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The study of primary semigroups is initiated in [2] by M. SATYANARAYANA. Here 
we deal with semigroups in which every ideal is semi-primary; where in a commutative 
semigroup, an ideal A is called a semi-primary ideal if ^A is a prime ideal. We call 
such semigroups to be semi-primary. We consider only commutative semigroups in 
this paper and for the various definitions and terms involved [2] may be consulted. 

Theorem 1. Let S be a commutative semigroup. Then the following statements 
about S are equivalent: 

(1) Sis a semiprimary semigroup. 
(2) Every principal ideal of S is semi-primary. 
(3) Prime ideals of S are totally ordered. 

Proof, (l) implies (2) is obvious. We prove first (2) implies (3). Let P and Q be 
two prime ideals of S and assume further that P^ Q and Q ^ P. Thus we have a e 
eP — Q and b e Q — P, which means ab e P n Q and a ф P n Q, b ф P r\ Q. 
Let ^(a) = Pi , ^(b) = Qi and y/{ab) = P\ where P^, Qi and P' are prime ideals. 
This gives P' = P^ n g^, that is, P^ я P' or Q^ ç P', but both are impossible. 
This contradiction proves (3). Assume now (3), and let A be any ideal of S. By 1.13 
of [2], ^A = C]Pa, where intersection is over all prime ideals P^^ A. The totally 
ordered nature of prime ideals yields ^JA = P, for some prime P, so that A is semi-
primary. Therefore S is a semi-primary semigroup. 

Corollary. Let S be a commutative semi-primary semigroup. Then idempotents 
form a chain under natural ordering. 

Proof. Let e a n d / be any two idempotents of S; then ^J{eS) and ^J{fS) are prime 
ideals, so either ^J{eS) ç ^J{fS) or ^J{fS) e yJ{eS), which proves the assertion. 

Converse of this corollary is false, which can be seen by the following 



Example . Consider the semigroup of all natural numbers with respect to multi­
plication. In this, (6) is not prime and ^(6) = (6), thus (6) is not a semi-primary ideal, 
so that the semigroup is not semi-primary whereas the set of idempotents (there is 
just one in it) trivially forms a chain. 

Theorem 2. Let S be a regular commutative semigroup. Then the following state­
ments about S are equivalent: 

(1) Every ideal in S is prime. 
(2) S is a primary semigroup. 
(3) S is a semi-primary semigroup. 
(4) Idempotents in S form a chain under natural ordering. 
(5) Principal ideals of S are totally ordered. 
(6) All ideals of S are totally ordered. 

Proof, (l) => (2) and (2) => (3) are immediate. (3) => (4) in view of the above 
corollary. We prove the remaining one by one. Assume (4). Let a and b be any two 
elements of S, (a) == (e), (b) = (/) where e and / are idempotents in S, since S is 
regular. As idempotents of S form a chain, so (a) ^ (b) or (b) ç (a), which proves 
(5). Assume now (5) and let A, В be any two ideals of S with A ^ B. So we have an 
a e A — B. For any b in Б, (b) Ç (a). Therefore В ^ A. Lastly assume (6) and let A 
be any ideal of S. Let ab e A. As ideals are totally ordered; so either (a) ç (Ь) or 
(Ь) ^ (a). Take for the sake of definiteness, (a) ç (Ь). As S is regular, (a) = (a)^ [1]. 
Now ae{a) = (a)^ £ (a) (b) Ç A. Similarly when (b) Ç (a), b e A. Thus A is 
a prime ideal. With this the proof of the theorem is completed. 

Remark . This theorem tells us that primary semigroups and semi-primary semi­
groups coincide if they are regular. But this is not true in general, as can be seen by 
the following 

Example . Let S = {a, a^, a^,...} u e, where e^ = e, ae ~ ea = a^. In this 
semigroup, P = {a, a^, ...} is a unique proper prime ideal. So by Theorem 1, S is 
a semi-primary semigroup; but A = {a^, a^, ...} is not a primary ideal in it. Thus S 
is not a primary semigroup. This is because S is not regular. 

Corollary 1. Let S be a commutative semi-primary semigroup. Then every ideal 
in S is prime if and only if S is regular. 

Proof. Let every ideal in S be prime. Now for any ideal A of S, a e A => a^ e 
EA^" => aeA'^; since A^' is prime. Therefore A = A^ for every ideal A. S, then, is 
regular by a theorem of ISEKI [ l ] . The other part follows from Theorem 2. 

Corollary 2. Let S be a commutative semigroup. Then every ideal in S is prime 
if and only if S is regular and idempotents in S form a chain. 



Proof. When every ideal in iS is prime, as in Cor. 1, S is regular. Let now e and/ 
be any two idempotents of S such that eS ^ fS. Then efeeSn fS, еф eS nfS 
and it being a prime ideal, feeSn fS, So / = ef. And if eS Я fS, the result is clear. 
Thus idempotents of iS form a chain. Converse follows from Theorem 2. 
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