COMMUTATIVE EXTENSIONS BY CANONICAL MODULES ARE GORENSTEIN RINGS

ROBERT FOSSUM¹

ABSTRACT. Reiten has demonstrated that the trivial Hochschild extension of a Cohen-Macaulay local ring by a canonical module is a Gorenstein local ring. Here it is proved that any commutative extension of a Cohen-Macaulay local ring by a canonical module is a Gorenstein ring. Also Gorenstein extensions of a local Cohen-Macaulay ring by a module are studied.

Introduction. Suppose A is a commutative ring and that M is an A-module. A commutative extension of A by M is an exact sequence of abelian groups

$$0 \longrightarrow M \xrightarrow{i} E \xrightarrow{\pi} A \longrightarrow 0,$$

where E is a commutative ring, the map π is a ring homomorphism and the A-module structure on M is related to (E, i, π) by the equations

 $ei(x) = i(\pi(e)x)$, for all $e \in E$ and all $x \in M$.

The *i* identifies *M* with an ideal of square zero in *E*. (On the other hand if \Im is an ideal of square zero in *E*, then \Im is an *E*/ \Im -module and $0 \rightarrow \Im \rightarrow E \rightarrow E/\Im \rightarrow 0$ is an extension of *E*/ \Im by \Im .)

The trivial extension of A by M is the exact sequence

 $0 \longrightarrow M \xrightarrow{i} M \times A \xrightarrow{\pi} A \longrightarrow 0$

where *i* is the first coordinate map, where π is the second projection and where $M \times A$ is a ring whose underlying additive structure is the direct sum of abelian groups and whose multiplication is given elementwise by (m, a)(m', a') = (ma' + m'a, aa') for all $m, m' \in M$ and all $a, a' \in A$. This extension is denoted by $A \ltimes M$.

Now suppose A is a commutative noetherian local ring with maximal ideal m. An A-module of finite type M is a *canonical module* if it has the

(c) American Mathematical Society 1973

License or copyright restrictions may apply to redistribution; se3995.//www.ams.org/journal-terms-of-use

Received by the editors September 30, 1972.

AMS (MOS) subject classifications (1970). Primary 13H10.

Key words and phrases. Noetherian, Gorenstein, Cohen-Macaulay, local ring, canonical module, extension.

¹ This research was partially supported by the NSF. I am grateful for many stimulating conversations with my colleague, P. A. Griffith.

three properties:

(i) The natural homomorphism $A \rightarrow \text{End}_A(M)$ is a bijection.

(ii) The groups $\operatorname{Ext}_{A}^{i}(M, \dot{M}) = 0$ for all i > 0.

(iii) The injective dimension $id_A M < \infty$. If B is a Gorenstein local ring (see Bass [1]) and if $B \rightarrow A$ is a surjection then A is a Cohen-Macaulay ring if and only if $Ext_B^i(A, B)=0$ for $i \neq \dim B - \dim A$. If A is Cohen-Macaulay and if $d=\dim B - \dim A$, then $Ext_B^d(A, B)$ is a canonical Amodule (see Grothendieck [5] and Sharp [8]). Furthermore A is Gorenstein if and only if $A \cong Ext_B^d(A, B)$. As a converse to this result Reiten [7] shows that if the Cohen-Macaulay local ring A has a canonical module M, then the trivial extension $A \times M$ is a Gorenstein ring. A more precise statement is found in Fossum, Griffith and Reiten [3]: The ring $A \bowtie M$ is a Gorenstein ring if and only if the A-module M is a canonical module.

For further properties of canonical modules we refer to Sharp [8], Herzog and Kunz [6], Foxby [4] and Fossum, Griffith and Reiten [3] although the only results which are really needed are:

(a) If A has a canonical module M, then A is Cohen-Macaulay.

(b) If M is a canonical A-module and if $a \in A$, then a is regular on M if and only if it is regular on A.

(c) If M is a canonical A-module and if a is a regular element in A, then M/aM is a canonical A/aA-module. Also we note that when $B \rightarrow A$ is a surjective ring homomorphism, when B is Gorenstein and when A is Cohen-Macaulay then the spectral sequence (Cartan and Eilenberg [2]) with $E_2^{pq} = \operatorname{Ext}_A^p(X, \operatorname{Ext}_B^q(A, B))$ and abutment $\operatorname{Ext}_B^n(X, B)$ degenerates to natural isomorphisms $\operatorname{Ext}_A^p(X, \operatorname{Ext}_B^d(A, B)) \cong \operatorname{Ext}_B^{p+d}(X, B)$ for all A-modules X, for all integers $p \ge 0$ and for $d = \dim B - \dim A$.

(The term canonical module seems to have been introduced by Herzog and Kunz [6]. A more geometric term is *module of dualizing differentials*, which is very suggestive terminology but also rather cumbersome. Sharp [8] uses the term Gorenstein module of rank one.)

Arbitrary extensions. The main result of this paper is the generalization of Reiten's result.

THEOREM. Suppose A is a local noetherian ring and M is a canonical A-module. If $0 \rightarrow M \rightarrow {}^{i}E \rightarrow {}^{\pi}A \rightarrow 0$ is a commutative extension of A by M, then E is a Gorenstein ring.

The proof is based on two lemmas. The first allows a reduction to the Artin case. The second handles the Artin case.

LEMMA 1. Suppose A, M and E are as in the statement of the theorem. An element e in E is regular if and only if $\pi(e)$ is regular in A. **PROOF.** Since M is a canonical module, an element $\pi(e)$ is regular in A if and only if it is regular on M. If $e \in E$ and if e is regular then e is regular on i(M). But the restriction of e to i(M) is the action of $\pi(e)$ on M. Hence $\pi(e)$ is regular in A.

Suppose, on the other hand, that $\pi(e)$ is regular in A. If $e \cdot x=0$ for some $x \in E$, then $\pi(e) \cdot \pi(x)=0$. Hence $\pi(x)=0$, since $\pi(e)$ is regular in A. There is then an element $m \in M$ such that x=i(m). Then $ex=i(\pi(e)m)$. Since $\pi(e)$ is regular on M and since i is an injection, the element m=0. Hence x=0. So e is regular in E. Q.E.D.

LEMMA 2. Suppose A is an Artin ring, that M is an A-module with $Ann_A M = (0)$ and that E is an extension of A by M. Then i(Socle(M)) = Socle(E).

PROOF. Let n be the radical of E and m the radical of A (so that $m = \pi(n)$). Now $e \in \text{Socle}(E)$ if and only if ne=(0). If ne=(0), then i(M)e=(0). But $i(M)e=i(M\pi(e))$. Hence ne=(0) implies $M\pi(e)=(0)$. But Ann_A M=(0) implies that $\pi(e)=0$. Hence $e \in \text{Socle}(E)$ implies $e \in i(M)$, say e=i(m) for some $m \in M$. Now $n \cdot i(m)=i(m \cdot m)$ so $m \cdot m=(0)$. Hence $m \in \text{Socle}(M)$ and then $e \in i(\text{Socle}(M))$. Clearly $i(\text{Socle}(M))\subseteq \text{Socle}(E)$. Q.E.D.

Now these two lemmas are used to prove the theorem. The proof is by induction on dim A. We know that dim A = dim E since i(M) is nilpotent. By Lemma 1 we can conclude that depth A = depth E. For suppose e is a regular nonunit in E. Then $\pi(e)$ is a regular nonunit in A. Multiplication by e induces the commutative diagram with exact rows and columns

We conclude that the sequence

$$0 \longrightarrow M/\pi(e)M \xrightarrow{i'} E/eE \xrightarrow{\pi'} A/\pi(e)A \longrightarrow 0$$

is exact and is an extension of the local ring $A/\pi(e)A$ by the canonical module $M/\pi(e)M$. Now depth E=1+depth E/eE. By induction depth E/eE=depth $A/\pi(e)A=-1$ +depth A. Hence depth E=depth A.

But we can also use this reduction to show that E is Gorenstein. For E is Gorenstein if and only if E/eE is Gorenstein.

If dim A=0, then the canonical module $M \cong E(A/m)$, the injective

envelope of the residue class field of A. Hence $\operatorname{Ann}_A M = (0)$ since $A \cong \operatorname{End}_A(M)$ and $\operatorname{Socle}(M) \cong A/\mathfrak{m}$. By Lemma 2 we get $\operatorname{Socle}(E) \cong E/\mathfrak{n} \cong A/\mathfrak{m}$. Hence E has a simple socle and is therefore Gorenstein (Bass [1]).

Suppose, for inductive purposes, that E' is Gorenstein for dim $E' < \dim E$ whenever E' is an extension of a local ring by a canonical module. Then we conclude that E is Gorenstein since E/eE is Gorenstein. Q.E.D.

Gorenstein extensions. Now our attention is directed to the converse problem. Suppose *E* is an extension of *A* by *M*, that *E* is Gorenstein and that *A* is Cohen-Macaulay. What is the relationship between *M* and the canonical module $\operatorname{Hom}_E(A, E)$ of *A*? (Note that there are Gorenstein extensions of non-Cohen-Macaulay rings. If *k* is a field, *X* and *Y* indeterminates, then $E = k[[X, Y]]/(X^2)$ is Gorenstein. The ideal generated by the image *XY* is nilpotent. But $k[[X, Y]]/(X^2, XY)$ is not Cohen-Macaulay.)

Suppose E is a Gorenstein local ring and \Im is an ideal of square zero. Let $A=E/\Im$. We assume that A is Cohen-Macaulay.

Let *B* be a Gorenstein local ring with dim B > 0. Let *t* be a regular element in *B*. Then B/t^nB is Gorenstein for all $n \ge 1$. Let $E = B/t^nB$ and let $\mathfrak{J} = t^{n-1}B/t^nB$. Then $E/\mathfrak{J} = B/t^{n-1}B$ and $\mathfrak{J}^2 = (0)$. Now \mathfrak{J} is a canonical E/\mathfrak{J} -ideal if and only if n=2. Hence it is not the case that \mathfrak{J} is the canonical module.

Let $\Omega = \text{Hom}_E(A, E)$ be the canonical module. Then $\Omega \cong \{e \in E : e\mathfrak{J} = (0)\}$. Since $\mathfrak{J}^2 = (0)$, we have $\mathfrak{J} \subseteq \Omega$. We get the commutative diagram with exact rows and columns

The homomorphism $\gamma: A \rightarrow \operatorname{Hom}_{E}(\mathfrak{J}, E)$ is the composition $A \rightarrow \operatorname{Hom}_{E}(\mathfrak{J}, \mathfrak{J}) \rightarrow \operatorname{Hom}_{E}(\mathfrak{J}, E)$. Thus Ker $\gamma = \operatorname{Ann}_{\mathcal{A}} \mathfrak{J}$.

LEMMA 3. The natural map $A \rightarrow \operatorname{Hom}_{E}(\mathfrak{J}, \mathfrak{J})$ is a surjection and $\operatorname{Hom}_{E}(\mathfrak{J}, \mathfrak{J}) \rightarrow \operatorname{Hom}_{E}(\mathfrak{J}, E)$ is a bijection. Thus $\operatorname{Hom}_{E}(\mathfrak{J}, \mathfrak{J})$ is identified with both $A/\operatorname{Ann}_{A} \mathfrak{J}$ and E/Ω .

PROOF. Since $\mathfrak{J}^2 = (0)$ and since A is Cohen-Macaulay, the group $\operatorname{Ext}_E^i(A, E) = (0)$ for i > 0. Hence π' is a surjection. Thus γ is also a surjection. Since $\operatorname{Hom}_E(\mathfrak{J}, \mathfrak{J}) \to \operatorname{Hom}_E(\mathfrak{J}, E)$ is an injection, the statements of the lemma follow. Q.E.D.

We identify $\operatorname{Coker}(\mathfrak{J} \to \Omega)$ with a, the annihilator of \mathfrak{J} . The ring $\operatorname{Hom}_{E}(\mathfrak{J}, \mathfrak{J}) \cong \operatorname{Hom}_{A}(\mathfrak{J}, \mathfrak{J})$ and is denoted by A'. Then the diagram can be displayed as

LEMMA 4. The ring A' is Cohen-Macaulay and dim $A = \dim A'$.

PROOF. It is enough to prove that $\operatorname{Ext}_{E}^{i}(A', E) \cong (0)$ for i > 0. The exact sequence $0 \rightarrow \Omega \rightarrow E \rightarrow A' \rightarrow 0$ gives rise to the exact sequence

 $0 \rightarrow \operatorname{Hom}_{E}(A', E) \rightarrow E \rightarrow \operatorname{Hom}_{E}(\Omega, E) \rightarrow \operatorname{Ext}^{1}_{E}(A', E) \rightarrow 0$

and the isomorphisms $\operatorname{Ext}_{E}^{i}(\Omega, E) \cong \operatorname{Ext}_{E}^{i+1}(A', E)$ for i > 0. Since A is Cohen-Macaulay we get natural isomorphisms $\operatorname{Ext}_{E}^{i}(\Omega, E) \cong \operatorname{Ext}_{A}^{i}(\Omega, \Omega)$ for all i. Hence $\operatorname{Ext}_{E}^{i}(\Omega, E) = 0$ for all i > 0 while

$$\operatorname{Hom}_{E}(\Omega, E) \cong \operatorname{Hom}_{A}(\Omega, \Omega) \cong A,$$

since Ω is a canonical *A*-module. (This follows from the remarks in the introduction.) Thus $E \rightarrow \operatorname{Hom}_E(\Omega, E)$ is just $\pi: E \rightarrow A$ which is a surjection. So $\operatorname{Ext}_E^i(A', E) = (0)$ for all i > 0 while the canonical *A'*-module is Ker $\pi = \Im \cong \operatorname{Hom}_E(A', E) \cong \{e \in E : e\Omega = 0\}$. Q.E.D.

We record several other consequences. We retain the hypotheses and notation.

PROPOSITION. (a) The sequences

 $0 \longrightarrow \mathfrak{J} \longrightarrow E \xrightarrow{\pi} A \longrightarrow 0 \quad and \quad 0 \longrightarrow \Omega \longrightarrow E \xrightarrow{\pi'} A' \longrightarrow 0$

are $\operatorname{Hom}_{E}(_, E)$ dual.

(b) The sequences $0 \rightarrow a \rightarrow A \rightarrow A' \rightarrow 0$ and $0 \rightarrow \Im \rightarrow \Omega \rightarrow a \rightarrow 0$ are $Hom_A(-, \Omega)$ (which is $Hom_E(-, E)$) dual. (c) The group $Ext^i_E(a, E) = (0)$ for all i > 0.

ROBERT FOSSUM

(d) The A-module \mathfrak{J} is a canonical A'-module while Ω is a canonical A-module. Thus, in particular, the square zero ideal \mathfrak{J} is a canonical A-module if and only if $\operatorname{Ann}_{\mathcal{A}} \mathfrak{J} = (0)$.

(e) We have the following natural isomorphisms:

 $A = \operatorname{Hom}_{A}(\Omega, \Omega),$ $A' = \operatorname{Hom}_{A}(\mathfrak{J}, \mathfrak{J}) \cong \operatorname{Hom}_{E}(\mathfrak{J}, E) \cong \operatorname{Hom}_{A}(\mathfrak{J}, \Omega),$ $\mathfrak{J} = \operatorname{Hom}_{A}(A', \Omega) \cong \operatorname{Hom}_{E}(A', E), and$ $\Omega = \operatorname{Hom}_{A}(A, \Omega) \cong \operatorname{Hom}_{E}(A, E). \quad Q.E.D.$

Note that Ω is a nilpotent ideal in *E* which has square zero if and only if $\Omega = \mathfrak{J}$.

Final remarks. A result which is implicit in this article, and which follows immediately is a slight generalization of the Grothendieck-Bass-Sharp result about Cohen-Macaulay factor rings of Gorenstein rings. We state it here for possible future reference.

PROPOSITION. Suppose A is a local Cohen-Macaulay ring with a canonical module Ω . The factor ring A' of A is Cohen-Macaulay if and only if $\operatorname{Ext}_{A}^{i}(A', \Omega) = (0)$ for all $i \neq \dim A - \dim A'$. If A' is Cohen-Macaulay, then it has a canonical module which is just the nonzero Ext group. Q.E.D.

It should be mentioned that a nontrivial extension has been exhibited at the beginning of this section. Others will arise from symmetric 2-cocycles $f: A \times A \rightarrow \Omega$ which are not coboundaries (if they exist).

REFERENCES

1. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 27 #3669.

2. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N.J., 1956. MR 17, 1040.

3. R. Fossum, P. Griffith and I. Reiten, *The homological algebra of trivial extensions* with applications to ring theory (to appear).

4. H.-B. Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267-284.

5. A. Grothendieck, *Local cohomology*, Lecture Notes in Math., no. 41, Springer-Verlag, Berlin and New York, 1967. MR 37 #219.

6. J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Math., no. 238, Springer-Verlag, Berlin and New York, 1971.

7. I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417-420.

8. R. Y. Sharp, Gorenstein modules, Math. Z. 115 (1970), 117-139. MR 41 #8401.

MATEMATISK INSTITUT, UNIVERSITETSPARKEN, NY MUNKEGADE, 8000 AARHUS C, DENMARK

Current address: Department of Mathematics, University of Illinois, Urbana, Illinois 61801

400