q\H ′
A

dh′ θκ(g, h, h′)f (h)f ′(h′) , g ∈ GA .(4.2)

THEOREM 4.1 (Arakawa, Narita). Suppose that κ > 6.
(i) The integral (4.2) is absolutely convergent.

(ii) L(f, f ′)(g) ∈ Sκ .

PROOF. Since GA = ZG,AGQG
1∞Kf (cf. [Shim-2, Theorem 6.14]), it is sufficient to

study the restriction of L(f, f ′) to G1∞. By a standard argument, we see that L(f, f ′)|G1∞
is a finite linear combination of original Arakawa lift (cf. [Ar-1], [N-1, Section 4] and [N-
3, Theorem 4.1]), from which the theorem follows. �

REMARK 4.2. Our result on the Archimedean component of L(f, f ′) is compatible
with the work [L, Section 6] by J. S. Li, in which he studies Archimedean theta correspon-
dences for cohomological representations (including discrete series representations).

5. Main result.
5.1. To state the main result of the paper, we need to review several facts on Hecke

operators.
First we consider the case where p � dB . We fix an isomorphism of Bp onto M2(Qp)

such that Op maps onto M2(Zp) and that the main involution of Bp corresponds to an invo-
lution of M2(Qp) given by

M2(Qp) � X 	→ w−1 tXw , w =
(

0 1
−1 0

)
.

The reduced trace tr corresponds to the trace Tr of M2(Qp). We henceforth identify Bp
with M2(Qp) using the above isomorphism. Then Gp, Kp, H ′

p and U ′
p are identified with

GSp(J,Qp),GSp(J,Zp),GL2(Qp) andGL2(Zp) respectively, whereGSp(J ) is the group
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of similitudes of J = (0 w
w 0

)
. Note that we can identify Up with U ′

p by the isomorphism
Bp � M2(Qp) fixed above.

Define Hecke operators T i
p (i = 0, 1, 2) on Sκ by

T i
p F (g) =

∫
Gp

F(gx)Φip(x)dx ,

where Φ0
p, Φ1

p and Φ2
p are the characteristic functions of Kp diag(p, p, p, p)Kp ,

Kp diag(p, p, 1, 1)Kp and Kp diag(p2, p, p, 1)Kp, respectively. Note that T 0
p F = F for

any F ∈ Sκ .
We also define Hecke operators Tp and T ′

p on Sκ(D) and Aκ by

Tp f (h) =
∫
Hp

f (hx)φp(x)dx ,

T ′
p f

′(h′) =
∫
H ′
p

f ′(h′x ′)φ′
p(x

′)dx ′ ,

where φp = φ′
p is the characteristic function of GL2(Zp) diag(p, 1)GL2(Zp).

5.2. We next consider the case where p | dB , namely, Bp is a division algebra. In this
case, we fix a prime element Π of Bp and put π := n(Π). Then π is a prime element of
Qp.

Define Hecke operators T i
p (i = 0, 1) on Sκ by

T i
p F (g) =

∫
Gp

F(gx)Φip(x)dx ,

whereΦ0
p andΦ1

p are the characteristic functions ofKp diag(Π,Π)Kp andKp diag(1, π)Kp
respectively. Note that T 0

p F (g) = F(g ·Π) and hence that T 0
p (T 0

p F )(g) = F(g · π) = F(g)
for F ∈ Sκ . We also define Hecke operators Tp and T ′

p on Sκ(D) and Aκ by

Tp f (h) =
∫
Hp

f (hx)φp(x)dx ,

T ′
p f

′(h′) =
∫
H ′
p

f ′(h′x ′)φ′
p(x

′)dx ′ .

Here φ′
p is the characteristic function of U ′

pΠU
′
p = ΠU ′

p and φp is defined as follows: If
p |D, φp is the sum of the characteristic functions of Up diag(π, 1)Up and Up diag(1, π)Up.
If p � D, φp is the characteristic function of Up diag(π, 1)Up.

5.3. We say that F ∈ Sκ is a Hecke eigenform if F is a common eigenfunction of all
the Hecke operators T i

p for any p < ∞ and i = 1, 2. Let F ∈ Sκ be a Hecke eigenform with

T i
pF = ΛipF , Λip ∈ C. We define the spinor L-function of F by

L(F, spin, s) =
∏
p<∞

Lp(F, spin, s) ,
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where Lp(F, spin, s) = Qp(F, p
−s )−1,

Qp(F, t) =
{

1 − pκ−3Λ1
pt + p2κ−5(Λ2

p + p2 + 1)t2 − p3κ−6Λ1
pt

3 + p4κ−6t4 , p � dB ,

1 − {pκ−3Λ1
p − pκ−3(pAp − 1)Λ0

p}t + p2κ−3(Λ0
p)

2t2 , p | dB ,
and

Ap =
{

1 , p � D ,

2 , p |D .
The Euler factor for p � dB (resp. p | dB) is given by the formula for the denominator of the
Hecke series in [Shim-1, Theorem 2] (resp. [H-S, Section 4, (I)] and [Su, (1-34)]) under the
normalization of the Hecke eigenvalues{

(Λ0
p,Λ

1
p,Λ

2
p) → (p2(κ−3)Λ0

p, p
κ−3Λ1

p, p
2(κ−3)Λ2

p) , p � dB ,

(Λ0
p,Λ

1
p) → (pκ−3Λ0

p, p
κ−3Λ1

p) , p | dB .
We say that f ∈ Sκ(D) (resp. f ′ ∈ Aκ ) is a Hecke eigenform if f (resp. f ′) is a

common eigenfunction of Tp (resp. T ′
p) for any p < ∞. For Hecke eigenforms f ∈ Sκ(D)

and f ′ ∈ Aκ with Tpf = λpf and T ′
pf

′ = λ′
pf

′ (λp, λ′
p ∈ C), we define L-functions

LD(f, s) =
∏
p �D

(1 − λpp
κ−2−s + p2κ−3−2s)−1 ,

LdB (f ′, s) =
∏
p � dB

(1 − λ′
pp

κ−2−s + p2κ−3−2s)−1 .

When D = 1, we write L(f, s) for LD(f, s), which is the usual Hecke L-function of f .
5.4. We are now able to state the main result of the paper.

THEOREM 5.1. Let f ∈ Sκ(D) and f ′ ∈ Aκ , and suppose that

Tp f = λp f , T ′
p f

′ = λ′
p f

′

for every p < ∞. Then F(g) := L(f, f ′)(g) is a Hecke eigenform and the Hecke eigenvalues
are given as follows:

(i) If p � dB , we have

T 0
p F = F ,

T 1
p F = (pλp + pλ′

p)F ,

T 2
p F = (pλpλ

′
p + p2 − 1)F .

(ii) If p | dB , we have

T 0
p F = λ′

pF ,

T 1
p F = (pλp + (p − 1)λ′

p)F .
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REMARK 5.2. (i) We can verify that all the Hecke operators above for Sκ(D) are
self-adjoint with respect to the Petersson inner product, since the forms in Sκ(D) are assumed
to have the trivial central character. Thus λp is real for any p < ∞.

(ii) Let p |D. The Atkin-Lehner involution on Sκ(D) is given by

Wpf (h) = f
(
hwp

)
, f ∈ Sκ(D) , wp =

(
0 1

−p 0

)
∈ Hp .

Note that Wp commutes with the Hecke operator Tp. Suppose that Wpf = λ′′
pf . Then we

can check that T 0
p L(f, f ′) = λ′′

pL(f, f ′). This implies that L(f, f ′) = 0 unless λ′
p = λ′′

p

for every p |D.

COROLLARY 5.3. Let f and f ′ be as in Theorem 5.1. Then we have

L(L(f, f ′), spin, s)=LD(f, s) LdB (f ′, s)
∏
p |D

(1−{λp+(1−p)λ′
p}pκ−2−s + p2κ−3−2s)−1 .

In particular, if D = 1, we have

L(L(f, f ′), spin, s) = L(f, s) LdB (f ′, s) .

REMARK 5.4. When p � dB , the formula for the Hecke eigenvalues in Theorem 5.1 is
essentially the same as the corresponding result for the Yoshida lifting (cf. [Y, Theorem 6.1]).

6. Commutation relations. In this section, we state the commutation relations of
Hecke operators, from which Theorem 5.1 immediately follows. For a function φ on Hp, we
put φ̂(h) = φ(h−1), h ∈ Hp. We define φ̂′ for φ′ : H ′

p → C in a similar manner.
6.1. In this subsection, suppose that p � dB and let the notation be the same as in 5.1.

The metaplectic representation r in this case is given as follows:
Let Φ ∈ S(M4,2(Qp))⊗ S(Q×

p ), X ∈ M4,2(Qp) and t ∈ Q×
p . We have

r(g, 1, 1)Φ(X, t) = |ν(g)|−3/2
p Φ(g−1X, ν(g)t) , g ∈ Gp ,

r(1, 1, h′)Φ(X, t) = |det h′|3/2p Φ(Xh′, (deth′)−1t) , h′ ∈ H ′
p ,

r(1,

(
a 0
0 a′

)
, 1)Φ(X, t) = |a|7/2p |a′|−1/2

p Φ(aX, (aa′)−1t) , a, a′ ∈ Q×
p ,

r(1,

(
1 b

0 1

)
, 1)Φ(X, t) = ψp

(
bt

2
Tr(tXJXw−1)

)
Φ(X, t) , b ∈ Qp ,

r(1,

(
0 1

−1 0

)
, 1)Φ(X, t) = |t|4p

∫
M4,2(Qp)

ψp(t · Tr(tY JXw−1))Φ(Y, t)dQY .

6.2. The commutation relations are stated as follows:

PROPOSITION 6.1. Suppose that p � dB . Then we have

r(Φ1
p, 1, 1)ϕ0,p = p · r(1, φ̂p, 1)ϕ0,p + p · r(1, 1, φ̂′

p)ϕ0,p ,(6.1)

r(Φ2
p, 1, 1)ϕ0,p + (1 − p2)r(Φ0

p, 1, 1)ϕ0,p = p · r(1, φ̂p, φ̂′
p)ϕ0,p .(6.2)
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PROPOSITION 6.2. Suppose that p | dB . Then we have

r(Φ0
p, 1, 1)ϕ0,p = r(1, 1, φ̂′

p)ϕ0,p ,(6.3)

r(Φ1
p, 1, 1)ϕ0,p = p · r(1, φ̂p, 1)ϕ0,p + (p − 1)r(1, 1, φ̂′

p)ϕ0,p .(6.4)

7. Proof of Proposition 6.1.
7.1. In this section, we assume that p � dB and prove Proposition 6.1. We keep the

notation in 5.2 and Section 6. In the remaining part of the paper, we write ϕ0 for ϕ0,p. For
X ∈ M2(Qp) with wX + tXw = 0 and Y ∈ GL2(Qp), we put

u(X) :=
(

12 X

02 12

)
, ū(X) :=

(
12 02
X 12

)
, τ (Y ) :=

(
Y 02

02 w−1t Y−1w

)
∈ Gp .

Let

Λ :={(a, b, c)∈(Zp/pZp)
3 | (a, b, c) �≡(0, 0, 0) (mod (pZp)

3), a2+bc≡0 (mod pZp)} .
Note that �(Λ) = p2 − 1.

LEMMA 7.1. (i)

Kp diag(p, p, 1, 1)Kp = diag(1, 1, p, p)Kp ∪
⋃

c∈Zp/pZp

u

((
0 0
c 0

))
diag(1, p, 1, p)Kp

∪
⋃

b,d∈Zp/pZp

τ

((
1 d

0 1

))
u

((
0 b

0 0

))
diag(p, 1, p, 1)Kp

∪
⋃

a,b,c∈Zp/pZp

u

((
a b

c −a
))

diag(p, p, 1, 1)Kp .

(ii)

Kp diag(p2, p, p,1)Kp = diag(1, p, p, p2)Kp ∪
⋃

d∈Zp/pZp

τ

((
1 d

0 1

))
diag(p, 1, p2, p)Kp

∪
⋃

a∈Zp/pZp, c∈Zp/p2Zp

u

((
a 0
c −a

))
diag(p, p2, 1, p)Kp

∪
⋃

(a,b,c)∈Λ
u

(
p−1

(
a b

c −a
))

diag(p, p, p, p)Kp

∪
⋃

a,d∈Zp/pZp, b∈Zp/p2Zp

τ

((
1 d

0 1

))
u

((
a b

0 −a
))

diag(p2, p, p,1)Kp .

PROOF. We give a detailed proof for completeness. To simplify the notation, we write
G and K for Gp and Kp, respectively. Let B = {k = (kij )1≤i,j≤4 ∈ K | kij ∈ pZp (i > j)}
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be the Iwahori subgroup of G and

N0 =
{
τ

((
1 d

0 1

))
u

((
a b

c −a
)) ∣∣∣∣ a, b, c, d ∈ Zp

}
.

Then we have the Bruhat decomposition of K:

K =
⋃
γ∈W

BγB ,

where W is the Weyl group of G. Recall that #(W) = 8 andW is generated by

γ1 = τ

((
0 1

−1 0

))
, γ2 =




1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1


 .

Put g1 = diag(1, 1, p, p). Observe that BγBg1 = N0γBg1 ⊂ N0γ g1K for γ ∈ W . Since
γ1g1 = g1γ1 ∈ g1K , we have

K diag(p, p, 1, 1)K = Kg1K

=
⋃

γ∈W/〈γ1〉
N0γ g1K

= N0g1K ∪ N0γ2g1K ∪ N0γ1γ2g1K ∪ N0γ2γ1γ2g1K .

It is easily verified that

N0g1K = diag(1, 1, p, p)K ,

N0γ2g1K =
⋃

c∈Zp/pZp

u

((
0 0
c 0

))
diag(1, p, 1, p)K ,

N0γ1γ2g1K =
⋃

b,d∈Zp/pZp

τ

((
1 d

0 1

))
u

((
0 b

0 0

))
diag(p, 1, p, 1)K ,

N0γ2γ1γ2g1K =
⋃

a,b,c∈Zp/pZp

u

((
a b

c −a
))

diag(p, p, 1, 1)K ,

which proves the first assertion of the lemma.
Next put g2 = diag(1, p, p, p2). By an argument similar as above, we have

K diag(p2, p, p, 1)K = Bg2K ∪ Bγ1g2K ∪ Bγ2γ1g2K ∪ Bγ1γ2γ1g2K .

First we see that

Bγ2γ1g2K = N0γ2γ1g2K

=
⋃

a∈Zp/pZp, c∈Zp/p2Zp

u

((
a 0
c −a

))
diag(p, p2, 1, p)K .
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Similarly we have

Bγ1γ2γ1g2K =
⋃

a,d∈Zp/pZp, b∈Zp/p2Zp

τ

((
1 d

0 1

))
u

((
a b

0 −a
))

diag(p2, p, p, 1)K .

Using the decomposition(
1 0
c 1

)
=

(
1 c−1

0 1

) (
0 −1
1 0

) (
1 c

0 1

) (
c 0
0 c−1

)
(c ∈ Q×

p ) ,

we obtain

Bg2K =
⋃

c∈pZp/p2Zp

ū

((
0 0
c 0

))
g2K = g2K ∪ C1 ,

where

C1 =
⋃

b∈(Zp−pZp)/pZp

u

(
p−1

(
0 b

0 0

))
diag(p, p, p, p)K .

Similarly we have

Bγ1g2K =
⋃

d∈Zp/pZp

τ

((
1 d

0 1

))
diag(p, 1, p2, p)K ∪ C2 ,

where

C2 =
⋃

b∈(Zp−pZp)/pZp,d∈Zp/pZp

τ

(
p−1b

(
d −d2

1 −d
))

diag(p, p, p, p)K .

Since

C1 ∪ C2 =
⋃

(a,b,c)∈Λ
u

(
p−1

(
a b

c −a
))

diag(p, p, p, p)K ,

we are done. �

7.2. Denote by σm,n (resp. σ ′) the characteristic function of Mm,n(Zp) (resp. Z×
p ).

Then we have ϕ0(X, t) = σ4,2(X)σ
′(t). From now on, we often write σ for σm,n if there is no

fear of confusion. The following elementary facts are frequently used in the later discussion.

LEMMA 7.2. For t, t ′ ∈ Qp, we have∑
a∈Zp/pZp

σ (p−1(t + a)) = σ(t) ,

∑
a∈Zp/pZp

σ (p−1(t + a))σ (p−1(t ′ − a)) = σ(p−1(t + t ′))

and ∑
a∈Zp/pZp

σ (t)σ (p−1(at + t ′)) = pσ(p−1t)σ (p−1t ′)+ σ(t)σ (t ′)− σ(p−1t)σ (t ′) .
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LEMMA 7.3. For x ∈ M2,2(Qp), set

λ(x) := σ

((
1 0
0 p−1

)
x

)
+

∑
a∈Zp/pZp

σ

((
p−1 0

0 1

) (
1 a

0 1

)
x

)

and

ρ(x) := σ

(
x

(
p−1 0

0 1

))
+

∑
a∈Zp/pZp

σ

(
x

(
1 a

0 1

) (
1 0
0 p−1

))
.

Then

λ(x) = ρ(x) .

For the rest of this section, we put

[i1, i2, i3, i4](x) = σ2,2

((
p−i1x1 p−i2x2

p−i3x3 p−i4x4

))

for (i1, i2, i3, i4) ∈ Z4, x =
(
x1 x2
x3 x4

)
∈ M2,2(Qp) .

7.3. Proof of (6.1). LetX = (
x
y

) ∈ M4,2(Qp) and t ∈ Q×
p . In view of 6.2 and Lemma

7.1, we obtain

r(Φ1
p, 1, 1)ϕ0(X, t) = p3/2σ ′(pt)I (X) ,

where

I (X) =
∑

a,b,c∈Zp/pZp

σ


 p−1

{
x +

(
a b

c −a
)
y

}
y




+
∑

b,d∈Zp/pZp

σ




(
p−1 0

0 1

) (
1 d

0 1

) {
x +

(
0 b

0 0

)
y

}
(
p−1 0

0 1

) (
1 d

0 1

)
y




+
∑

c∈Zp/pZp

σ




(
1 0
0 p−1

) {
x +

(
0 0
c 0

)
y

}
(

1 0
0 p−1

)
y


 + σ

(
x

p−1y

)
.

On the other hand, since

Up

(
p−1 0

0 1

)
Up =

⋃
a∈Zp/pZp

(
1 a

0 1

) (
1 0
0 p−1

)
Up ∪

(
p−1 0

0 1

)
Up ,

we obtain

p{r(1, φ̂p, 1)ϕ0(X, t)+ r(1, 1, φ̂′
p)ϕ0(X, t)} = p3/2σ ′(pt)I ′(X) ,
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where

I ′(X) =δ(Tr(xw−1t yw) ∈ pZp)σ (X)+ p3σ(p−1X)

+ p
∑

a∈Zp/pZp

σ

(
X

(
1 a

0 1

) (
1 0
0 p−1

))
+ pσ

(
X

(
p−1 0

0 1

))
.

The proof of (6.1) is reduced to proving the following formula:

I (X) = I ′(X) .(7.1)

Without loss of generality, we may assume that y = diag(pλ, pµ) with λ ≥ µ ≥ 0 in view of
the elementary divisor theorem. First suppose that µ > 0. Then

I (X) = p3σ(p−1x)+ pλ(x)+ σ(x)

and

I ′(X) = σ(x)+ p3σ(p−1x)+ pρ(x) .

Equality (7.1) immediately follows from Lemma 7.3.
Next, suppose that λ = µ = 0. Then

I (X) =
∑

a,b,c∈Zp/pZp

σ

(
p−1

(
x +

(
a b

c −a
)))

and

I ′(X) = δ(Tr(x) ∈ pZp)σ (x) .

Let x = (
x1 x2
x3 x4

)
. If x �∈ M2(Zp), we have I (X) = I ′(X) = 0. Assume that x ∈ M2(Zp). If

Tr(x) = x1 + x4 ∈ pZp (resp. ∈ Z×
p ), we have I (X) = I ′(X) = 1 (resp. = 0) by Lemma

7.2, which proves (7.1).
Finally, suppose that λ > 0 and µ = 0. We then have

I (X) = p
∑

a,b∈Zp/pZp

σ

(
p−1x +

(
0 p−1b

0 p−1a

))

+
∑

b∈Zp/pZp

σ

((
p−1 0

0 1

) {
x +

(
0 b

0 0

)})

= p[1, 0, 1, 0](x)+ [1, 0, 0, 0](x)
and

I ′(X) = δ(x1 ∈ pZp)σ (x)+ p[1, 0, 1, 0](x) ,
which implies that I (X) = I ′(X). This completes the proof of (6.1).

7.4. Proof of (6.2). Let X = (
x
y

) ∈ M4,2(Qp) and t ∈ Q×
p . Fisrt observe that

r(Φ2
p, 1, 1)ϕ0(X, t) = p3σ ′(p2t)J (X) ,
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where

J (X) = σ




(
1 0
0 p−1

)
x(

p−1 0
0 p−2

)
y


 +

∑
d∈Zp/pZp

σ




(
p−1 p−1d

0 1

)
x(

p−2 p−2d

0 p−1

)
y




+
∑

a∈Zp/pZp

c∈Zp/p2Zp

σ




(
p−1 0

0 p−2

)
x +

(
p−1a 0
p−2c −p−2a

)
y(

1 0
0 p−1

)
y




+
∑

(a,b,c)∈Λ
σ


 p−1x + p−2

(
a b

c −a
)
y

p−1y




+
∑

a,d∈Zp/pZp

b∈Zp/p2Zp

σ




(
p−2 p−2d

0 p−1

)
x +

(
p−2a p−2(b + ad)

0 −p−1a

)
y(

p−1 p−1d

0 1

)
y


 .

We also have

r(Φ0
p, 1, 1)ϕ0(X, t) = p3σ ′(p2t)J ′(X) ,

where

J ′(X) := σ

(
p−1x

p−1y

)
.

On the other hand, we obtain

r(1, φ̂p, φ̂p)ϕ0(X, t) = p2σ ′(p2t)J ′′(X) ,

where

J ′′(X) := δ(Tr(xw−1t yw) ∈ p2Zp)
∑

b∈Zp/pZp

σ

((
x

y

) (
1 b

0 1

) (
1 0
0 p−1

))

+ δ(Tr(xw−1t yw) ∈ p2Zp)σ

((
x

y

) (
p−1 0

0 1

))

+ p3
∑

b∈Zp/pZp

σ

((
x

y

) (
1 b

0 1

) (
p−1 0

0 p−2

))
+ p3σ

((
x

y

) (
p−2 0

0 p−1

))
.

To show (6.2), it remains to verify

J (X)+ (1 − p2)J ′(X) = J ′′(X) .(7.2)

As in 7.3, we may assume that y = diag(pα, pβ), where α ≥ β ≥ 0. Let x = (
x1 x2
x3 x4

)
. We

divide the proof into the following five cases:

(a) β ≥ 2 , (b) α ≥ 2 , β = 1 , (c) α = β = 1 , (d) α ≥ 1 , β = 0 , (e) α = β = 0 .
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(a) In this case, we have

J (X)+ (1 − p2)J ′(X) = σ

((
1 0
0 p−1

)
x

)
+

∑
d∈Zp/pZp

σ

((
p−1 p−1d

0 1

)
x

)

+ p3σ

((
p−1 0

0 p−2

)
x

)
+ p3

∑
d∈Zp/pZp

σ

((
p−2 p−2d

0 p−1

)
x

)

= λ(x)+ p3λ(p−1x)

and

J ′′(X) = ρ(x)+ p3ρ(p−1x) .

Equality (7.2) follows from Lemma 7.3.
(b) In this case, we have

J (X) = [1, 1, 0, 0](x)+ p2
∑

a∈Zp/pZp

σ

((
p−1x1 p−1x2

p−2x3 p−2x4 − p−1a

))

+
∑

(a,b,c)∈Λ
σ

((
p−1x1 p−1(x2 + b)

p−1x3 p−1(x4 − a)

))

+ p
∑

d∈Zp/pZp

b∈Zp/p2Zp

σ

((
p−2(x1 + dx3) p−2(x2 + dx4)+ p−1b

p−1x3 p−1x4

))

= [1, 1, 0, 0](x)+ p2[1, 1, 2, 1](x)

+
∑

a≡0 (mod p)
bc≡0 (mod p), (b,c) �≡(0,0) (mod p)

σ

((
p−1x1 p−1(x2 + b)

p−1x3 p−1x4

))

+
∑

a �≡0 (mod p)
b �≡0 (mod p)

σ

((
p−1x1 p−1(x2 + b)

p−1x3 p−1(x4 − a)

))

+ p2
∑

d∈Zp/pZp

σ

((
p−2(x1 + dx3) p−1(x2 + dx4)

p−1x3 p−1x4

))

= [1, 1, 0, 0](x)+ p2[1, 1, 2, 1](x)+ (p − 1)[1, 1, 1, 1](x)
+ [1, 0, 1, 0](x)− [1, 1, 1, 0](x)
+ p2σ(p−1x2)σ (p

−1x4)
∑

d∈Zp/pZp

σ (p−1x3)σ (p
−1(p−1x3 + p−1x1))

= [1, 1, 0, 0](x)+ p2[1, 1, 2, 1](x)+ (p − 1)[1, 1, 1, 1](x)
+ [1, 0, 1, 0](x)− [1, 1, 1, 0](x)
+ p2{p[2, 1, 2, 1](x)+ [1, 1, 1, 1](x)− [1, 1, 2, 1](x)} ,
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and hence

J (X)+ (1 − p2)J ′(X) = [1, 1, 0, 0](x)+ p[1, 1, 1, 1](x)+ [1, 0, 1, 0](x)
− [1, 1, 1, 0](x)+ p3[2, 1, 2, 1](x) .

On the other hand,

J ′′(X) = δ(x1 ∈ pZp)
∑

b∈Zp/pZp

σ

((
x1 p−1(bx1 + x2)

x3 p−1(bx3 + x4)

))

+ δ(x1 ∈ pZp)σ

((
p−1x1 x2

p−1x3 x4

))
+ p3σ

((
p−2x1 p−1x2

p−2x3 p−1x4

))

= σ(p−1x1)σ (p
−1x2)

∑
b∈Zp/pZp

σ (x3)σ (p
−1(bx3 + x4))

+ [1, 0, 1, 0](x)+ p3[2, 1, 2, 1](x)
= p[1, 1, 1, 1](x)+ [1, 1, 0, 0](x)− [1, 1, 1, 0](x)

+ [1, 0, 1, 0](x)+ p3[2, 1, 2, 1](x) .
Thus Equality (7.2) for this case immediately follows.
(c) In this case, we have

J (X) =
∑

a∈Zp/pZp

c∈Zp/p2Zp

σ

((
p−1x1 p−1x2

p−2x2 + p−1c p−2x4 − p−1a

))

+
∑

(a,b,c)∈Λ
σ

(
p−1

(
x +

(
a b

c −a
)))

+
∑

a,d∈Zp/pZp

b∈Zp/p2Zp

σ

((
p−2(x1 + dx3)+ p−1a p−2(x2 + dx4)+ p−1(b + ad)

p−1x3 p−1x4 − a

))

= pσ(p−1x)+ δ(x1 + x4 ∈ pZp, x
2
1 + x2x3 ∈ pZp)(σ (x)− σ(p−1x))

+ p2σ(p−1x)

= (p2 + p − 1)σ (p−1x)+ δ(x1 + x4 ∈ pZp, x
2
1 + x2x4 ∈ pZp)σ (x) .

On the other hand, it is easily seen that

J ′(X) = σ(p−1x)

and

J ′′(X)=δ(x1 + x4 ∈ pZp)

{
σ

((
p−1x1 x2

p−1x3 x4

))
+

∑
b∈Zp/pZp

σ

((
x1 p−1(bx1 + x2)

x3 p−1(bx3 + x4)

))}
.
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To prove (7.2), it is sufficient to show that

pσ(p−1x)+ δ(x1 + x4 ∈ pZp)

{
δ(x1 + x2x3 ∈ pZp)σ (x)

−
∑

b∈Zp/pZp

σ

((
x1 p−1(bx1 + x2)

x3 p−1(bx3 + x4)

))
− [1, 0, 1, 0](x)

}

vanishes. This is proved by a tedious but straightforward calculation and we omit the detail.
(d) In this case, we have

J (X) =
∑

a∈Zp/pZp

b∈Zp/p2Zp

σ

((
p−2 0

0 p−1

)
x +

(
pα−2a p−2b

0 −p−1a

))
,

J ′(X) = 0 ,

J ′′(X) = δ(x1 + pαx4 ∈ p2Zp)σ

((
p−1x1 x2

p−1x3 x4

))
.

Since

J (X) =
∑

a∈Zp/pZp

σ

((
p−2x1 + pα−2a x2

p−1x3 p−1(x4 − a)

))
= J ′′(X) ,

we are done.
(e) In this remaining case, we have

J (X) = J ′(X) = J ′′(X) = 0

and the proof of (7.2) has been completed.

8. Proof of Proposition 6.2. In this section, we assume that p | dB and prove Propo-
sition 6.2. The proof of (6.3) is straightforward. To prove (6.4), we need some preparation.
By σm,n, we denote the characteristic function of Mm,n(Op). As in Section 7, we often write
σ for σm,n. For a subset A of Bp, we put A− := {a ∈ A | tr(a) = 0}. Recall that Op is the
maximal order ofBp,Π is a (fixed) prime element ofBp and π = n(Π). We put Pp = ΠOp.

8.1. We now collect several facts on the arithmetic of Bp used in the later discussion.

LEMMA 8.1. We have

�(Op/πOp) = p4 , �(Op/ΠOp) = p2 , �(O−
p /πO−

p ) = p3 , �((Π−1Op)
−/O−

p ) = p2 .
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LEMMA 8.2. For x ∈ Bp, we have∑
b∈O−

p /πO−
p

σ (π−1(x + b)) = δ(tr(x) ∈ pZp)σ (x) ,

∑
b∈O−

p /πO−
p

σ (Π−1(x + b)) = p2δ(tr(x) ∈ pZp)σ (x) ,

∑
b∈(Π−1Op)−/O−

p

σ (x + b) = σ(Πx) ,

∑
b∈P−

p /πP−
p

σ (π−1(x + b)) = pσ(Π−1x) ,

∑
b∈O−

p /P
−
p

σ (Π−1(x + b)) = δ(tr(x) ∈ pZp)σ (x) ,

∑
b∈P−

p /πP−
p

σ (π−1Π−1x + b) = δ(tr(x) ∈ p2Zp)σ (Π
−1x) .

8.2. We first consider the case p |D. We then have φ̂p = φ+
p + φ−

p , where φ+
p (resp.

φ−
p ) is the characteristic function of Up diag(1, p−1)Up (resp. Up diag(p−1, 1)Up).

LEMMA 8.3. We have

r(Φ1
p, 1, 1)ϕ0(X, t) = p3/2σ ′(πt)I (X) ,

where

I

(
x

y

)
=

∑
b∈O−

p /πO−
p

σ

(
π−1(x + by)

y

)

+
∑

c∈(Π−1Op−Op)−/O−
p

σ

(
Π−1(x + cy)

Π−1y

)
+ σ

(
x

π−1y

)
.

PROOF. This follows from the definition of r and the coset decomposition

Kp

(
1 0
0 π

)
Kp =

⋃
b∈O−

p /πO−
p

(
1 b

0 1

) (
π 0
0 1

)
Kp

∪
⋃

c∈(Π−1Op−Op)−/O−
p

(
1 c

0 1

) (
Π 0
0 Π

)
Kp ∪

(
1 0
0 π

)
Kp . �

LEMMA 8.4. (i) If y ∈ O×
p , we have

I

(
x

y

)
= δ(tr(xy−1) ∈ pZp)σ (x) .
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(ii) If y ∈ ΠO×
p , we have

I

(
x

y

)
= p2δ(tr(xy−1) ∈ pZp)σ (Π

−1x)− σ(Π−1x)+ σ(x) .

(iii) If y ∈ πOp, we have

I

(
x

y

)
= p3σ(π−1x)+ (p2 − 1)σ (Π−1x)+ σ(x) .

PROOF. When y ∈ O×
p , we have

I

(
x

y

)
=

∑
b∈O−

p /πO−
p

σ (π−1(xy−1 + b)) = δ(tr(xy−1) ∈ pZp)σ (x) .

When y ∈ ΠO×
p , we have

I

(
x

y

)
=

∑
b∈O−

p /πO−
p

σ (Π−1(xy−1 + b))+
∑

c∈(Π−1Op)−/O−
p

σ (xy−1 + c)− σ(xy−1)

= p2δ(tr(xy−1) ∈ pZp)σ (Π
−1x)+ σ(x)− σ(Π−1x) .

When y ∈ πOp, we have

I

(
x

y

)
= �(O−

p /πO−
p )σ (π

−1x)+ �((Π−1Op − Op)
−/O−

p )σ (Π
−x)+ σ(x)

= p3σ(π−1x)+ (p2 − 1)σ (Π−1x)+ σ(x) . �

LEMMA 8.5. We have

r(1, φ+
p , 1)ϕ0(X, t) = p1/2σ ′(pt)J+(X) ,

where

J+
(
x

y

)
= σ(y)×

{
δ(tr(xy−1) ∈ pZp)σ (x) , y ∈ O×

p ,

σ (x) , y ∈ ΠOp .

PROOF. Since

Up diag(1, p−1)Up =
⋃

b∈Zp/pZp

(
1 b

0 1

)(
1 0
0 p−1

)
Up ,

we have

r(1, φ+
p , 1)ϕ0(X, t) = p−1/2σ ′(pt)

∑
b∈Zp/pZp

ψ

(
bt

2
tr(X∗QX)

)
σ(X)

= p−1/2σ ′(pt) · p · δ(tr(xσy) ∈ Zp)σ

((
x

y

))

= p1/2σ ′(pt)σ (x)×
{
δ(tr(xy−1) ∈ pZp) , y ∈ O×

p ,

1 , y ∈ ΠOp ,
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which proves the lemma.

LEMMA 8.6. We have

r(1, φ−
p , 1)ϕ0(X, t) = p5/2σ ′(pt)J−(X) ,

where

J−
(
x

y

)
= σ(y)×




0 , y ∈ O×
p ,

(δ(tr(xy−1) ∈ pZp)− p−1)σ (Π−1x) , y ∈ ΠO×
p ,

pσ(π−1x)+ (1 − p−1)σ (Π−1x) , y ∈ πOp .

PROOF. To prove the lemma, we recall that, for h ∈ GL2(Qp) and ϕ ∈ V p,

(I ◦ r(1, h, 1)ϕ)(X, t) = |deth|−1/2Iϕ(det(h) · h−1X, det(h−1) · t) ,
where

Iϕ
((

x

y

)
, t

)
=

∫
Bp

ψ(−t tr(uσ x))ϕ

((
u

y

)
, t

)
du .

Here the measure du on Bp is normalized by vol(Op) = p−1. It is easily verified that

Iϕ0

((
x

y

)
, t

)
= p−1σ(Πx)σ(y)σ ′(t)

and

I−1ϕ

((
x

y

)
, t

)
= |t|4

∫
Bp

ψ(t tr(uσ x))ϕ

((
u

y

)
, t

)
du .

It follows that

(I ◦ r(1, φ−
p , 1)ϕ0)(X, t) = p−1/2

∑
b∈Zp/pZp

Iϕ0

((
1 0
b p−1

) (
x

y

)
, pt

)

= p−3/2σ(Πx)σ ′(pt)
∑

b∈Zp/pZp

σ (bx + p−1y) .

We thus have

r(1, φ−
p , 1)ϕ0(X, t) = |t|4

∫
Bp

ψ(t tr(uσ x))p−3/2σ(Πu)σ ′(pt)
∑

b∈Zp/pZp

σ (bu+ p−1y)du

= p5/2σ ′(pt)K
(
x

y

)
,

where

K

(
x

y

)
=

∫
Bp

ψ(p−1 tr(uσ x))σ (Πx)
∑

b∈Zp/pZp

σ (bu+ p−1y)du.
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First observe that K
(
x
y

) = 0 if y �∈ ΠOp. Assume that y ∈ ΠOp. Then

K

(
x

y

)
= σ(p−1y)

∫
Π−1Op

ψ(p−1 tr(uσ x))du

+
∑

b∈(Zp−pZp)/pZp

∫
Π−1Op

ψ(p−1 tr(uσ x))σ (b−1u+ p−1y)du

= vol(Π−1Op)σ (p
−1y)σ(p−1x)

+
∑

b∈(Zp−pZp)/pZp

∫
Π−1Op

ψ(p−1 tr((u− bp−1y)σ x))σ (b−1u)du

= pσ(π−1x)σ(π−1y)

+
∑

b∈(Zp−pZp)/pZp

ψ(p−2b tr(yσx))
∫
Π−1Op

ψ(p−1 tr(uσ x))σ (u)du

= pσ(p−1x)σ(π−1y)

+ {pδ(tr(yσ x) ∈ p2Zp)− 1} vol(Op)σ (Π
−1x) .

The last term is equal to {δ(tr(xy−1) ∈ pZp) − p−1}σ(Π−1x) if y ∈ ΠO×
p , and

(1 − p−1)σ (Π−1x) if y ∈ πOp. This proves the lemma.

The following fact is clear.

LEMMA 8.7. We have

r(1, 1, φ′
p)ϕ0(X, t) = p3/2σ ′(pt)J ′(X) ,

where

J ′
(
x

y

)
= σ(Π−1x)σ(Π−1y) .

A straightforward calculation shows the following formula, which completes the proof
of (6.4) in the case where p |D.

PROPOSITION 8.8. We have

J (X)− J+(X)− p2J−(X)+ (1 − p)J ′(X) = 0 .

8.3. In this subsection, we suppose that p � D. We only give a sketch of the proof of
(6.4) in this case, since the proof is similar to that in 8.2. First observe that

Kp

(
1 0
0 π

)
Kp =

⋃
b∈P−

p /πP−
p

(
1 b

0 1

)(
π 0
0 1

)
Kp

∪
⋃

c∈(Op−Pp)−/P−
p

(
1 c

0 1

)(
Π 0
0 Π

)
Kp ∪

(
1 0
0 π

)
Kp .
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LEMMA 8.9. We have

r(Φ1
p, 1, 1)ϕ0(X, t) = p3/2δ′(πt)I (X) ,

r(1, φ̂p, 1)ϕ0(X, t) = p1/2δ′(πt)J (X) ,
r(1, 1, φ̂p)ϕ0(X, t) = p3/2δ′(πt)J ′(X) ,

where

I (X) =
∑

b∈P−
p /πP−

p

σ

(
π−1(x + by)

Πy

)
+

∑
c∈(Op−Pp)−/P−

p

σ

(
Π−1(x + cy)

y

)

+ σ

(
x

Π−1y

)
,

J (X) = δ(tr(xσ y) ∈ pZp)σ

(
x

Πy

)
+ p3σ

(
π−1

Π−1y

)
,

J ′(X) = σ

(
Π−1x

y

)
.

Using Lemmas 8.2 and 8.9, we obtain the following formula, from which (6.4) immedi-
ately follows.

PROPOSITION 8.10.

I (X) = J (X)+ (p − 1)J ′(X) .
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