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Abstract. If a symmetric association scheme of class two is realized as the symmetrization of a commutative 
association scheme, then it either admits a unique symmetrizable fission scheme of class three or four, or admits 
three fission schemes, two of which are class three and one is of class four. We investigate the classification 
problem for symmetrizable (commutative) association schemes of two-class symmetric association schemes. In 
particular, we give a classification of association schemes whose symmetrizations are obtained from completely 
multipartite strongly regular graphs in the notion of wreath product of two schemes. Also the cyclotomic schemes 
associated to Paley graphs and their symmetrizable fission schemes are discussed in terms of their character tables. 
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1. Introduction and preliminary 

Although every nonsyrnmetric commutative association scheme essentially has one sym- 
metrization, there are many symmetric schemes that are realized as symmetrizations for 
many commutative schemes while others that do not admit any symmetrizable fission 

schemes at all. As a continuation of the work in [13] on classification of symmetrizable 
commutative association schemes, in this paper we investigate four-class symmetrizable 
fission schemes for two- or three-class symmetric schemes. 

In this section, we give some terminology and the notion of the wreath product of two 
schemes, and recall two basic lemmas related to fusions and fissions of association schemes. 

In Section 2, we give a method for obtaining symmetrizable fission schemes for completely 
multipartite strongly regular graphs and classify such schemes of class four. Finally in 

Section 3 we discuss the four-class fission schemes of Paley graphs. 

1.1. Character tables 

Let 3E = (X, {Ri}o<_i<d) be a commutative association scheme. Let Ao, A1 . . . . .  Ad be the 
adjacency matrices of the scheme 3E and let Eo, E1 . . . . .  Ed be the primitive idempotents of 
the Bose-Mesner algebra PA = (Ao, AI . . . . .  Ad) = lEo, El . . . . .  Ed) of Y. The character 
table P = (pj( i ) )  of X is the (d + 1) • (d + 1) matrix given by 

d 

Aj = E PJ(i)Ei" 
i=o 
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The (i, j)-entry pj ( i )  of P is characterized by the relation AjEi  = p j ( i )Ei .  We have 
po(i) = 1 and py(O) = ky = I{Y e X I (x, y) e Rj}I for all i, j in {0, 1 . . . . .  d}. The rank 
of Ei is called the multiplicity mi, i = O, 1 . . . . .  d. 

We can calculate the character tables of fusion schemes using the following lemma, which 
is due to Bannai [1], Johnson & Smith [10], and Muzichuk [12], if the fission tables are 
known. 

Lemma 1.2 Let ~. = ( X , { Ri  }o<i <_ d ) be a commutative scheme, and {A~}0_<a_<~ be a parti- 
lion of{O, 1 . . . . .  d} such that Ao = {0}. Suppose for  every ot~ {0, 1 . . . .  , t~}, [.Ji~A, Ri' --- 
[.Jj~^~, Rj  for  some or' ~ {0, 1 . . . . .  8}. Then the partition gives rise to a fusion scheme 

= (X, {/~}o_<a_<~) with R~ = Ui~^~ Ri if  and only if  there exists a partition {A~}0<a_<~ 
of{O, 1 . . . . .  d} with A~ = {0} such that each (A~,/xa)-block of the character table P of  g~ 
has a constant row sum. In this case, the constant row sum ~-~.je^, p j ( i )  for  i ~ /x*# of  the 

block (/x~, Aa) is the (fl, ot)-entry ~ ( ~ )  of  the fusion table P. 

For a given symmetric scheme ~, a nons),mmetric commutative fission scheme X of 
is called symmetrizable fission scheme of ~ if ~ can be obtained from 3C by fusing every 
non-self-paired class with its conjugate counterpart. For the calculation of the character 
tables for the symmetrizable fission schemes, the following lemma in [3, Theorem 2.3] is 
useful. 

Lemma 1.3 Let ~ = ( X , {/~o}o_<n_<8) be a commutative association scheme with IXI = n. 
Let ~. = (X, {Ri}i~l) where I = {0, 1 . . . . .  8} O {d} be a (8 + 1)-class commutative fission 
scheme o f  ~ such that ko and E~ of  ~ split into pairs as R~ = Rv t.; Rd and Ev = E~ ~) 
Ed in 2E. I f  R~ = Rd, then the character table P = (p j ( i ) )  of  X is determined from 
/3 = (/30(~)) as follows: 

p j ( i )  = p j ( i )  

pj  (~) = pj  (d) = pj  (~) 
pv(i)  = pv(i)ku . ~ 1  

pd(i) = ~v(i)kd" ~ 1 ,  f o r i  ~ I -- {/z,d}, j e I - { v , d } ,  and 

pv(tz) = pd(d) = pv(d)  = pd(IZ) = �89 + (--n. k~ . rh~-1)1/2}. 

Lemma 1.3 will be used repeatedly whenever we need to calculate fission tables for 
putative symmetrizable fission schemes for given symmetric association schemes. If a 
fission table is realized as the character table of an association scheme, we want to describe 
the scheme and classify it if it is possible. We now recall the notion of wreath product and 
some examples of association schemes that will be used in our discussion. 

1.4. Wreath products 

Let A0, Al . . . . .  A d be the adjacency matrices of an association scheme ~. The matrix 
R(~.) = ~,di= 1 iAi is called the relation table of X. The wreath product of two association 
schemes is defined in terms of the relation tables of the two schemes as follows. Let 
3F~ = ( X ,  {Ri}o<i<d) with IXI = n, ~ = (Y, {Sj}o<_j<e) with IYI --- m be two association 
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schemes. Let W be the (d + e)-class association scheme on X • Y whose relation table is 
given by 

R(140 = In | (R(X)  + e(Jn - In)) + R ( ~ )  | Jn 

where Ie and Je denote the e x e identity matrix and the all-1 matrix, respectively, and 
A | B = (a~gB), the tensor product of A = (a,j) and B. The scheme W is called the 
wreath product of 2E with ~ ,  and denoted by W = X f ~9. (The notion of wreath product 
is due to [14, pp. 45-47].) 

1.5. :~(K.) 

The complete graph on n vertices is denoted by K, and the (trivial) association scheme 
given by the relation table Jn - In is denoted by 3~(K,). The character table of the scheme 

1 n - 1  m o = l  
X(Kn) is given by P(X(K~) )  = ( t  -1)m~ = n -  I. 

1.6. Group schemes Y.(G) 

For a given finite group G with its conjugacy classes Co = {1}, Cl . . . . .  Ca, the scheme 
defined by (a, b) c Ri iff ba -1 ~ C,, i = O, 1 . . . . .  d, is called the group scheme of G 
and denoted by X ( G )  = (G, {R,}o<,<_a). Suppose fo = 1, f l ,  f2 . . . . .  fa are degrees,of 
distinct irreducible characters of G. Then the multiplicities m, of X(G) are given by f2  
and  ki ---- ]C~I, i = O, 1 . . . . .  d. In this case, the character table P(3~(G)) is given by 
F -1 �9 T-  K, where T is the group character table of G, F - l  = diag[1, f1-1 . . . . .  fa--t], and 
K = diag[1, kl . . . . .  kd]. 

1. Z Cyclotomic schemes X(d,  G F(q))  

Let q be a prime power number, and d be a positive integer that divides q - 1. Let ot be 
a generator of the multiplicative group GF(q)* ,  and H be the cyclic subgroup generated 
by otd. Thus [GF(q)* : HI = d, and its cosets are {Hot' F i = O, 1 . . . . .  d - 1}. Define 
R0 = {(x,x) I x ~ GF(q)} ,  and Ri = {(x, y) I x - y 6 Hot~-l}, for i  = 1, 2 . . . . .  d. 
Then X(d ,  G F ( q ) )  = (GF (q ) ,  {Ri}o<_t<_d) forms an association scheme and is called the 
cyclotomic scheme of class d over G F(q) .  

The character table of 3~(d, G F ( q ) )  can be derived from the group character table for 
the elementary abelian group G F(q )  by a fusion. Let T be the character table of the group 
G F (q) whose rows are indexed by the set of additive characters and the columns are indexed 
by the elements of GF(q) .  Take the coset decomposition by the subgroup H = (otd) as 
a partition of G F ( q )  - {0}. From the table T, first we combine (add) the corresponding 
columns in each part according to the partition {{0}, H, Hot . . . . .  Hot d-1 }, and then from 
the resulting q • (d + 1) table, delete all the duplicated rows leaving d + 1 distinct rows. 
(There are exactly d + 1 distinct rows!) The character table P of 3~(d, G F ( q ) )  is the 
(d + 1) x (d 4- 1) fusion table of T. The rows of P can be rearranged in such a way that 

P =  : Po 
1 
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where k = ~a 1 , Po = ~'~ia=-~ ~iC i with 

C = 
�9 . " .  �9 

0 " .  

Here the number ~bi's are known as Gaussian periods and given by 

#EHa'-I 

for a fixed nontrivial additive character X- Finally, we note that the cyclotomic scheme 
~(d,  GF(q) )  is symmetric if and only if ~ is even or q is a power of  2. 

1.8. Strongly regular graphs 

Let I" = (V, E)  be a strongly regular graph (with vertex set V and edge set E) having 
the parameters (n, k, ~.,/z). Let 3~(1-') = (V, {R0, R1, R2}) be the symmetric association 
scheme on V where relations are defined by R0 = {(x, x) [ x 6 V}, R1 = {(x, y) I (x, y) 
E}, and R 2 = { ( x , y )  6 V x V l x # y , ( x , y ) r  
I{Y 1 (x, y) c Rl}l, and the character table P of  3~(F) is given by 

p = 
1 k n - k - I )  1 
1 r t rn 
1 s u n - m - 1  

w h e r e r  = � 8 9  = � 8 9  t = - r -  1, u = - s -  1, and 

m = �89 [n - 1 - {2k + (n - 1) (~. - / z )  }. D -  �89 ] with D = (~. - / z )  2 + 4(k - / z ) .  Conversely, for 
any given two-class symmetric association scheme 3C = (X, {R0, R1, R2}), the associated 
relation graphs F(30 = (X, R1) and I~(3E) = (X, R2) are strongly regular graphs having 
parameters (IXl, kl, p ~ ,  P~I) and (IXl, k2, P~z, P~2) respectively�9 

2. Fission schemes of completely multipartite strongly regular graphs 

2.1. Completely multipartite strongly regular graphs 

We now consider a special class of  strongly regular graphs each of which has the parameters 
(n, k, 2k - n, k) for some n and k with n < 2k. For such graphs r = 0, s = k - n, and m = 
n(n - k - 1)(n - k) -1. Moreover, such a graph F is a completely multipartite graph 

n with the size of  each part f = n - k, and its complement P is the union of g = n--'-'~ 
copies of  the complete graph K f .  Thus, the graph 1-" is also described by the parameters 
( f g ,  f ( g  - 1), f ( g  - 2), f ( g  - t)) ,  and in the notion of wreath product in 1.4, 3~(1 ~) = 
2~(Ky) f 3~(K~). 
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2.2. Three-class fission schemes of X(F ) 

In [13, Lemma 5.3], it is shown that if 3[(F) for the strongly regular graph F of (fg, f (g  - 

1), f ( g  - 2),  f ( g  - 1)), f ,  g > 2 is realized as the symmetrization of a three-class 
association scheme 3[ then the character table of 3[ must be one of the following three: 

[]I �89 f ( g - l )  � 8 9  f - 1  1 
(i) Pp = P ~ - 1  � 8 9  1) 

fi p --1 �89 - 1) _�89 - ~ f  f - 1  g - - 1  

I I � 8 9  1) � 8 9  1) f -  1 1 
1 0 0 - 1  g ( f  - 1) 

(ii) P,,----- 1 o- 6 f - 1  � 8 9  
1 1 ~ cr f -- I ~ (g  -- 1) 

[ I  I f ( g - 1 ) � 8 9 1 8 9  1 
(iii) Pr = 0 r � 8 9  1) 

0 f r � 8 9  1) 
- - f  � 8 9  � 8 9  g - 1  

where p = 2{-(g  - 1 ) / ( f  - 1)}�89 ~r = � 8 9  + (-g)�89 and z = 3{-1 + (-f) �89 
Furthermore, it is shown that each of the above tables becomes feasible if and only if 

(i) f and g are even and g - 1 is divisible by f - 1, for Pp; 
(ii) either f is even and g is odd, or f is odd and g -- 3 (rood 4), for Pa; 

(iii) f --= 3 (mod 4) for P~. 

As an easy consequence of this, we have the following observation: 

Lemma 2.3 Let F be a strongly regular graph having the parameters ( f g , f (g-  1), f ( g  - 

2), f (g - 1)). Suppose 3[(F) has two distinct symmetrizable fission schemes of class 3. 
Then 

(1) Both f and g are congruent to 3 modulo 4. 
(2) The character tables of the two three-class fission schemes must be of type P~ and Pr 

in2.2. 
(3) 3[(1-') admits a symmetrizable fission scheme of class 4 having the character table 

Ili �89189189189 - � 8 9  I) 
p =  11 0 0 f , r � 8 9  

a ~ � 8 9  ~ ( f - 1 )  � 8 9  

8 a � 8 9  3 ( 7 - 1 )  � 8 9  

where cr = s + ~Z-g), ~c = 3(-1  + ~/-L---f). 

Proof :  It follows directly from 2.2. Notice that neither Pp and P~, nor Pp and Pr com- 
bination can occur together. [] 
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In the above lemma, if 3~(F) has a symmetrizable fission scheme of class 4, then each 
of the associated strongly regular graphs F and F of 3E(F) is decomposed into two regular 
subdigraphs in such a way that two sets of the directed edges form a paired relations in the 
resulting fission scheme. An important key observation is that such a fission scheme exists 
only if both X(KI) and 3E(Kg) are fissionable into pairs of nonsymmetric two-class schemes 
simultaneously. When both f and g are prime power integers that are congruent to 3 modulo 
4, we have desired fission schemes 3~(2, G F ( f ) )  and 3C(2, GF(g)) for ~(Ky) and 3E(Ke), 
respectively. Thus we now have the following theorem. 

Theorem 2.4 Let 3~(F) be the symmetric association scheme which comes from the 
strongly regular graph having the parameters ( f  g, f ( g -  1), f ( g -  2), f ( g -  1))for f,  g > 
3. Then we have the following: 

(1) If f =- 3 (rood 4) and f is a prime power, then Pr is realized as the character table of 
Wr = ~(2, G F ( f ) )  f ~(Kg). 

(2) l f  g = 3(rood 4) and g is a prime power, then P~ is realized as the character table of 
W. ---- ~ ( K ; ) f  3~(2, GF(g)). 

(3) l f  f and g both are prime powers and congruent to 3 modulo 4, then P in (3) of Lemma 
2.3 is realized as the character table of W = 5E(2, G F ( f  ) ) f 3~(2, G F (g ) ). 

Proof: It suffices to show that the character tables of the schemes Wr, W,~ and W are 
Pr, P~, and P, respectively, for given f and g. We note that the adjacency matrices of the 
wreath product of two schemes, over the sets of cardinalities f and g with their adjacency 
matrices F's and G's, respectively, are the matrices Ig | F's and G | Jf's. It is shown 
that the eigenvalues of Ig | F are the same as those of F but the multiplicities of the 
eigenvalues for Ig | F are g times those of the same eigenvalues for F. Also the spectrum 
of G | J f  consists of 0 with multiplicity g ( f  - 1) and f times the eigenvalues of G with 
the same multiplicities. Therefore, it is straightforward to construct the character tables of 
Wr, W., and W by computing the spectra of their adjacency matrices directly from those 
of X(Kf),  Y.(Kg), ~(2, GF( f ) ) ,  and 3E(2, GF(g)). [] 

2.5. Parameters 

The parameters of the schemes Wr, Wo, and W can be obtained by a straightforward 
computation. For instance, the intersection matrices of the scheme W = ~(2, G F( f ) )  
f X(2, GF(g)) are given by B1 and B3 below. 

e I ~--- 

B3 

0 1 0 0 
0 �88  � 8 8  0 

� 89  �88  �88  �89  �89  
o �89  - 1) o o o 

o �89  - o o o 

0 0 0 1 0 -] 
o �89  - 1) o o o 
0 0 �89 - 1) 0 , 0 . 
0 0 0 � 88  x ( f + l )  

� 8 9  0 0 l ( f _ 3 )  � 8 8  

0] 
0 
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E x a m p l e  2.6 Let F and �9 be the strongly regular graphs having the parameters (21, 14, 
7, 14) with f = 7, g = 3 and (21, 18, 15, 18) with f = 3, g = 7, respectively. Then the 
fission schemes of Z(F)  and 2E(O) are described by 

W(F) = 3C(2, GF(7))fY.(Z3) 
VV(,~) = 3~(Z3)f3r GF(7)),  respectively. 

Their relation tables are 

R(w( r ) )  = h | (s + 2J4) + r | J7 

R(IV(~))  = I7 | (T + 2J~) + S | J3 

where J~ = Jn - In, 

r = R(3~(Z3)) = 0 1 
2 0 

S = R(~(2, GF(7)))  = 

"0 1 1 2 1 2 2 
2 0 1 1 2 1 2 
2 2 0 1 1 2 1 
1 2 2 0 1 1 2 
2 1 2 2 0 1 1 
1 2 1 2 2 0 1 
1 1 2 1 2 2 0 

Also ~(F)  has two intermediate 3-class fission schemes if(2, G F ( 7 ) ) f Y ( K 3 )  and 
Y.(Kv)fY.(Z3), and 5((q~) has two fission schemes 2E(z3)f2E(K7) and 3i(K3)f 
2E(2, GF(7))  as well. These are fusion schemes of IV(F) and lV(q~), respectively. (See 
also (5.6) of [13] where one intermediate 3-class fission scheme from each of 2((F) and 
3~(q~) are described in detail.) 

3. S y m m e t r i z a b l e  fission schemes  o f  Paley graphs  

The relation graphs of cyclotomic schemes 2E(2, GF(q)) for q ~ 1( mod 4) are known as 
1 Paley graphs, the strongly regular graphs having the parameters (q, �89 (q - 1), �88 (q - 5), ~ (q - 

1)). In [13, (7.1)] we have shown that all strongly regular graphs having the parameters 
(n, �89 - 1), l (n  - 5), �88 - 1)) for any n > 5 are not realized as the symmetrization of 
any three-class schemes. However, for each prime power q - 5( mod 8), it is easy to see 
that 2E(2, GF(q)) is the symmetrization of four-class nonsymmetric scheme 2E(4, GF(q)). 

3.1. Four-class symmetrizable fission tables 

Let ~ be the symmetric scheme of class two associated with the strongly regular graph 
F having the parameters (n, k, ;t,/z). (Then the character table/5 of ~ is given by 1.8.) 
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Suppose ~ admits a four-class symmetrizable fission scheme 3r Then a feasible fission 
table P for 3~ may be described, up to a permutation of rows and columns, by 

p = 

i �89 �89 � 8 9  � 8 9  _l,j, 
p /5 "r - ~m 
/5 p "~ r �89 
a 6" 09 oJ �89 - m - 1) 

6 r ff~ to �89 - m - 1) 

where either the pair p and co or the pair z and ~ are nonreal. The reason is that when 
both of the nontrivial relations of ~ split into paired relations, each of the two primitive 
idempotents must split into a pair of paired idempotents. From the orthogonality relations 
of the character table, we have a set of equations on p, T, a, and 09 in terms of n, k, r, and s, 
although these are not enough to determine p, T, ix, and co explicitly. For the case when 
3r = ~(2,  GF(q)), we have one free parameter to determine due to the pseudocyclic 
property of cyclotomic schemes. 

3.2. Pseudocyclic fission tables 

A commutative scheme is said to be pseudocyclic if its multiplicities coincide with each 
other. Notice that in a pseudocyclic scheme all the valencies are also the same. In particular 
if ~ is pseudocyclic two-class symmetric scheme, then in the notations used in 1.8, its 
character table P will be given by k = m = �89 (n - 1) and s = - r  - 1 = �89 ( -  1 - ~/'ff) while 

1 1 + ~/-fi). Furthermore, if 3~ is a four-class symmetrizable fission scheme of ~,  then r = ~ ( -  
the character table of 3~ will be given by P in 3.1 with the identities k = m = �89 - 1), 09 = 
p, tr = ~', p + / 5  = �89  + ~/-ff), r + ~  = 3 ( - 1 -  vrn), and p/5 + ~ " = l ( 3 n +  1). Thus, 
in particular, we have the following. 

L e m m a  3.3 Suppose P is the character table of any four-class symmetrizable fission 
scheme of ~ = 3~(2, G F(q)) for q --- 5(mod 8). Then P is given by 

1 p /5 z - f 
P =  1 /5 p ~ f where 

1 f r p f 
l v ~ /5 f 

f = �88 - 1) 

p + / 5  = �89  + 4 - 4 )  
�9 + = �89  - 4-q3 

p/5 + r~ = -~(3q + 1). 

(*) 

Proof:  Straightforward. 
The following particular solution (1) or (2) for the system (*) yields the character tables 

of ~(4,  GF(q)) depending on the quadratic residue of given q: 

(1) { p = l [ - l  + qc~ W {-2q - l(q-1)v/-~}�89 

T = l [ - - L -  ~ + {--2q + �89 -- 1)~,/'tt} �89 

(2) { p =  �88 + q/'~ + {-2q-t-�89189 
T = �88 -- ~ "  + {--2q -- �89 -- 1)~/'~'} �89 ] 
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R e m a r k  3,4 In the notion of  1.7 with d = 4, this implies that the Gaussian periods 
~bi, i = 0, 1, 2, 3, can be expressed by p and r as follows: 

{ ~,o = d2 = Z ~ , , , ~  x (~ )  = p 

where the pair p and r are given by either the formula (1) or (2) depending on the given q. 
For instance, the character table of  X(4, G F ( 5 ) )  is given by (1) while that of  ~ (4 ,  G F ( 1 3 ) )  
is given by (2). 

We close this section with the following two questions: 
Question 1. Is there any other solution for the above system (*) that yields a feasible 

fission table P for g iven/5 ,  perhaps, for a large prime power q --  5(mod 8)? 
For a given association scheme 3~, if  all the (nontrivial) relation graphs (X, Ri) of ~ are 

connected, then we say that ~ is primitive. The cyclotomic schemes associated to Paley 
graphs are examples of  primitive schemes. 

Question 2. Are there any other two-class primitive schemes (strongly regular graphs) 

that admit  symmetrizable fission schemes besides 3~(2, G F ( q ) )  (Paley graphs) for q - 
5(mod 8)? 
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