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COMMUTATIVE  EXTENSIONS  BY  CANONICAL
MODULES  ARE  GORENSTEIN  RINGS

ROBERT  FOSSUM1

Abstract. Reiten has demonstrated that the trivial Hochschild

extension of a Cohen-Macaulay local ring by a canonical module

is a Gorenstein local ring. Here it is proved that any commutative

extension of a Cohen-Macaulay local ring by a canonical module

is a Gorenstein ring. Also Gorenstein extensions of a local Cohen-

Macaulay ring by a module are studied.

Introduction. Suppose A is a commutative ring and that M is an

A -module. A commutative extension of A by M is an exact sequence of

abelian groups

0 —► M -i* E -^> A —*■ 0,

where £ is a commutative ring, the map n is a ring homomorphism and the

/4-module structure on M is related to (E, i, -n) by the equations

ei(x) — i(tr(e)x),    for all e e E and all x e M.

The / identifies M with an ideal of square zero in E. (On the other hand

if 3 is an ideal of square zero in E, then 3 is an F/3-module and 0—«^j-*

E-*-E/3->0 is an extension of F/3 by 30
The trivial extension of A by M is the exact sequence

0—► M-U M x A-^U-A —>0

where ; is the first coordinate map, where -n is the second projection and

where M x A is a ring whose underlying additive structure is the direct

sum of abelian groups and whose multiplication is given elementwise by

(m, a)(m', a') = (ma' +m'a, aa') for all m,m' eM and all a, a'e A.

This extension is denoted by Aix. M.

Now suppose A is a commutative noetherian local ring with maximal

ideal m. An ^-module of finite type M is a canonical module if it has the
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three properties :

(i) The natural homomorphism A~>EndA(M) is a bijection.

(ii) The groups ExtA(M, A/)=0 for all i">0.

(iii) The injective dimension id^ M< oo. If B is a Gorenstein local

ring (see Bass [1]) and if B-*A is a surjection then A is a Cohen-Macaulay

ring if and only if Ext'B(A, B)=0 for /'#dim B—dim A. If A is Cohen-

Macaulay and if d=dim B—dim A, then ExtB(A, B) is a canonical A-

module (see Grothendieck [5] and Sharp [8]). Furthermore A is Goren-

stein if and only if A^ExtB(A, B). As a converse to this result Reiten [7]

shows that if the Cohen-Macaulay local ring A has a canonical module

M, then the trivial extension A X M is a Gorenstein ring. A more precise

statement is found in Fossum, Griffith and Reiten [3]: The ring AV.M

is a Gorenstein ring if and only if the ^-module M is a canonical module.

For further properties of canonical modules we refer to Sharp [8],

Herzog and Kunz [6], Foxby [4] and Fossum, Griffith and Reiten [3]

although the only results which are really needed are:

(a) If A has a canonical module M, then A is Cohen-Macaulay.

(b) If M is a canonical ^-module and if ae A, then a is regular on M

if and only if it is regular on A.

(c) If Af is a canonical /1-module and if a is a regular element in A,

then M/aM is a canonical A/aA-module. Also we note that when B^-A is

a surjective ring homomorphism, when B is Gorenstein and when A is

Cohen-Macaulay then the spectral sequence (Cartan and Eilenberg [2])

with El"=ExtA(X,ExtQB(A,B)) and abutment ExtB(X,B) degenerates

to natural isomorphisms ExtA(X,Ext%(A, B))^ExtB+d(X, B) for all

/1-modules X, for all integers p^.0 and for d=dim B—dim A.

(The term canonical module seems to have been introduced by Herzog

and Kunz [6]. A more geometric term is module of dualizing differentials,

which is very suggestive terminology but also rather cumbersome. Sharp

[8] uses the term Gorenstein module of rank one.)

Arbitrary extensions. The main result of this paper is the generalization

of Reiten's result.

Theorem. Suppose A is a local noetherian ring and M is a canonical

A-module. //0—>-A/—>-'F—»-"/l—*0 is a commutative extension of A by M, then

E is a Gorenstein ring.

The proof is based on two lemmas. The first allows a reduction to the

Artin case. The second handles the Artin case.

Lemma 1. Suppose A, M and E are as in the statement of the theorem.

An element e in E is regular if and only ifrr(e) is regular in A.
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Proof. Since M is a canonical module, an element 7r(e) is regular in

A if and only if it is regular on M. If e e E and if e is regular then e is

regular on i(M). But the restriction of e to i(M) is the action of ^(e) on

M. Hence ir(e) is regular in A.

Suppose, on the other hand, that n(e) is regular in A. If e • x = 0 for

some x e E, then n(e) • tt(x)=0. Hence 7r(x)=0, since ir(e) is regular in

A. There is then an element me M such that x=i(m). Then ex = i(tr(e)m).

Since 77(e) is regular on M and since i is an injection, the element m = 0.

Hence x=0. So e is regular in E.    Q.E.D.

Lemma 2. Suppose A is an Artin ring, that M is an A-modu/e with

Annj M=(0) and that E is an extension of A by M. Then i(Socle(M)) =

Socle(F).

Proof. Let n be the radical of E and m the radical of A (so that

m = 7r(n)). Now e e Socle(F) if and only if ne=(0). If ne=(0), then

i(M)e=(0). But i(M)e = i(Mw(e)). Hencene = (0) implies Mw(e) = (0). But

Ann 4 M=(0) implies that 7r(e)=0. Hence e e Socle(£) implies e e i(M),

say e=i(m) for some m e M. Now n • i(m) = i(m • m) so m • m = (0). Hence

m eSocle(M) and then e e /(Socle(M)). Clearly /(Socle(A/))gSocle(£).

Q.E.D.
Now these two lemmas are used to prove the theorem. The proof is

by induction on dim A. We know that dim A=d\m E since i(M) is nil-

potent. By Lemma 1 we can conclude that depth /í=depth E. For suppose

e is a regular nonunit in E. Then tr(e) is a regular nonunit in A. Multi-

plication by e induces the commutative diagram with exact rows and

columns

0 0 0

Y Y Y

0—> M-U- £-^> A —>0
I ï(«) I e, I jr(e)

0 —> M -U £ -1* A —> 0.

We conclude that the sequence

0 —> M/tr(e)M -U- £/e£ -^-> A/w(e)A —y 0

is exact and is an extension of the local ring A/tr(e)A by the canon-

ical module M/n(e)M. Now depth £=14-depth £/e£. By induction

depth E/eE= depth A/ir(e)A = — 1 4-depth /I. Hence depth £=depth A.
But we can also use this reduction to show that £ is Gorenstein. For

£ is Gorenstein if and only if E/eE is Gorenstein.

If dim A=0, then the canonical  module  M^E(A/m), the   injective
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envelope of the residue class field of A. Hence AnnA M=(0) since A^

EndA(M) and Socle(M)^A¡m. By Lemma 2 we get Socle(F)^F/rt^/l/m.

Hence F has a simple socle and is therefore Gorenstein (Bass [1]).

Suppose, for inductive purposes, that E' is Gorenstein for dim F'<dim E

whenever E' is an extension of a local ring by a canonical module. Then

we conclude that F is Gorenstein since E/eE is Gorenstein.    Q.E.D.

Gorenstein extensions. Now our attention is directed to the converse

problem. Suppose E is an extension of A by M, that E is Gorenstein and

that A is Cohen-Macaulay. What is the relationship between M and the

canonical module HomK(A, E) of Al (Note that there are Gorenstein

extensions of non-Cohen-Macaulay rings. If k is a field, Xand Y indeter-

minates, then E=k[[X, Y]]/(X2) is Gorenstein. The ideal generated by the

image XY is nilpotent. But k[[X, Y]]¡(X2, XY) is not Cohen-Macaulay.)

Suppose F is a Gorenstein local ring and 3 's an 'deal of square zero.

Let A=Efö. We assume that A is Cohen-Macaulay.

Let B be a Gorenstein local ring with dim 5>0. Let /be a regular element

in B. Then B\tnB is Gorenstein for all »aí. Let E=B\tnB and let 3=

f^B/fB. ThenF/3=Ä//"~1ßand32=(0). Now 3 is a canonical F/3-ideal

if and only if n = 2. Hence it is not the case that 3 ¡s the canonical module.

Let Q=HomK(/4, E) be the canonical module. Then Q.^{e e F:<?3 =

(0)}. Since 32=(0)i we have 3e^- We get the commutative diagram with

exact rows and columns

0

0 —>■ 3 —>■ E -%. A —>• 0

Y I /      Y
0 —> il —> E -^*- Hom;,(3, E).

The homomorphism y:/l—»-Hom^Q, E) is the composition A^-

HomK(3, 3)~>"Hom;i(3, F). Thus Ker y = AnnA 3-

Lemma 3. The natural map A—►HomK(3, 3) ls a surjection and

HomK(3, SH-Hom^Q, E) is a bijection. Thus HomK(3, 3) « identified

with both A/Ann i 3 and F/Í2.

Proof. Since 32 = (0) and since A is Cohen-Macaulay, the group

Ext'E(A, F) = (0) for />0. Hence n' is a surjection. Thus y is also a sur-

jection. Since HomK(3, 3)^'HomK(3, F) is an injection, the statements

of the lemma follow.    Q.E.D.
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We identify CokerQ—►£}) with a, the annihilator of 3- The ring

HomB(3, 3)=Hom 4(3, 3) and is denoted by Ä. Then the diagram can

be displayed as

0

I
0 o

_ IT

0—»-3—>E—> A—vO

1= I y

0-*-Q-v£^U- A'->*0

Y Y

a 0

J
0.

Lemma 4.    The ring A' is Cohen-Macaulay and dim A=dim A'.

Proof. It is enough to prove that ExtE(A', £)^(0) for />0. The

exact sequence 0—»-Í2—»-£—»■/l'—»-0 gives rise to the exact sequence

0 -> HomE(A', E) -* E -* HomK(Q, £) -* ExtK(A', £) — 0

and the isomorphisms ExtE(£l, E)^ExVE1(A', E) for />0. Since A is

Cohen-Macaulay we get natural isomorphisms Ext)í(Í2, £)^Ext'4(i2, fi)

for all /. Hence ExtK(Q, £)=0 for all />0 while

HomE(Q, E)sä Horneo, Q)s¿4,

since O is a canonical /1-module. (This follows from the remarks

in the introduction.) Thus £—»Hom^íO, £) is just tt-.E—^A which is a

surjection. So Ext'E(A', £) = (0) for all />0 while the canonical ^'-module

is Ker T7=Z^MomE(A', £)^{e e £:eQ = 0}.    Q.E.D.

We record several other consequences. We retain the hypotheses and

notation.

Proposition,    (a) The sequences

0 —> 3 —► £ -^> A —>■ 0    and   0 —► il —► £ —> A ' —> 0

are HomK(_, £) dual.

(b) The sequences 0^-ci—>A—*Ä —*■ 0 and O—r^-^-íl-^-a—>0 are

Hom^(_, £2) (which is Hom;i(_, £)) dual.

(c) The group ExtE(a, E)=(0)for all />0.
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(d) The A-module 3 is a canonical A'-module while Q. is a canonical

A-module. Thus, in particular, the square zero ideal 3 's a canonical A-

module if and only if Ann A 3=(0).
(e) We have the following natural isomorphisms:

A = Hom^(D, Q),

A' = Hom^(3, Z)= Hom£(3, F)^ Hom^(3, Q),

3 = UomA(A', Q) g* WomE(A', E), and

Q. = HomA(A, Q.) ̂  HomE(A, E).       Q.E.D.

Note that O is a nilpotent ideal in E which has square zero if and only

iffl=3.

Final remarks. A result which is implicit in this article, and which

follows immediately is a slight generalization of the Grothendieck-Bass-

Sharp result about Cohen-Macaulay factor rings of Gorenstein rings. We

state it here for possible future reference.

Proposition. Suppose A is a local Cohen-Macaulay ring with a canonical

module O. The factor ring A' of A is Cohen-Macaulay if and only if

ExtA(A', Q) = (0) for all ;'#dim A— dim A'. If A' is Cohen-Macaulay,

then it has a canonical module which is just the nonzero Ext group.    Q.E.D.

It should be mentioned that a nontrivial extension has been exhibited

at the beginning of this section. Others will arise from symmetric 2-cocycles

f:A X/l—«-£2 which are not coboundaries (if they exist).
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