Theoretical Informatics and Applications
Theoret. Informatics Appl. 35 (2001) 419435

COMMUTATIVE IMAGES OF RATIONAL LANGUAGES
AND THE ABELIAN KERNEL OF A MONOID *

MANUEL DELGADO!

Abstract. Natural algorithms to compute rational expressions for
recognizable languages, even those which work well in practice, may
produce very long expressions. So, aiming towards the computation of
the commutative image of a recognizable language, one should avoid
passing through an expression produced this way. We modify here one
of those algorithms in order to compute directly a semilinear expression
for the commutative image of a recognizable language. We also give
a second modification of the algorithm which allows the direct com-
putation of the closure in the profinite topology of the commutative
image. As an application, we give a modification of an algorithm for
computing the Abelian kernel of a finite monoid obtained by the author
in 1998 which is much more efficient in practice.

Mathematics Subject Classification. 20M35, 68Q99.

INTRODUCTION

For basic notions related to rational sets we refer the reader to [16] or [4].
An algorithm to compute a rational expression for the language recognized by a
finite automaton, the one developed in [5], is implemented in the computer pro-
gram AMoRE [15]. This algorithm, while working very well in practice, produces
expressions whose size grows exponentially, as we shall see. So, when we have
applications in mind that require the computation of the commutative image of
a recognizable language, we should avoid the usage of the rational expressions
produced by such an algorithm. Through simple modifications of the algorithm,

Keywords and phrases: Rational language, semilinear set, profinite topology, finite monoid.

* The author gratefully acknowledges support of FCT through the Centro de Matematica da
Universidade do Porto and the FCT and POCTI Project POCTI1/32817/MAT/2000 which
is comparticipated by the European Community Fund FEDER.
1 Centro de Matemética, Universidade do Porto P. Gomes Teixeira, 4099-002 Porto, Portugal;
e-mail: mdelgado@fc.up.pt

© EDP Sciences 2002



420 M. DELGADO

we show that we can compute an expression for the commutative image in the
n-generated free Abelian group of the language recognized by a finite automaton
without explicitly computing a rational expression for that language. This way
of computing the commutative image of a recognizable language is much more
efficient in practice than the obvious one using the rational expression. We show
that even an expression for the closure in the profinite group topology of that
commutative image can be computed this way.

The application we are interested in is to solve, in a relatively efficient way, the
problem of computing the Abelian kernel of a finite monoid. This problem is the
Abelian counterpart of the Rhodes Type II conjecture, which was solved indepen-
dently by Ash [2] and Ribes and Zalesskii [20]. Many decidability problems in the
theory of finite semigroups can be reduced to the computation of kernels of finite
monoids as may be seen, for instance, in [12]. The validity of an algorithm pro-
posed by Pin and Reutenauer [18] (proved in [20]) was the successful realization of
a topological approach to computing kernels introduced by Pin [17]. An algorithm
to compute the Abelian kernel of a finite monoid was given by the author a few
years ago in [8]. The algorithm proposed there involves, for each element of the
monoid, the computation of a rational expression for the language (over a finite
alphabet) recognized by a finite automaton, followed by the computation of an
expression for the closure, under the profinite group topology, of its commutative
image. We use the modification proposed here to compute directly this expression,
obtaining this way an algorithm that works much better in practice.

The implementation in GAP [21,26] of the original algorithm allowed compu-
tations of some examples, but only of monoids of small order. Bigger examples
were handled as the algorithm was improved. The ability to compute the Abelian
kernels of some monoids led the author and Fernandes to the results of [9].

After a section of preliminaries recalling some facts on rational subsets, Abelian
groups and finite monoids, this paper is divided as follows:

In Section 2 we state an algorithm to compute a semilinear expression from a
rational expression of a language. Then we recall an algorithm (the original one)
to test whether or not an element of a finite monoid belongs to the Abelian kernel
of the monoid.

In Section 3 we describe in some detail an algorithm to compute a rational
expression for the language recognized by a finite automaton.

In Section 4 we make some comments on the tractability of the algorithm pre-
viously given. In particular we look at the number of steps needed as well as at
the growth of the size of the rational expression obtained.

In Section 5 we propose a modification of the algorithm and discuss what is
gained with it. The algorithm to test whether a given element of a finite monoid
belongs to its Abelian kernel is then improved.

In Section 6 we recall some well-known results and discuss how their usage
allows the computation of the Abelian kernel of a finite monoid without applying
the algorithm to every element, thus saving time.



COMMUTATIVE IMAGES OF RATIONAL LANGUAGES 421
1. PRELIMINARIES

This section starts with some words on rational subsets of A*, N" and Z".
Then it recalls some facts about Abelian groups and ends with a few more words
on finite monoids.

The elements of Z™ will sometimes be called vectors. Let A = {as,...,a,} be
an alphabet with n letters and let v : A* — Z" be the canonical homomorphism
(i.e., the homomorphism defined by v(a;) = (0,...,0,1,0,...,0), the i-th vector
of the standard basis of the n-generated free Abelian group Z"). Observe that
the image of ~ is contained in the n-generated free commutative monoid N". We
endow Z" with the profinite topology (i.e., the weakest topology rendering all
homomorphisms into finite groups continuous) and write X to denote the closure
of the subset X C Z". All topological notions used in this paper may be found
in [27].

For a € N" (respectively, a € Z™), we denote by a* or aN (resp. (a) or aZ)
the submonoid of N™ (resp. subgroup of Z") generated by a. For a subset L of
a monoid (resp. a group) the notation L* (resp. (L)) is also used with the more
general meaning “submonoid generated by L” (resp. “subgroup generated by L”).

Let L be a non-empty rational subset of A*, i.e., a non-empty rational language.
The set v(L), being the homomorphic image of a rational set, is a rational subset
of N”, therefore it is a semilinear set, i.e., a finite union of sets of the form
a+ 0 N+---+byN, with a, b1, ... ,b, € N, which are called linear.

The following has been proved in [8].

Proposition 1.1. The closure of a rational subset of Z" is rational. Furthermore,
this closure can be computed using the following formulas, where S and T are
rational subsets of the free Abelian group given by rational expressions:

(1) S =S if S is finite;

(2) SUT =SUT;

(3)S+T=8S+T;

(4) S* = (S), the subgroup of Z"" generated by S.

As an immediate consequence we have the following corollary:

Corollary 1.2. Fora,b,...,b. € N, the closure of the subset a+b;N+---+b,.N
of Z" 1is the coset a+biZ+- - -+b,.7Z of the subgroup of Z" generated by the elements
bi,... by

In order to keep the paper as self-contained as possible, we recall here some
well-known results concerning Abelian groups. See [22] or [7] for details.

A subgroup H of Z" generated by m vectors can be specified by giving an
m x n matrix A whose rows are the m given vectors. The subgroup H is the set
of all integral linear combinations of the rows of A and is denoted by S(A). These
linear combinations are the vectors uA where u ranges over Z™. If a matrix B
is obtained from the matrix A through integer row operations (i.e., interchanging
rows, multiplying a row by —1 or adding an integral multiple of a row to another
row), then S(A4) = S(B). Two m x n matrices are said to be row equivalent



422 M. DELGADO

over Z if one of them can be transformed into the other by a finite sequence of
row operations.

Let A be an m x n matrix and suppose that A has r nonzero rows. We say that
A is in Hermite normal form (HNF) if the following conditions are satisfied:

(1) the first r rows are nonzero;

(2) for 1 < i < r let a;;, be the first nonzero entry in the i-th row of A. Then
1 <J2 < <lr;

(3) aij, >0,1<i<m;

(4) if 1 <k <i<r,then 0 < agj, < aij,-

The following proposition states that it is possible to specify representatives for
the row equivalence classes of integer matrices.

Proposition 1.3. Fach integer matriz B is row equivalent over Z to a unique
matriz A in Hermite normal form.

It turns out that if a subgroup H of Z" is such that H = S(B) for a matrix B
which is row equivalent to a matrix A in Hermite normal form, then the non-zero
rows of the matrix A form a basis of the subgroup H. In particular, a subgroup
of Z" can be generated by n or fewer elements. It follows also that to test whether
two finitely generated subgroups of Z" are equal it suffices to compute the bases
of the subgroups given by matrices in HNF and test their equality.

In the literature already mentioned, and also in [24], one may find polynomial
time algorithms to compute normal forms for integer matrices. Some of these

algorithms, particularly those based in Storjohann’s work, are implemented in
GAP [26].

There are several ways to give a finite monoid in practice. One of them is to
give it as a submonoid, generated by a set A, of a monoid U, called universe, for
which is known an algorithm to compute the product and an algorithm to test the
equality of two elements. Another is to give it as the transition monoid of a finite
A-automaton. Alternatively, a presentation (A | R) may be given. Of course, the
multiplication table is another way to give a finite monoid.

Let M be a finite monoid. Since M is finite, there exists a finite alphabet
A={a1,...,a,} and an onto homomorphism ¢ : A* — M, thus M may be seen
as an A-monoid. To avoid arbitrariness, the set A above could be taken equal to
M, but usually A can be much smaller, as is clear from the discussion above about
how a finite monoid can be given. We fix M, A and .

Note that the complexity of an algorithm concerning finite monoids depends
in general on the way monoids are given. For instance, determining the number
of elements of a monoid is trivial when the multiplication table is given and may
require a lot of work in other cases.

The right Cayley graph of a finite monoid M relative to a generating set A is
the graph I'pz, 4 (or simply I'py, if the generating set is understood) having M as
set of vertices and, for each vertex s and generator a, an edge labeled by a from s
to sa.



COMMUTATIVE IMAGES OF RATIONAL LANGUAGES 423

A relational morphism of monoids is a relation 7 : S-e— T between the monoids
S and T with domain S which is a submonoid of S x T. A relational morphism
always has a factorization in terms of the inverse of an onto homomorphism and a
homomorphism. Such a factorization is conveniently described through a diagram
such as the following:

R—w>T

| A
S

A pair (s,t) € S x T belongs to 7 if and only if there exists u € R such that
s =p(u) and t = Y(u).

For a relational morphism 7 : S-e— T, the set {s : (s,t) € 7} is denoted by
=1(1).

In this paper we will assume that the right Cayley graph of a monoid may be
computed efficiently (see [11]) and do not care about the way the monoid is given.
(See Rem. 5.4 below.)

Let Ab be the class of all finite Abelian groups. The Abelian kernel of M is
Kawn(M) = N 77%(1), with the intersection being taken over all groups G € Ab
and all relational morphisms of monoids 7 : M —-e— G. Of course this definition
may be given for any class of finite groups. In the Rhodes Type II Conjecture the
class of all finite groups was considered and the terminology kernel of M was used.

The following result proved in [8] gives an alternative definition of Abelian
kernel: the set of elements x € M such that 0 € y(¢~1(z)). Note that the Abelian
kernel does not depend on the choice of A and ¢.

Theorem 1.4. An element x € M belongs to the Abelian kernel of M if and only
if 0 €v(p~ ().

Our aim is to give an algorithm that allows us to test, in practice, whether or
not 0 € y(¢~(z)).

2. SEMILINEAR EXPRESSIONS AND THE ORIGINAL ALGORITHM

Let n be a positive integer. A linear expression over n is an expression of the
form a + b1 N + --- 4+ b,N, where a,b1,...,b, € N*. We say that the expression
a+ b N+ -+ b,N has size p. We define the length of the linear expression
a+biN+---+b,N as being |a|+|b1|+- - -+]|bp|, where, for z = (x1,... ,2,) €N, ||
denotes the maximum of the set {|x1|,... ,|zn|}. A semilinear expression is either

the empty set () or a finite union of linear expressions. The size (respectively length)
T

of the semilinear expression U ug; + u1,;N + -+ + up, ;N is the maximum of the
i=1

sizes (respectively lengths) of the linear expressions involved in the expression and

its width is r, the number of linear expressions involved. The size, the length and

the width of () are 0. Taking, if necessary, some wu; ; equal to the null vector, we



424 M. DELGADO

may suppose that a semilinear set is a finite union of linear sets with the same
size. Therefore, in the above expression all p; may be supposed to be equal.

As rational expressions over an alphabet (i.e., finite expressions involving let-
ters, unions, products or the operation —*) are used to represent rational lan-
guages, we use semilinear expressions to represent semilinear sets. The linear
expression a + by N + - -- 4+ b, N over n represents the linear set a +b1N+---+b,N
of N”. A semilinear expression represents the union of the linear sets represented
by the linear expressions involved. Semilinear expressions representing the same
semilinear set are said to be equivalent. Similarly, rational expressions representing
the same rational language are also said to be equivalent.

The next proposition (also proved in [8]) gives an algorithm to effectively com-
pute a semilinear expression for the semilinear set (L) from a rational expression
for the rational language L.

Suppose that we are given a non-empty rational language L. Observe that L
is either finite or of the form L; U La, Ly - Ly or L}, with L; and Lo rational
languages. Suppose that semilinear expressions for v(L1) and y(Ls) are known,
say Uj—y wo,i+u1,iN +--4up ;N and Uj_; vo,j +v1,;N +- - -+v4,; N, respectively.

Proposition 2.1. With the notation just introduced, the following formulas hold:
(1) if L is finite, then U ~v(x) is a semilinear expression for v(L);

z€eL
r4+s
(2) U wo  + w1 g N+ +w N, where
k=1
UL if k<randl<p
wy g = v g—r if k—r<sandl<gq

0 otherwise,

is a semilinear expression for v(Ly U La);

U (o +v0y) +uraV + -+ upiN + 01N+ 4 gy N)
1<i<r1<5<s

is a semilinear expression for v(L1 - La);

Z (O U(’U,o’i + UO;L'N + ul,iN —+ -4 upJ-N))

1<i<r

is a semilinear expression for ~y(L7).

Proof. The formula given in (1) is obvious.

Clearly (U/_; w0, +u1 N+ +up;N)U (U;:1 vo; +v1;N+---4v,;N)isa
semilinear expression for y(L1) U~y(L2) = (L1 U Lg) and is obviously equivalent
to the semilinear expression given in (2).



COMMUTATIVE IMAGES OF RATIONAL LANGUAGES 425

Since « is a homomorphism, we have y(L; - Ly) = v(L1) + v(L3). Therefore a
semilinear expression for (L1 - Lo) is (U;_; w0, +u1,:N+-- ~+up7iN)+(Uj=1 vo,;+
v1;N+---+v,,;N) and it is equivalent to the semilinear expression given in (3).

As 7 is a homomorphism, the equality v(L%) = v(L1)* holds. Now, we may use
the following two easy observations:

- (XUY)*=X*4+Y*for X,Y CN"
— the submonoid generated by the linear set a + b/N + - + b,N is 0(J(a +
aN+ 0N+ --- +b,N);

to obtain the semilinear expression for v(L}) given in (4).

(We observe that the set 0 J(a+aN+b;N+- - -+b,N) considered above is strictly
contained in aN+b;N+---+b,N (since it does not contain by, for example), which
at first sight seemed to be the submonoid generated by a + 5N+ --- +5,N.) O

We observe that if the widths of the semilinear expressions for (L) and y(Lz)
are r and s respectively, then the semilinear expression for y(L; - La) given by
Proposition 2.1 has width rs, thus the growth of the width of the semilinear
expression obtained when we apply this algorithm to a rational expression is very
high in general. The growth of the size of the semilinear expression obtained is also
very large in general (this is due to parts (3) and (4) of the proposition). Observe
that the sizes of the expressions obtained grow in general, even when we try to
substitute semilinear expressions by smaller equivalent semilinear expressions: for
example, the submonoid of N? generated by the elements (2,0), (1,1) and (0,2) is
not generated by two elements, therefore the linear set (2,0)N+(1, 1)N+(0, 2)N can
not be represented by a linear expression of size 2. We remark that the subgroup
of Z? generated by the 3 elements above is in fact generated by less than 3 elements
(as happens with any other subgroup of Zz), thus the situation, in terms of the
size of the expressions obtained, may be a bit different when we consider cosets of
subgroups of Z" instead of linear sets.

Corollary 1.2 suggests that, when we are interested in computing closures, we
will mainly be concerned with unions of cosets of subgroups, instead of semilinear
sets. This will allow us to surpass, in some sense, the problem concerning the size
of the semilinear expressions stated above. In fact, we do not need more than n
elements of Z" to describe a subgroup of Z" and it is feasible in practice to find
such elements (it basically suffices to compute the HNF of a matrix).

Next we recall the algorithm obtained in [8] to test whether or not an element
of a finite monoid belongs to its Abelian kernel. The input of the algorithm is a
finite monoid M together with an element x of M; the output is Yes, if x belongs
to the Abelian kernel of M and Not, otherwise.

Algorithm 2.2.

o Construct the Cayley graph U'as of M.
Recall that we are assuming that this construction may be done in an efficient
way. Next consider the automaton T'pr(x) obtained from Ty taking 1 for
initial state and x for final state.



426 M. DELGADO

e Compute a rational expression for the recognizable language o~ (). (This
is the language recognized by I'pr(x) and a rational expression for it may
be computed using, for example, Algorithm 3.1.) Then use Proposition 2.1
to compute a semilinear expression for v(¢~'(x)) and substitute N by 7Z
whenever it appears in the expression (cf. Cor. 1.2).

o Testif 0 € y(o~1(x)).

Taking into account the expression that we have obtained for v(o=1(x)),
this means testing if a Diophantine system has some solution. There are
polynomial algorithms, in terms of the absolute values of the coefficients, to
solve Diophantine systems, admitting integer (eventually negative) solutions.
See, for example [6]. This part may also be performed using normal forms
for integer matrices which are already implemented in GAP [26].

3. COMPUTING RATIONAL AND SEMILINEAR EXPRESSIONS

We begin this section recalling an already mentioned algorithm due to
Brzozowski and McCluskey [5] for computing a rational expression for the lan-
guage recognized by a finite automaton. Since we are aiming to give a variant of it
to compute an expression for the commutative image of a recognizable language,
we will explain it in some detail.

The definition of generalized transition graph (abbreviated: GTG) G over a
given alphabet may be obtained from the definition of automaton by requesting
that: G has a single initial state q; and a single final state qr, with ¢ # qr; given
two states of G there is exactly one edge beginning in one of them and ending in the
other; the labels of the edges of G are rational sets (instead of letters, as happens
in the automata case) or, more precisely, rational expressions representing them.
For states p, ¢ of G we denote by A(p,q) the label of the single edge beginning
in p and ending in q. A word w is recognized by G if and only if there is a finite
sequence q; = pg, ... ,Pn = g of states of G and a factorization w = wuq - - - u, of
w such that, for 1 < i < n, u; belongs to A(p;—1,p;). The language recognized by
G is the set of words recognized by G.

Let A be a finite automaton and let @ be its set of states. The output of the
following algorithm, whose input is A, is the label of the single edge from the
initial state to the final state of the GTG obtained at the end. It will be a rational
expression for the language recognized by A.

Algorithm 3.1.

o Construct the following generalized transition graph G: the set of states is
Q' =QU{qr,qr} where q; and qr do not belong to Q; the edges are labeled
in the following way: the label of an edge from qr to any initial state of A
is the empty word and the same happens with the label of the edge from any
final state of A to qr. The remaining edges adjacent to q; or to qr are
labeled by (0, the empty set. The label A(p,q), p,q € Q, is the set (eventually
0) of letters labeling the edges from p to q in A.



COMMUTATIVE IMAGES OF RATIONAL LANGUAGES 427

e Execute the following cycle:
While Q # 0,
— choose q € Q;
— destroy the loop in q; then eliminate q.

The way the destruction of a loop and the elimination of a state are performed is
indicated in what follows.

Destroy a loop at ¢: if the label of the loop at ¢ is non-empty and p € Q \ {¢},
replace the label (g, p) of the edge from ¢ to p by (A(q,q))*A(g,p) and the label
A(q, q) of the loop in ¢ by 0.

The following may help to visualize this operation:

I 0
() O ]
qe 2 P — .Jb—>.p

Eliminate a state ¢ (with A(q,q) = (0): for all states r, s of G such that r, s # g,
the label A(r, s) of the edge from r to s is replaced by A(r, ¢)A(q, s) U A(r, s). The
state ¢ and all edges adjacent to ¢ are then removed.

The following may help to visualize this operation:

%q\
(I1) e l il Ul

S — Te S

We observe that the language recognized by the generalized transition graph G
constructed in the first step of the algorithm is precisely the language recognized
by A. We observe also that the language recognized by a GTG obtained from a
GTG by destruction of a loop at some state followed by the elimination of this state
is the language recognized by the original GTG. So, the output of Algorithm 3.1
is a rational expression for the language recognized by the automaton A given.
In particular, the rational language given by Algorithm 3.1 is independent of the
choices made in the second step of the algorithm.

The following lemma is straightforward and will be used freely. (Analogous
lemmas could be stated after Algorithms 3.3 and 5.2.)

Lemma 3.2. The substitution of a label by an equivalent rational expression while
applying Algorithm 3.1 does not modify the set represented by its output.

Consider now the following slight modification of Algorithm 3.1. Denote by
~(1) the semilinear expression given by Proposition 2.1 for the image by v of the
rational language with rational expression I. The input and output of the following
algorithm are as in Algorithm 3.1.

Algorithm 3.3.

o Replace each label a in A by v(a) (i.e., consider commutative labels).
o Construct a generalized transition graph as in the first step of Algorithm 3.1.



428 M. DELGADO

e Fxecute the cycle given in the second step of Algorithm 3.1, taking into ac-
count the change of the meaning of destroy and of eliminate which should be
clear from the following pictures.

l 0
5 OV( 1) ~(l2) . Q ~(15) +1(l2)-p

o =" s.p

q
vl q%
ary . (@ s

The following proposition may be easily proved using Proposition 2.1 (¢f. proof
of Prop. 5.3).

) +aL)ur@_

Proposition 3.4. The expression produced by Algorithm 3.3 with the automaton
A as input is a semilinear expression for the image by v of the language recognized

by A.

4. TRACTABILITY

An algorithm is usually said to be tractable if the computations can be carried
out in time that is a polynomial function of the size of the input. We do not
believe that the algorithm given above to compute the Abelian kernel of a finite
monoid is tractable in this sense, as may be inferred from this section.

In practice the output of Algorithm 3.1 is produced in a very reasonable time.
The number of substitutions of labels involved to remove a state ¢ in a GTG
with n + 2 states is not greater than (n + 1)2. In fact, it involves at most n + 1
substitutions to destroy the loop at ¢ plus n(n+1) substitutions for the elimination
of g. So the number of substitutions involved in the computation of a rational
expression for the language recognized by a finite automaton with n states is
bounded by the polynomial n(n + 1)2.

But there is a problem with this algorithm: the size of the rational expression
obtained, in terms of the number of symbols involved, grows very fast as we shall
see. In fact, unless we are able to simplify the expression (substituting rational
expressions by equivalent smaller ones) when taking products or unions, the growth
of the size of the rational expression is exponential in terms of |Q||A].

It is not difficult to produce an automaton with a few hundred states over an
alphabet with less than a dozen letters such that the rational expression produced
by Algorithm 3.1 (and written in the usual readable form) occupies more than 10
Mbyte of computer memory. If one uses the algorithm given in Proposition 2.1 to
produce a semilinear expression from such a rational expression, one has to wait
a long time before obtaining a result.



COMMUTATIVE IMAGES OF RATIONAL LANGUAGES 429

To each rational expression R we associate two natural numbers I(R) and I'(R)
defined as follows:

e [(R) is the number of letters involved in the expression R, counted with
multiplicities. (For example, [(aaa* Ub) =4.)
e ['(R) is defined recursively as follows:
— '(R) is the number of elements of the set represented by R, if it is finite;
— if R = R1 U R5, then ZI(R) = l/(Rl U Rg) = l/(Rl) + l/(RQ);
—ifR= R1 . RQ, then ZI(R) = l/(Rl . RQ) = ZI(Rl) X ZI(RQ);
— if R=Rj, then I'(R) =l'(R}) = 1.

Observe that I'(R) is at most the width of the semilinear expression y(R). The “at
most” instead of “equal” is due to the fact that the width of y(R*) is, in general,
greater that 1. B

So, given a rational expression R, if we produce v(R) using the algorithm given
by Proposition 2.1, the semilinear expression obtained has width at least I’ (R). We
have not found any reason to believe that one can find, in general, an equivalent
semilinear expression with smaller width.

Either of the numbers defined above may, for a particular expression, be greater
than the other. For example, if Ry = ajae and Re = (a1 Uasg) - (by U ba U bs) we
have [((R1) =2>1=1U'(Ry) and [(R2) =5 <6 =2 x 3 =1'(Ra2).

Lemma 4.1. Let G be a GTG having at least 4 states and such that, for all non-
initial and non-final states p,q, l(A(p,q)) = k and I'(M(p,q)) = k' (kK > 1).
Let § be a non-initial and non-final state and suppose Gy is obtained from G by
destruction of a loop in G followed by the elimination of §. Then, representing by
A1(r, s) the label of the edge connecting r to s in the GTG Gy, we have (A (r, s)) =
Ak and I'(Ai(r, s)) = k"> + K, for all states r and s of Gy different from the initial
and final states.

Proof. Observe that A1(r,s) = A(r, s) U, AT, 7)* (G, 9)). O

Consider the cyclic group G of order n > 2. Denote its elements by ag, . .. , @n_1,
and assume that the product is given by a;a; = a1 (modn)- Let A = G and
consider the onto homomorphism ¢ : A* — G defined by ¢(a;) = a;. (Observe
that we could have taken a singleton set A = {a;1}.) The Cayley graph TI'¢ of
G is such that given two states a; and a; there is always an edge, labeled by
@j_i(modn), from a; to aj. As above, we transform this graph into an automaton
by distinguishing two states: let ag (the neutral element of ) be the initial state
and choose a final state z. Denote by I'¢(x) the automaton obtained this way.
Constructing, as indicated in Algorithm 3.1, the GTG G from I'¢(x), we obtain a
GTG satisfying the conditions of the preceding lemma with k = &’ = 1. Observe
that when we eliminate a state, the GTG obtained still remains in the conditions
of the preceding lemma unless it has only 3 states. The rational expression R
obtained, using Algorithm23.1, after the elimination of the n states, is such that

I(R)=4" and I'(R) > 22 (2 is raised n — 2 times to the power 2).



430 M. DELGADO

We may thus conclude that the size of R, in terms of the number of symbols
involved, grows exponentially as a function of |G|. The width of y(R) grows even
faster, for n > 4.

The exponential growth of rational expressions given automata for several com-
plexity measures is also proved in [10]. In general, the rational expression produced
applying Algorithm 3.1 to an automaton A is much larger than the equivalent ra-
tional expression produced applying the same algorithm to the minimal automaton
of A. So, in general, it is worth to start minimalizing the automaton before exe-
cuting Algorithm 3.1. A polynomial time algorithm to minimalize an automaton
may be found in [1].

5. COMPUTING THE CLOSURE WITH A MODIFIED ALGORITHM

In the beginning of this section we give a more direct way to compute an
expression for v(¢~1(z)). Then we discuss the advantages of such a modification.
Let us start by proving the following lemma.
Lemma 5.1. Let L = U:=1 uo,; +u1,iN+-- - +up ;N be a semilinear subset of Z".

Then (L) = L*.
Proof. Observe that, as a consequence of Corollary 1.2, both sets are equal to
Zlgigr(UO,iZ +ui i Z+ -+ up ). 0

Next we give a new modification of Algorithm 3.1. The input and output are
as in Algorithm 3.1. It has also the same steps (repeated here anyway), only the
meaning of destroy and of eliminate are changed.

Algorithm 5.2.

e Replace each label a in A by v(a) (or by vy(a), since y(a) is finite).

o Construct a generalized transition graph as in the first step of Algorithm 3.1.

o Execute the cycle given in the second step of Algorithm 3.1, taking into ac-
count the change of the meaning of destroy and of eliminate which should be
clear from the following pictures.

The changes should be clear from the following pictures.
, Om _
) . (k) e . <) >+ (k)

arry . (I3) (v(l1) +(2)) Uy (ls)

— S — Te

S

Let A be a finite automaton. Denote by £(.A) the language recognized by A and
by CL(A) the semilinear set given by the output of Algorithm 5.2 when considered
with input A.



COMMUTATIVE IMAGES OF RATIONAL LANGUAGES 431

Proposition 5.3. Using the notation just introduced, we have CL(A) = v(L(A)).

Proof. We will prove that the expressions produced using our algorithms are equiv-
alent.

Let Gy (resp. Gj)) be the generalized transition graph constructed in the first
(resp. second) step of Algorithm 3.1 (resp. Algorithm 5.2). Denote by G (resp.
G).) the generalized transition graph obtained from Gy (resp. G;) after the elimi-
nation of k states using Algorithm 3.1 (resp. Algorithm 5.2, applied to the same
states).

The property

For any edge of G, the label is of the form (1), where [ is the label of
the corresponding edge of Gy

obviously holds if k = 0.
Suppose that k is less than the number of states of .A. The label of any edge of
G4 is of the form

() + (l2)) +2(ls) Uy (la),

where the v(I;) are labels of appropriate edges of G;.. The corresponding edges in
G, and Q;H_l are respectively 11,12, 13,14 and 111513 U l4.

As a consequence of Lemma 5.1, Proposition 2.1 and Proposition 1.1, we have
v(11) + (y(l2)) +v(I3) Ux(l4) is equivalent to y(I115l3 U ly). The conclusion follows
by induction. B B O

Next we discuss how we can, in practice, take advantage of the use of this
algorithm to produce shorter equivalent semilinear expressions. (We make use of
a lemma analogous to Lem. 3.2.)

Each time a new subgroup appears we compute a basis for it (given by a matrix
in HNF). In this way we bound the size of the semilinear expression obtained.

We have to observe that the HNF of a matrix A, besides being computable in
polynomial time, has its entries bounded in magnitude by a polynomial in ||A||, the
maximum of the magnitudes of the entries of A. See [24]. But in our algorithm, we
have to compute repeatedly the Hermite normal forms of matrices whose entries
contain the entries of matrices in HNF previously computed. Thus, the magnitude
of the entries may grow exponentially, and so, the size of the rational expression
obtained may grow exponentially in terms of the number of elements of the monoid.

When a new union occurs, we throw away the superfluous cosets. This way we
may produce expressions whose width is smaller, but, contrary to what happened
with the size, we have not found any reason to believe that one can produce, in
general, an equivalent semilinear expression with smaller width and therefore to
have a certain control over the width. To test the inclusion of a coset in another
coset, say a + Hy C b+ Ha, it suffices to test whether the subgroup (((a — b) +
Hy) U Hs) is equal to Hy. According to the comment following Proposition 1.3,
this can be done by comparing bases given by a matrices in HNF for the subgroups
in cause. Now observe that a basis for Hy given by a matrix in HNF has already
been computed, as was a finite set of generators for (((a — b) + Hy) U Ha) . We



432 M. DELGADO

may now use one of the efficient algorithms implemented in GAP to compute a
basis for (((a — b) + Hy) U Hs) given by a matrix in HNF.

The Algorithm 2.2 may now be improved as follows: the second step may
be substituted by Algorithm 5.2 which is much more efficient in practice. The
discussion above shows also that, in general, we obtain shorter expressions in this
way and thus we may execute the third step more quickly.

Remark 5.4. Depending on the way the monoid is given, we could try to use
other methods to compute a rational expression for ¢! (z) and do the same kind
of modifications to produce directly an expression for y(¢~1(x)). For example, if
the monoid is given as the transition monoid of an automaton A, other than its
Cayley graph, =1 (z) is simply the intersection of the languages recognized by the
various automata Ay (x) obtained from A by considering, for each state q of A, ¢ as
the initial state and gz as the final state. In order to compute the intersection, we
could use the product of these automata. But the automaton obtained is big and
may have no advantages relative to the Cayley graph. So, unless we find a more
efficient way to compute intersections of languages, this method doesn’t seem to
be better. In addition, we have to start computing a list of the monoid elements,
which comes for free when we compute the Cayley graph.

Remark 5.5. We might be tempted to use an algorithm due to Lenstra, Lenstra
and Lovész [13] (or modifications of it (see [7,19,22])) to compute LLL-reduced
bases and even reduced representatives for the cosets (see also [3]). We have to
observe that the vectors in an LLL-reduced basis are not the shortest possible (for
some norm), but such a basis can be computed in polynomial time. We do not
believe that this would improve our algorithm, since the comparison of subgroups
that we make several times could not be done just by testing equality between
LLL-bases, as is the case with basis given by matrices in HNF.

6. COMPUTING THE ABELIAN KERNEL

We may now give an algorithm to compute the Abelian kernel of a finite
monoid M.

Algorithm 6.1.

o Let K=10.

e Ezxecute the following cycle:
forx e M do
— use Algorithm 2.2 with the improvement referred before Remark 5.4 to

test whether or not x € Kap(M);

—ifx € Kan(M), add x to K.

o Return K.

It is clear, from the above section, that Algorithm 5.2, although much faster than
the original Algorithm 3.1 followed by Proposition 2.1, is not a fast algorithm and
therefore neither is Algorithm 6.1. Some improvements may easily be performed,
as we explain in the sequel. The following is almost obvious.



COMMUTATIVE IMAGES OF RATIONAL LANGUAGES 433

Proposition 6.2. Kan(M) contains the set of idempotents of M.

Using it, we may leave the idempotents, which are easily computed, out of the
cycle in Algorithm 6.1.
It is also easy to verify the following:

Proposition 6.3. Kap(M) is a submonoid of M.

So, if a subset K C Kap(M) is already computed, and, in the cycle of
Algorithm 6.1 a new element = of the Abelian kernel is found, we may close
for submonoid (i.e., compute (K U {x})*) obtaining, possibly, new elements in
Kap(M). These new elements may, of course, be left out of the cycle. We observe
that this process (although polynomial) has to be handled with care, since the
computation of a submonoid with a large number of generators may take a lot
of time. So, it is advisable to keep as few generators as possible each time one
computes (K U {z})*. (We have to remark that we have not found an efficient
algorithm to compute a minimal set of generators of a monoid. Instead, we use
low time consuming ad-hoc methods to throw away some superfluous generators.)

Another result that may be used with the same purposes is the following:

Proposition 6.4. Kan(M) is closed under weak conjugation (i.e., if s,t € M
are such that sts = s or tst =t and u € Kan(M), then sut € Kap(M)).

The proof is analogous to the corresponding result for the kernel case, which
may be found, for example, in [25].

So, we may compute a list of conjugated pairs (i.e., pairs (s,t) of elements of
M such that sts = s or tst = t) and close for weak conjugation and for submonoid
each time a new element of the Abelian kernel is found. Since the list of conjugated
pairs may be large, this (polynomial time) process must also be handled with care.
In fact, in the course of the computations some of the conjugated pairs may become
superfluous. For example, a pair corresponding to an idempotent is not needed,
and the same happens with the pairs of elements already known to be in Kap(M).

The following result, the famous Type II theorem, gives a polynomial time
algorithm to compute the kernel of a finite monoid and was proved in [2,20].

Theorem 6.5. The kernel of a finite monoid M is the smallest submonoid of M
closed for weak conjugation.

It results trivially from the definition, but results also from Proposition 6.3,
Proposition 6.4 and Theorem 6.5, that the Abelian kernel of a finite monoid con-
tains the kernel of that monoid. So, we could start the search for new elements
in the Abelian kernel from the kernel of that monoid. So, fast algorithms to com-
pute the kernel would be useful for us. (We observe that the algorithm given by
Th. 6.5 suffers from the problems with the number of generators and conjugated
pairs referred above.)

Fortunately, for some classes of finite monoids, the computation of the kernel
may be executed more rapidly than using Theorem 6.5. For example, it is well-
known that the kernel of a monoid whose idempotents commute consists of its
idempotents. Computing the idempotents of a finite monoid and testing whether



434 M. DELGADO

they commute is fast. Among the examples of monoids whose idempotents com-
mute are the, largely studied, inverse monoids.

In [23] a fast geometric method for computing the kernel of a finite monoid is
given and may be a good alternative, but as far as the author knows, no computer
program has yet been written for this algorithm.

To conclude, we summarize this discussion proposing the following algorithm
to compute the Abelian kernel of a finite monoid M.

Algorithm 6.6.

o Compute the kernel K of M and let L = (). (L stands for the set of elements
that we already know to be outside the Abelian kernel.)
e Ezxecute the following cycle:
While M\ (K UL) # 0,
— choose x € M\ (K UL) and use Algorithm 5.2 to test whether or not
x € KAb(M);
—ifx & Kap(M), then L becomes LU{z}, else K becomes the submonoid
closed under weak conjugation generated by K U {x}.
o Return K.

7. COMMENTS

The algorithm described in this paper is being implemented in GAP [26] by the
author. It uses algorithms to produce normal forms of matrices that, as observed
earlier, are already implemented in GAP. Of course, we are also using the facilities
already available in GAP to work with semigroups.

The implementation process began when the author was visiting LIAFA at
the University of Paris 7, using GAP3 [21] and the package Monoid [14]. During
this phase we used monoids of injective partial transformations, which were being
studied by V. H. Fernandes, to perform some tests. With the original algorithm we
were unable to compute Abelian kernels of monoids with more than 30 elements,
while using the improvements presented we managed to compute the Abelian
kernel of monoids with about 4000 elements. It took a couple of days in a 550 MHz
machine with 512Mb RAM memory. The computation of several examples gave
the necessary intuition which led to a joint work with Fernandes [9)].

I wish to thank Jorge Almeida for introducing me to the problem of computing the
Abelian kernel of a finite monoid and for many helpful discussions and comments. I wish
also to thank Jean-Eric Pin for encouraging me to implement the algorithm and for his
suggestion to consider commutative variables. Many thanks also to Ben Steinberg for
many helpful discussions and comments. I wish also to thank the anonymous referee for
his/her valuable sugestions.

REFERENCES

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analisys of Computer Algo-
rithms. Addison Wesley (1974).



COMMUTATIVE IMAGES OF RATIONAL LANGUAGES 435

[2] C.J. Ash, Inevitable graphs: A proof of the type II conjecture and some related decision
procedures. Internat. J. Algebra and Comput. 1 (1991) 127-146.

[3] L. Babai, On Lovész’ lattice reduction and the nearest lattice point problem. Combinatorica
6 (1986) 1-13.

[4] J. Berstel, Transductions and Context-free Languages. Teubner, Stuttgart (1979).

[5] J. Brzozowski and E. McCluskey, Signal flow graph techniques for sequential circuit state
diagrams. IEEE Trans. Electronic Comput. 12 (1963) 67-76.

[6] T.J. Chou and G.E. Collins, Algorithms for the solution of systems of linear Diophantine
equations. SIAM J. Comput. 11 (1982) 687-708.

[7] H. Cohen, A Course in Computational Algebraic Number Theory. GTM, Springer Verlag
(1993).

[8] M. Delgado, Abelian pointlikes of a monoid. Semigroup Forum 56 (1998) 339-361.

[9] M. Delgado and V.H. Fernandes, Abelian kernels of some monoids of injective partial trans-
formations and an application. Semigroup Forum 61 (2000) 435-452.

[10] A. Ehrenfeucht and P. Zeiger, Complexity measures for regular expressions. J. Comput.
System Sci. 12 (1976) 134-146.

[11] V. Froidure and J.-E. Pin, Algorithms for computing finite semigroups, edited by F. Cucker
and M. Shub. Berlin, Lecture Notes in Comput. Sci. (1997) 112-126.

[12] K. Henckell, S. Margolis, J.-E. Pin and J. Rhodes, Ash’s type II theorem, profinite topology
and Malcev products: Part I. Internat. J. Algebra and Comput. 1 (1991) 411-436.

[13] A.K. Lenstra, H-W. Lenstra Jr. and L. Lovész, Factoring polynomials with rational coeffi-

cients. Math. Ann. 261 (1982) 515-534.

S. Linton, G. Pfeiffer, E. Robertson and N. Ruskuc, Monoid Version 2.0. GAP Package

(1997).

[15] O. Matz, A. Miller, A. Pothoff, W. Thomas and E. Valkema, Report on the program
AMOoRE. Tech. Rep. 9507, Christian Albrechts Universitat, Kiel (1995).

[16] J.-E. Pin, Varieties of Formal Languages. Plenum, New-York (1986).

[17] J.-E. Pin, A topological approach to a conjecture of Rhodes. Bull. Austral. Math. Soc. 38
(1988) 421-431.

(18] J.-E. Pin and C. Reutenauer, A conjecture on the Hall topology for the free group. Bull.
London Math. Soc. 23 (1991) 356-362.

[19] M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory. Cambridge University
Press (1989).

[20] L. Ribes and P.A. Zalesskii, On the profinite topology on a free group. Bull. London Math.
Soc. 25 (1993) 37-43.

[21] M. Schonert et al., GAP — Groups, Algorithms, and Programming, Lehrstuhl D fiir Math-
ematik, Rheinisch Westfélische Technische Hochschule. Aachen, Germany, fifth Edition
(1995).

[22] C.C. Sims, Computation with Finitely Presented Groups. Cambridge University Press
(1994).

[23] B. Steinberg, Finite state automata: A geometric approach. Trans. Amer. Math. Soc. 353
(2001) 3409-3464.

[24] A. Storjohann, Algorithms for matriz canonical forms, Ph.D. thesis. De-
partment of Computer Science, Swiss Federal Institute of Technology (2000)
http://www.scg.uwaterloo.ca/ astorjoh/publications.html

[25] B. Tilson, Type II reduz, edited by S.M. Goberstein and P.M. Higgins. Reidel, Dordrecht,

Semigroups and their applications (1987) 201-205.

The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.2. Aachen,

St Andrews (1999), http://www-gap.dcs.st-and.ac.uk/ gap

[27] S. Willard, General Topology. Addison Wesley (1970).

=
A

26

Communicated by J.-E. Pin.
Received March 6, 2001. Accepted March 1, 2002.



