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1. Introduction. It is a consequence of B. H. Neumann's classifi-

cation of group identities [3, Theorem 19.1, p. 523], that the lattice

of Abelian group varieties is distributive. The lattice of varieties of

algebras in one unary operation is also distributive [2], but the lat-

tice of commutative semigroup varieties is not modular [4]. Here

we discuss a distributive sublattice of this nonmodular lattice.

By variety we will mean commutative semigroup variety. (Lem-

mas 1 and 2, however, are true for semigroup varieties, not neces-

sarily commutative.) The semigroups need not have a unit-element.

We will be mainly concerned with laws of the form 5 = sxa where s is

a term (word in the variables), x is variable and a is a positive inte-

ger. We call such a law an L-law and call a variety which can be

defined by a set {s, = .SiX<'*} of 7,-laws, an 7,-variety.

2. 7,-Laws. Exponents of variables will always be positive integers.

Lemma 1 is easily proved by induction on fe, where b = ka.

Lemma 1. Let s be a term and x be a variable. If b is a multiple of a,

then s = sxb holds in the variety defined by s = sxa.

Lemma 2. Let s, t be terms and x be a variable. If d is the greatest

common divisor of a and b, then s — sxd holds in the variety defined by

s = sxa and t = txh.

Proof. The substitution of x for each variable in t = txb yields

xp = xp+è, where p is some positive integer. Hence we have sxp = sxp+b,

and thus, by Lemma 1, sxp — sxpJrib, j = 1, 2, ■ ■ • .

From s = sxa we obtain sxp = sxp+ia, i = l, 2, • • • . Hence sxp

= sxp+ia+ib, i, 7=0, 1, 2, • • • .

Thus, by an elementary property of nonnegative integers,

sxp = sxp+ka+d for some nonnegative integers fe.

From this last law and s = sxka, we obtain sxp = sxp+d. So sxra = sxraxd,

where ra^p. Hence, since s = sxra, we have s = sx*.

By w(x, s) we mean the number (^0) of occurrences of a variable

x in a term 5.
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Lemma 3. If n(x, s)^n(y, s), then s = sxa holds in the variety defined

by s = sy".

Proof. Suppose (i,j), where i, j are positive integers, denotes the

term x^y'. Then each of the following laws (after the first) can be ob-

tained from the previous one.

(P, q) = (P,q + à),
(q + ka, q) = (q + ka, q + a),    if q + ka = p,

(q + ka, q) = (q + ka, q + ka),

(q + ka, q) = (q, q + ka),

(p + ka, q) = (p,q + ka),    if p = q.

Similarly, from s = sy° we can derive sxka = syktt, where k is a posi-

tive integer such that n(y, s)+ka^n(x, s).

By a familiar argument, the last law, with s = sya, yields s = sxka.

From s = sy°, by substitution, we have / = tx" for some term t. Hence,

since a is the g.c.d. of ka and a, we have, by Lemma 2, s = sxa.

We define a simple closure operation on the set of terms as follows:

(i) The closure cl(5) of a set S of terms is the union of the closures

of the one element subsets of S.

(ii) For terms s, t, tEcl({s})=cl(s), in case there is a function

from the set of variables of 5 into the set of variables of / such that if

distinct variables x\, • • • , xm are mapped to a variable x, then

n(xi, s) + ■ ■ ■ + n(xm, s) = n(x, t).

Thus for variables x, y and any term /, xzyH and x7t are in cl(x3y4).

For any term / denote by Sg(¿) the free commutative semigroup gene-

rated by the variables occurring in /. Then (ii) says: There is a

homomorphism <b:Sg(s)—>Sg(i), that maps variables into variables,

such that t lies in the ideal generated by <p(s).

Lemma 4. If n(x, t)^n(x, s{) and tEcl(s2) then t = txa holds in the

variety defined by the laws Si = SiX", s2 = s2x".

Proof. It is readily seen that from si = six" we can obtain a law

s = sya, where y is a variable not in /, s is a term that does not contain

x or any of the variables of t, and n(x, Sx) =n(y, s). Then from s = sya,

we have ts = tsy°. Also

n(x, ts) = n(x, t) = n(x, Si) = n(y, s) = n(y, ts).

Thus by Lemma 3, we have ts = tsx".

Since tEcl(s2), we find, using s2 = s2x", that t = tua lor some variable

u. The substitution of W for each variable of s in ts = tsx" leads to
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tuka = tukax" lor some positive integer fe. This last law, with t = tua,

yields / = tx°.

Lemma 5. Let E= {si = SiXai} be a set of L-laws. Then the L-law

t = txh holds in the variety defined by E if and only if

(i) b is a multiple of g.c.d. {a,},

(ii) «(x, t)^min{n(x, si)} and,

(iii) tQcl({si}).

Proof. Let t denote the law t = tx". Suppose r holds in the variety

V defined by E. The cyclic group of order g.c.d. {at} is (as a semi-

group) an algebra of V, hence t must satisfy condition (i).

Let p = min{«(x, si)} and suppose p>0 (otherwise (ii) is trivial).

Let A he the commutative semigroup with two generators a, b de-

fined by ap = ap+1, b" = bp+1. Clearly A is in V and if »(x, t)<p, r

cannot hold in A. (In r substitute a for x and b for the other vari-

ables, if any, of t.)

Define an equivalence relation R on the set of terms by sRt if

and only if s = t holds in every commutative semigroup. Let [s]

denote the equivalence class containing s and define a binary opera-

tion on the set Q of equivalence classes by [s] [t] = [st]. Let P be the

set of all [s] such that s£cl({s,}). Then P is an ideal of Q. Let

B = Q/P be the Rees factor semigroup of Q modulo P [l, p. 17]. Then

B is in V and for t to hold in B, r must satisfy condition (iii).

Conversely suppose conditions (i) — (iii) are satisfied. Then by

Lemmas 1, 2, and 4, t holds in the variety defined by E.

3. The lattice of L-varieties. It follows from Lemma 5 that if two

sets {Si = SjX°'} and {/,• = tiXbi} of L-laws define the same variety then

(i) g.c.d. {at} =g.c.d. {bi},
(ii) min{«(x, Si)} =min|w(x, ti)}, and

(iii)cl({s,})=cl({/,}).

Thus if V is the variety defined by a set {s, = SiXa,i} we let

(i) period F= g.c.d. {a,},

(ii) level F=-min{«(x, s<)}, and

(iii)scope F=cl({s¿}).

Let 0 be a law s=t with a = n(x, s) and b = n(x, t). We make the

following definitions

(i) Period of x in <j> = \ a — b |.

Period <p = g.c.d. of the periods of the variables of <f>.

(ii) Level of x in <p = min(a, b).

Level of <j> = minimum of the levels of the variables of <p with

nonzero periods.
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(iii) Scope 0 = cl({s, t}).

(Thus the period, level and scope respectively of s = sxa is a, n(x, s),

and cl(s).)

We say a law d> is trivial in case <j> holds in every commutative semi-

group.

Theorem 1. Let V be an L-variety. A nontrivial law d> holds in V

if and only if
(i) period <p is a multiple of period V

(ii) level <p ̂ level V and

(iii) scope 0Cscope V.

Proof. We omit the proof of the necessity, since it is similar to

the proof of the necessity in Lemma 5.

Supposées = t satisfies conditions (i), (ii), and (iii). Let xlt ■ • ■ ,x„

(yx, ■ • ■ , yn) he the variables that appear more often in s(t) than in

t(s) and let c,(d/) be the period in s = t of Xi(y/). By Lemma 5 we have

that s = sy11, ■ • • , s = synn, t = tx'i, • ■ • , t = tx°n hold in V. Hence

s = syi • ■ • y„" and t = txl ■ ■ ■ x™ hold in V. From these two laws

and the trivial law sy/ • • • y" = tx]1 ■ ■ ■ x'^, we have that tf> holds

in V.

Lemma 6. Given two L-varieties with levels ¿, q and scope A, B

respectively there is an L-variety with level max(¿, q), scope (AHB),

and period a for any a>0.

Proof. Let C= {tEAC\B\n(x, t)^max(p, q)},E= {t = txa\tEC},

then the variety defined by E has the desired properties.

We denote the join of two varieties V, W by V+W. The next

theorem follows from Theorem 1, Lemma 6, and an observation dual

to Lemma 6, involving min instead of max and W instead of fY

Theorem 2. Let V and W be L-varieties. Then VC\W and V+W

are L-varieties and the mapping

V —> (period V, level V, scope V)

between the lattice of L-varieties under C\ and + and the direct product of

(i) the lattice of positive integers under g.c.d. and l.c.m.,

(ii) the lattice of nonnegative integers under min and max, and

(iii) the dual of the lattice of all closed sets of terms under Hi and W

is an injective homomorphism.

The next theorem follows immediately from Theorem 2.

Theorem 3. The L-varieties form a distributive sublattice of the

lattice of commutative semigroup varieties.
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The mapping considered in Theorem 2 is not an isomorphism. For

example, there is no L-variety with scope equal to the set of all terms

and level ^2.

4. On other laws. Since the lattice of varieties is not modular,

not every variety is an L-variety. A simple example of a non-L-

variety is the variety defined by xy2 = x2y; other examples occur in

[4]. We consider two types of laws that define L-varieties.

Theorem 4. Let s, t, be terms. The variety defined by s = st is an L-

variety.

Proof. We show <p:s = st is equivalent to the 7,-law <r:s = sx" where

a = period <p and w(x, s) = level (p. (Thus x is a variable of t such that

w(x, s) = level 0.) By Theorem 1 from 0, we have <p.

Conversely the substitution of x for each variable of 0 and the

substitution of x2 for x and x for the other variables, if any, of <b

yields laws in x of periods q + b and q + 2b respectively, where q is

some nonnegative integer and b is the period of x in <p. Thus, since

g.c.d. (q+b, q + 2b) divides b, we have xp = xp+6, where p is some posi-

tive integer. Similarly we can obtain L-laws of the periods of the

other variables of </> in t, so we have an L-law of period <b = period a.

From s = st and x" = xp+a respectively, we have s = stk and xka = x2ka,

where ka^p. These last two laws lead to s = sxka, an L-law of level a

and scope a. Thus we have a.

Theorem 5. If some variable occurs in only one of the terms, s, I

then the variety defined by s = t is an L-variety.

Proof. Suppose w(x, s)=0 and m(x, t)=p>0. By the previous

theorem, it suffices to show that s — t is equivalent to the two laws

s = spt, t = spt. It is obvious that these laws imply s = /. On the other

hand the substitution of sx for x in s = t leads to s = spt, which with

s = t, yields t = spt.
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