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Introduction

Let 91 be a commutative Banach algebra over the complex field C,
M an ideal of 91. Denote by M2 the set of all finite linear combinations of
products of elements from M. M will be termed idempotent if M2 = M.
The purpose of this paper is to investigate the structure of commutative
Banach algebras in which all maximal ideals are idempotent.

The idempotence property of ideals would appear to have first been
systematically studied by Nakano [12] in the case of the ring of integers of
an infinite algebraic number field. (For finite number fields a theorem of
Krull (see [17] p. 216) shows that no proper ideal of the ring of integers
can be idempotent.) In the case of commutative Banach algebras the
idempotence of maximal ideals was used by Singer and Wermer [15] who
showed that a commutative semisimple Banach algebra with identity admits
a non-zero derivation into a commutative semisimple extension if and
only if at least one of its maximal ideals is not idempotent. Some generaliza-
tions of this are given in § 3 of the present paper.

The actual question which instigated this work was whether or not the
idempotence of all maximal ideals in a commutative Banach algebra with
identity is sufficient to ensure semisimplicity. In § 2 we show the answer
is in the negative by constructing a counterexample. With extra hypotheses
positive results can be obtained, however those used prove to be too strong
in that they ensure that the algebras concerned are in fact finite dimensional.

Finally, one should note the crucial role played by the idempotents
in the algebras considered.

LEMMA 1. Let % be a ring with identity e, in which every maximal left
{or right) ideal is principal, being generated by an idempotent. Then the:
(Jacobson) radical of 91 is zero.2

1 The author is a General Motors-Holden's Limited Research Fellow.
2 In the commutative case a stronger result is true; see [13] Theorem 3.1.
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PROOF. We prove the result for the case of left ideals. If {0} is the only
proper left ideal the result is clear. Otherwise, let {Ms : j e J} be the set of
maximal left ideals of 21, / an index set, with {es : / e J} the set of generating
idempotents; so that M} = 2le,-, j e J. The left ideal generated by the set
{e—ej : j e / } is not contained in any maximal left ideal, and hence is all
of 21. Thus there is a finite subset / of / , and elements at e 21, i e / such that

But if x is in the radical of 21 so is xait and hence xat e Mt for each i el.
Thus xat(e—et) = 0 and so

x — xe = ^xa^e—e^ = 0.
iel

REMARK. In the commutative case the condition that a principal ideal
be generated by an idempotent is equivalent to its being idempotent. For
if N is generated by an idempotent it is certainly idempotent since 21 has an
identity. Conversely, if N = 2lx, N2 = N means %c = 21a;2 and so there is
a e % with x = ax2. But then ax is an idempotent and

Q %ax Q 2fa,
so that N = Wax.

COROLLARY. Let %bea commutative ring with identity having the minimum
condition. Then 21 is semisimple if and only if every maximal ideal is idem-
potent.

PROOF. If every maximal ideal is idempotent it follows easily from [3]
Theorem 2.6B that every maximal ideal has an idempotent generator. Thus
21 is semisimple by Lemma 1.

The converse is clear from [3] Theorem 4.2A.
The author is indebted to the referee for the following theorem, which

is a generalization of his original result.

THEOREM 1. Let 'Hi be a normed algebra with identity e. Then the following
statements are equivalent.

(1) Every maximal left ideal of 21 is generated by an idempotent.
(2) Every maximal right ideal of 21 is generated by an idempotent.
(3) 2t is semisimple and finite dimensional.

PROOF. (1) implies (2) and (1) implies (3).
Assuming (1), Lemma 1 shows that 21 is semisimple.
If {0} is the only proper left ideal then for any non-zero x e 21 we have

{yx : y e 21} = 21. It follows that 21 is a division algebra and hence is finite
dimensional by the Gelfand-Mazur theorem. Otherwise, let {M}}, {e,}, J be
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as in Lemma 1. Then for j e J the right annihilator of M,- in 91 is
(e—e,) 21 ̂  {0}, so that, since 21 is semisimple, 21 is a right modular anni-
hilator algebra in the sense of [16]. But then by [16] Theorem 3.4, 21 is a
left modular annihilator algebra and so, by [16] Lemma 3.3, (1) implies (2).
Since 2t is thus a modular annihilator algebra (3) follows from [4] Proposi-
tion 6.3.

Similarly (2) implies (1) and (2) implies (3).
It follows from [3] Theorem 4.2A that (3) implies each of (1) and (2).

COROLLARY. Let 21 be a commutative normed algebra with identity having
minimum condition. Then 21 is semisimple and finite dimensional if and only
if every maximal ideal is idempotent.

The proof of the next result follows the same lines as the author's
original proof of the commutative case of Theorem 1. We will need a pre-
liminary lemma.

LEMMA 2. Let % be a complex commutative normed algebra with identity
e, 21 its completion. Let M, N be maximal ideals in 2t, 21 respectively. Then

(i) N n 21 = N.
(ii) fit is a maximal ideal in 21.

PROOF, (i) Note firstly that N n 21 is a maximal ideal in 21, maximal
since it has codimension one. Let x eN. Then there is a sequence {xn} C 21
converging to x. But we have the unique decomposition xn = yn-\-Xne
where yn e N n 21, and so

inf ||ABe-*|| = inf \\xn-x+x—yn—z\\ ^ \\xn—x\\.
zeN zeN

On the other hand, if z eN, \\e—z\\ ^ 1 since otherwise z would have an
inverse. Thus

inf||ABe-*||^|AJ.
zeN

It follows that Xn -» 0 and so yn —> x.
(ii) M is clearly an ideal in 2t Let x e 2t and let {xn} Q 21 converge to x.

Then we have the decomposition xn = yn-\-^.ne where yneM. As before

and so {kn} converges, to X say, and {yn} converges, to y say. It follows that
x — y-\-Xe where y e ffl. Thus M is maximal.

THEOREM 2. Let %be a complex commutative semisimple normed algebra
in which every maximal regular ideal has an idempotent generator. Then 21 is
finite dimensional and so must have an identity.
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PROOF. Let 93 be the algebra obtained by adjoining an identity e to 21
and extending the norm by ||a;+Ae|| = ||a;|| + |A| for x e 91. We note that 93
is also semisimple.

Now if N is a maximal ideal in 93, different from 21, then M = N n 21
is a maximal regular ideal in 21, and so M = 21/ for some idempotent / e 21.
Furthermore, if iV' ^ 21 is some other maximal ideal in 23 then / $ N', since
otherwise M Q N' n 21 which is impossible since M ^ N' n 21. Thus for
each maximal ideal AT ^ 21 of 93 there is an idempotent fNe% r\N such
that fN 4 N' for any other maximal ideal N' ^ 21 of 93.

We denote the completion of 21, 93 by 21, 93 respectively; 93 is just M
with identity adjoined. If N =fi 2t is a maximal ideal in 93 then N n 93 is a
maximal ideal in 93, denote by eN the idempotent in N n 93 determined
above; it follows from Lemma 2(i) that if N' =fi M is some other maximal
ideal in 93 then eN$N' n 93.

Let SOt be the maximal ideal space of 93, and for z e 93 write x for its
Gelfand transform. If N e 2Ji\{!} then eN(N') = 0 if and only if N' = N
or 91. Since eN takes the values 0 and 1 only, and is continuous on 2JJ, it
follows that {N, 1} is clopen in 3K. But then {N, 1 : N e 3fl, N ^ 1} is
an open covering of 2R. 3JJ being compact, there is a finite subcover and so
9Jt is finite. Thus 93 has only finitely many maximal ideals and so by Lemma
2(ii) the same is true for the semisimple algebra 93. But this means that 93,
and hence 21, is finite dimensional. That 21 has an identity follows from [3]
Corollary 4.3B.

REMARK. In the case where 21 is not semisimple, but is a Banach
algebra, the argument of Theorem 2 shows that 93/9t is finite dimensional,
where 9t is the radical of 93. Since 31 is also the radical of 21 it follows that
21/9? is also finite dimensional and so by [6] Theorem 1 it follows that the
Wedderburn principal theorem is true for 21.

The following result, in the same vein as Theorem 2, is easily proved
using [2] Theorem 3.5.

THEOREM 3. Let 21 be a commutative Banach algebra which is regular
in the sense of von Neumann, that is, if x e 21 there is y e 21 such that xyx = x.
Then 21 is semisimple and finite dimensional, and so must have an identity.

REMARK. Finite dimensionality is actually true in the non-commutative
case also; see [9].

In view of these results the question immediately arises whether either
of the conditions

(i) all maximal ideals principal, or
(ii) all maximal ideals idempotent

is sufficient to ensure that 21 is either
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(iii) semisimple, or
(iv) finite dimensional.

If all maximal ideals are principal, 21 need not be semisimple, indeed let
% = Ce © Cr where e, r are elements satisfying e2 = e, er = r, r2 = 0.
The author has been unable to determine whether or not (i) implies (iv),
though a weaker form of (i), namely that each maximal ideal is the closure
of a principal ideal, is not sufficient. For consider the algebra § of all
functions continuous on the closed unit disc A and analytic on its interior,
with pointwise operations and the supremum norm. Then any closed ideal
of §, so certainly any maximal ideal, is the closure of some principal ideal
([8], chapter 6).

If all maximal ideals are idempotent then the example of § 2 shows that
5t need not be semisimple. The algebra C([0, 1]) shows 91 need not be finite
dimensional.

Before going on to the next result we give an analysis of the idempotence
properties of the maximal ideals of the algebra § defined above. Every
maximal ideal is of the form

for some t e A ([11], §11). Thus if t is in the interior of A, Mt has generator
(z—t) and so M2 =£ Mt. By the principal of maximal modulus, and with
the maximal ideal space identified with A, the unit circle is the Shilov
boundary of §. Theorem 4.54 of [1] and [15], Corollary 2.1, then show that
M\ = Mt for \t\ = 1, the bar signifying closure in the norm topology. An
alternative proof of this is given in [14], § 8.

In this section we show that the idempotence of all maximal ideals is
not sufficient for semisimplicity when 91 is a commutative Banach algebra
with identity. The condition is clearly not necessary as is shown by the
algebra § of § 1 and even more so by the following example. Let 91 be the
algebra of all continuously differentiable functions on [0, 1] with the usual
norm ([11], § 11). Then every maximal ideal M of 91 is the set of functions
in 91 vanishing at some point xoe [0, 1]. But if / e M2 then f'(x0) = 0 so
M2 ^ M.

THEOREM 4. There exists a radical Banach algebra 9t such that 9t2 = SR.
Given any cardinal m, there is a commutative Banach algebra with identity,
having 9t as radical, with exactly m maximal ideals, all of which are idem-
potent.
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PROOF. Take 9ft to be the commutative Banach algebra L^O, 1) under
the usual multiplication and norm

x*y(t) = jl
ox(t~r)y{r)dr

forx, ye% te [0, 1].
It is shown in [7] § 4.9 that 9ft is a radical algebra. Also, it is easily seen

that if we define
(I/A 0 ^ t ^ h

^ ) (

then {yh : 0 < h ^ 1} is an approximate identity in 9ft, with \\yh\\n = 1 for
0 < h sS 1. But then by a result of Cohen [5], 9ft2 = 9ft. (A result very similar
to this, namely that group algebras I.1(G) are idempotent for suitably
restricted locally compact abelian groups G, is proved in the papers of Rudin
cited in [5]. By our definition of product 9ft is not a group algebra.)

Now let A be an index set of cardinality m. If A is infinite, let A* be
the one point compactification of A considered as a discrete locally compact
space. Denoting the adjoined point by oo, direct A by setting i > j if there
are neighbourhoods U, V of oo with U QV and i e U, j e V. Limits over A
are to be taken in this sense. If A is finite let A* = A. Take 31 as the set
of formal sums

{2 « i e i+ r : r 6 9ft. a i complex, i e A]
i

such that
| 2 «<«.-+»i| = S UP W+IMI* < °°

i

and for which, in the case of infinite A, lin^a,- exists. With multiplication

where k is some fixed element of A, and with the norm || • || defined above,
91 is a Banach algebra with identity 2* 1 ' ei • The radical of 91 clearly
contains 9ft, we show that it is precisely 9ft. Suppose that x = J,. a ^ + r
with x quasinilpotent. If n is a positive integer

for some Sn e 9ft, so that

= sup |a<|
i

It follows that ocj = 0 for each i e A and so x e 9ft.
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Since the set
{2 *tet e 91}

i

can be identified with the space of all continuous functions on A *, we have
that the maximal ideals of 91 are precisely the sets

for j e A*, where
Mco = {2 *&+' • lim a, = 0}.

» i

But then if £< a ^ + r e M}

Thus M) = M} for each j e A*. The statement about the number of maximal
ideals is clear.

This result shows that an algebra may have idempotent maximal
ideals and yet have an infinite dimensional radical. Whether or not 21 may
have finite dimensional radical is not known, however if the hypothesis is
slightly weakened this case is possible as the following result shows.

THEOREM 5. Let %be a commutative semisimple Banach algebra in which
all regular maximal ideals are idempotent. Then there is a commutative exten-
sion 33 of 91 in which all maximal regular ideals, except one, are idempotent,
and the radical of 93 is one dimensional.

PROOF. Let <j> be a (fixed) nonzero multiplicative linear functional of
91. Define

where r satisfies

r2 = 0, a(Xr) = {lr)a = X{ra) = kj>{a)r

for A e C, a e 91. If x, y e 91 then '

{xy)r = <j>{xy)r = cf>(i/)cj>(x)r = <f>(y){xr) = x(cj>(y)r) = x{yr),

so 93 is an associative algebra. For z e 93, z = x-\-kr where x e 91, define

To see that this defines a norm it suffices to show it is submultiplicative.
Thus let zt = Xi+X^, i = 1, 2, so that
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Since <f> is a multiplicative linear functional \\<f>\\ ^ 1 and so

Thus S3 is a commutative Banach algebra (with identity if 21 has an identity),
completeness being immediate from the definition of the norm.

Now let M be a maximal regular ideal in 91 and consider the set M+Cr.
This is easily seen to be a regular ideal in S3, and is in fact a maximal one.
For let / be a regular ideal in 93 which properly contains M~\-Cr, and let
x e J\(M+Cr). We may suppose x e 2I\M, but then the ideal in 21 gener-
ated by M u {x} is a regular ideal properly containing M, and hence is all
of 21. Thus / = 93 and M+Cr is maximal.

Conversely, if AT is a maximal regular ideal in 93, then N n 21 is a regular
ideal in 21. Let M be a maximal regular ideal in 21 containing N n 2t. Then
by the above M+Cr is a maximal regular ideal in 93 which clearly contains
N = N n 2I+O, and so N = M+Cr (and M =N nW).

Thus the maximal regular ideals of 93 are precisely the sets of the form
M-\-Cr where M is a maximal regular ideal in 21.

Now let M be a maximal regular ideal in 2t. If M ^ ker <f> then

(M+Cr)2 = M*+MCr = M+Cr.

However if M = ker <f>,

(M+Cr)2 = M2+MCr = M =£ M+Cr.

It follows that N2 = N for all maximal regular ideals of 93 except one,
and in the exceptional case N2 has codimension one in N.

If 21 and 93 are algebras over C and <f> is a homomorphism of 2t into 93,
a linear map D from 21 into 93 satisfying

*
D(xy) = Dx • <f>y+4>x • Dy

for all x, y e 21 will be termed a ^-derivation. In the *case where <j> is the
identity homomorphism, so that 21 is a subalgebra of 93, the map will be
termed a derivation, if 93 = C, so that <f> is a multiplicative linear functional
on 21, D will be termed a point derivation associated with <f>.

In this final section we investigate the relationships between the
idempotence of maximal ideals in a commutative Banach algebra 21 and the
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existence and boundedness of derivations and point derivations on 91. We
will need the following lemma, the purely algebraic case of which is due to
J. B. Miller.

LEMMA 3. Let %be a commutative algebra over a field of zero characteristic,
and let 2tx be the algebra obtained by formally adjoining an identity e to 21.
Let I be a regular ideal in 91, Ix the unique ideal of 9^ with I = Jx n 21. Then
if J2 = I it follows that I\ = Ix. If 9t is a Banach algebra then I2 = I implies

PROOF. We prove the second result; the proof of the first follows the
same lines but is slightly simpler.

Let / be an identity modulo I, that is, x—xf el for all x e 21. Then by
[11] §7.4, VI,

I1 = {ze%1:fzel),
that is,

I1 = {Xe+x :XB%, Xf+xf e /}
= {Xe+x : x e 21, Xf+x el).

If z ellt then z = Xe-\-x where Xf+x e J2. Thus given e > 0 there are
elements mit nt el, i'• = 1, 2, • • •, k such that

k

-*/+* = J, ntitii+v
i=l

where ||v|| < e. Thus
*

z = X(e—f)+ 2w<w<+w.
<=i

Now define

*o = 1 (e-f+ntt) • ( | («-/)+»<) •

Since I Q Ix it follows that z0 e Px. But

Hf) i t

Thus z = zo+v+w(e—f) where

t-(e-f) (if- I (-

W = At— > I —

But (e—f)x eI for any x e 91 and so (e—f)w el QP. Since / QIx it follows
that (e—f)w ell; thus z—v el\. Now this procedure can be carried out
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for each e > 0 and so z el\, whence /x Q I\ since z el1 was arbitrary. Thus
Ii C^i- The reverse inclusion is obvious since I\QIi, so the result follows.

By the use of this lemma we obtain the following generalization of
one half of the result of Singer and Wermer stated in the introduction.

THEOREM 6. Let 91 be a commutative Banach algebra in which
M2 = M (M2 = M) for each maximal regular ideal M. Then any non-zero
{bounded) derivation of 91 into a commutative extension 93 maps into the
radical of 93.

PROOF. Suppose to the contrary that there is a non-zero (bounded)
derivation D of 91 into an algebra 93 which does not map into the radical of
93. By [15] Theorem 2 there thus exists a non-zero (bounded) point deriva-
tion A on 91, associated with a multiplicative linear functional <£. We show
that this is impossible.

Let 9Ie be the algebra 91 with identity e adjoined. It is easy to see that
we can extend A and <f> to 9Ie so that they retain all their original properties.
Indeed, if x e 9le, we have a unique decomposition

x = x'-\-Xe
where x' e 21; then define

Ax = Ax'
(f)X = <f>x''-\-K.

Let Me = ker <f> so that Me is the unique maximal ideal of 9tg such
that M = Me n 91. If x e 91,, we have the decomposition

x = y+(f>x • e

where y e Me. Since Ae = 0 and A is non-zero it follows that A(Me) ^ 0.
On the other hand, if x e M2 we have

k

X = J WjWi

i=i

where mt, ni e Me for i = 1, 2, • • •, k; so that
k

Ax = ^ {Amt • tfyn^^mt • Ant)
t=i

= 0.

Thus A(M2
e) = 0 (A(M2) = 0) so that M\ ^ Me (M\ # Me) and it follows

from Lemma 3 that M2 ^ M (M2 ^ M) which contradicts the hypothesis
on9t.
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REMARK. If 21 has an identity the converse of this is true and is a
generalization of one half of [15] Corollary 2.1. Indeed, let 21 be a commuta-
tive Banach algebra with identity and suppose that any non-zero (bounded)
derivation of 2t into any commutative extension 33 maps into the radical
of 33. Then M2 = M (M2'= M) for each maximal ideal M of 91.

PROOF. Suppose to the contrary that M2 =£ M (M2 ^ M) for some
maximal ideal of M of 21. Then as in [15] 21 admits a non-zero (bounded)
point derivation associated with <f>, where <f> is the canonical map 2t -> %jM.
But then by [15], Theorem 2, 21 admits a non-zero (bounded) derivation
into 21 © C but not into the radical of 21 © C. This is a contradiction.

Finally we have the following generalization of a result given by Kap-
lansky in [10] for C*-algebras.

THEOREM 7. Let % be a non-radical Banach algebra in which all maximal
regular ideals are idempotent. Suppose that 21 is contained, as a subalgebra,
in the centre of a Banach algebra S3. Then any derivation D from 21 into 33
maps into the radical of 33.

PROOF. If 33 is a radical algebra the result is trivially true 3. Otherwise,
let 33„ be the algebra 33 with an identity e adjoined if necessary; by Lemma 3
we may suppose that e e 91.

Now let P be a primitive ideal in 33e, so that 33 J P is a primitive ring
and hence its centre Z(33e/P) is either zero or the complex field. Also,
since 21 is contained in the centre of 33e,

{x+P: x e 21} Q Zi&JP).

The map from {x+P : x e 21} to 21/21 n P defined by

P

is clearly an isomorphism onto and so 21/21 n P is either zero or is isomorphic
to the complex field. Thus 21 n P is either all of 21 or is a maximal ideal
of 21. Since 21 contains the identity e of 33 „ the first possibility does not arise
and so by the hypothesis on 91, (21 n P)2 = 21 n P. But then

D(2l n P) Q (21 n P)Z)(2I n P)
QP

since 21 is in the centre of 33e and P is an ideal containing 21 n P. Also
21 = (21 n P) © Ce so that D(2t) C P. This is true for each primitive ideal
P of 33 e and so D maps 21 into the radical of 33 e. Since D maps into 33 by
hypothesis we thus have

3 This case may arise even though 91 is not all radical since 21 is only algebraically em-
bedded in the centre of S3, and not necessarily topologically.
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D(«) C (n AT.) n S3

where the first intersection is over all maximal left ideals of 33e. By [11],
§ 7.4, VI, it follows that

Z)(«) QnM

where the intersection is over all maximal regular left ideals of 93.

Acknowledgements

The author wishes to express his thanks to Professor J. B. Miller,
Dr. E. Strzelecki and Mr. J. L. B. Gamlen for discussions and suggestions
concerned with this paper, and to the referee for his helpful advice.

References

[1] R. Arens, 'A Banach algebra generalization of conformal mappings of the disc', Trans.
Amer. Math. Soc. 81 (1956), 501—513.

[2] R. Arens and I. Kaplansky, "Topological representation of algebras', Trans. Amer.
Math. Soc. 63 (1948), 457—481.

[3] E. Artin, C. J. Nesbitt and R. M. Thrall, Rings with Minimum Condition (University
of Michigan Press, Ann Arbor, 1961).

[4] B. A. Barnes, 'Modular annihUator algebras', Can. J. Math. 18 (1966), 566—578.
[5] P. Cohen, 'Factorization in group algebras', Duke Math. J. 26 (1959), 199—205.
[6] C. Feldman, 'The Wedderburn principal theorem in Banach algebras', Proc. Amer.

Math. Soc. 2 (1951), 771—777.
[7] I. Gelfand, D. Raikov and G. Shilov, Commutative Normed Rings (Chelsea, 1964).
[8] K. Hoffman, Banach Spaces of Analytic Functions (Prentice-Hall Inc., 1962).
[9] I. Kaplansky, 'Regular Banach algebras', / . Indian Math. Soc. (N.S.), 12 (1948), 57—62.

[10] I. Kaplansky, 'Functional Analysis', in Some Aspects of Analysis and Probability
(Surveys in Applied Mathematics, Vol. 4, John Wiley & Sons, New York, 1958),
3—36.

[11] M. A. Naimark, Normed Rings (Noordhoff, Groningen, Netherlands, 1964).
[12] N. Nakano, Uber idempotente Ideale in unendlichen algebraischen Zahlkorpern', / . Sci.

Hiroshima Univ. A, 17 (1953), 11—20.
[13] M. Satyanarayana, 'Rings with primary ideals as maximal ideals', Math. Scand. 20

(1967), 52—54.
[14] D. R. Sherbert, 'The structure of ideals and point derivations in Banach algebras of

Lipschitz functions', Trans. Amer. Math. Soc. I l l (1964), 240—272.
[15] I. M. Singer and J. Wermer, 'Derivations on commutative normed algebras', Math. Ann.

129 (1955), 260—264.
[16] B. Yood, 'Ideals in topological algebras', Can. J. Math. 16 (1964), 28—45.
[17] O. Zariski, and P. Samuel, Commutative Algebra, Vol. 1 (Van Nostrand Inc., Princeton,

1963).

Monash University
Clayton, Victoria
Australia

https://doi.org/10.1017/S1446788700007187 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007187

