
Commutative Set: A Language Extension
for Implicit Parallel Programming

Prakash Prabhu Soumyadeep Ghosh Yun Zhang Nick P. Johnson David I. August

Princeton University
Princeton, NJ

{pprabhu, soumyade, yunzhang, npjohnso, august}@princeton.edu

Abstract
Sequential programming models express a total program order, of
which a partial order must be respected. This inhibits paralleliz-
ing tools from extracting scalable performance. Programmer writ-
ten semantic commutativity assertions provide a natural way of
relaxing this partial order, thereby exposing parallelism implic-
itly in a program. Existing implicit parallel programming mod-
els based on semantic commutativity either require additional pro-
gramming extensions, or have limited expressiveness. This paper
presents a generalized semantic commutativity based programming
extension, called Commutative Set (COMMSET), and associated
compiler technology that enables multiple forms of parallelism.
COMMSET expressions are syntactically succinct and enable the
programmer to specify commutativity relations between groups of
arbitrary structured code blocks. Using only this construct, serializ-
ing constraints that inhibit parallelization can be relaxed, indepen-
dent of any particular parallelization strategy or concurrency con-
trol mechanism. COMMSET enables well performing paralleliza-
tions in cases where they were inapplicable or non-performing be-
fore. By extending eight sequential programs with only 8 annota-
tions per program on average, COMMSET and the associated com-
piler technology produced a geomean speedup of 5.7x on eight
cores compared to 1.5x for the best non-COMMSET parallelization.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Compilers, Optimization

General Terms Languages, Performance, Design, Experimenta-
tion

Keywords Implicit parallelism, semantic commutativity, pro-
gramming model, automatic parallelization, static analysis

1. Introduction
The dominant parallel programming models for multicores today
are explicit [8, 10, 33]. These models require programmers to ex-
pend enormous effort reasoning about complex thread interleav-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright © 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

ings, low-level concurrency control mechanisms, and parallel pro-
gramming pitfalls such as races, deadlocks, and livelocks. Despite
this effort, manual concurrency control and a fixed choice of paral-
lelization strategy often result in parallel programs with poor per-
formance portability. Consequently, parallel programs often have
to be extensively modified when the underlying parallel substrates
evolve, thus breaking abstraction boundaries between software and
hardware.

Recent advances in automatic thread extraction [26, 30, 34] pro-
vide a promising alternative. They avoid pitfalls associated with
explicit parallel programming models, but retain the ease of rea-
soning of a sequential programming model. However, sequential
languages express a total order, of which a partial order of program
execution must be respected by parallelizing tools. This prohibits
some execution orders that are often permitted by high-level al-
gorithm specifications. As a result, automatic parallelizing tools,
overly constrained by the need to respect the sequential semantics
of programs written in languages like C/C++, are unable to extract
scalable performance.

Implicit parallel programming models (IPP) [4, 13, 15, 31] of-
fer the best of both approaches. In such models, programmers im-
plicitly expose parallelism inherent in their program without the
explicit use of low-level parallelization constructs. An interesting
subclass of models within this space includes those that are based
on top of sequential programming models [15]. In such models,
programmer insights about high-level semantic properties of the
program are expressed via the use of extensions to the sequential
model. These language extensions are then exploited by transfor-
mation tools to automatically synthesize a correct parallel program.
This approach not only frees the programmer from the burden of
having to worry about the low-level details related to paralleliza-
tion, but also promotes retargetability of such programs when pre-
sented with newer parallel substrates.

Recent work has shown the importance of programmer speci-
fied semantic commutativity assertions in exposing parallelism im-
plicitly in code [5, 7, 18, 27, 30]. The programmer relaxes the or-
der of execution of certain functions that read and modify muta-
ble state, by specifying that they legally commute with each other,
despite violating existing partial orders. Parallelization tools ex-
ploit this relaxation to extract performance by permitting behaviors
prohibited under a sequential programming model. However, ex-
isting solutions based on semantic commutativity either have lim-
ited expressiveness or require programmers to use additional paral-
lelism constructs. This paper proposes an implicit parallel program-
ming model based on semantic commutativity, called Commutative
Set (COMMSET), that generalizes existing semantic commutativity

IPP System Concept Specific Parallel Implementation
Expressiveness of Commutativity Specification Requires Parallelism Forms Supported Concurrency Parallelization Optimistic or
Predication Commuting Group Additional Task1 Pipelined Data Control Driver Speculative

Interface Client Blocks Commutativity Extensions Mechanism Parallelism1

Jade [27] × × × × Yes X X × Automatic Runtime ×
Galois [18] X × × × Yes × × X Manual Runtime X
DPJ [5] × × × × Yes X × X Manual Programmer ×
Paralax [30] × × × × No × X × Automatic Compiler ×
VELOCITY [7] × × × × No × X × Automatic Compiler X
COMMSET X X X X No × X X Automatic Compiler ×

Table 1: Comparison between COMMSET and other parallel models based on semantic commutativity

constructs and enables multiple forms of parallelism from the same
specification.

Table 1 compares COMMSET with existing parallel program-
ming models based on semantic commutativity. The main advan-
tages of COMMSET over existing approaches are: (a) COMMSET’s
commutativity construct is more general than others. Prior ap-
proaches allow commutativity assertions only on interface declara-
tions. However, commutativity can be a property of client code as
well as code behind a library interface. COMMSET allows the com-
mutativity assertions between arbitrary structured code blocks in
client code as well as on interfaces, much like the synchronized
keyword in Java. It also allows commutativity to be predicated on
variables in a client’s program state, rather than just function ar-
guments as in earlier approaches. (b) COMMSET specifications be-
tween a group of functions are syntactically succinct, having lin-
ear specification complexity rather than quadratic as required by
existing approaches. (c) COMMSET presents an implicit parallel
programming solution that enables both pipeline and data paral-
lelism without requiring any additional parallelism constructs. Ex-
isting approaches use parallelism constructs that tightly couple par-
allelization strategy with concrete program semantics, in contra-
vention of the principle of “separation of concerns.” In contrast,
using only COMMSET primitives in our model, parallelism can be
implicitly specified at a semantic level and is independent of a spe-
cific form or concurrency control mechanism.

The contributions of this work are:

1. The design, syntax, and semantics of COMMSET, a novel pro-
gramming extension that generalizes, in a syntactically succinct
form, various existing notions of semantic commutativity.

2. An end-to-end implementation of COMMSET within a paral-
lelizing compiler that includes the front-end, static analysis to
enhance the program dependence graph with commutativity
properties, passes to enable data and pipeline parallelizations,
and automatic concurrency control.

3. A demonstration of COMMSET’s applicability in expressing
implicit parallelism by extending eight real world sequential
programs with commutativity assertions, and an evaluation of
the performance on real hardware.

The features of COMMSET are first motivated by a running
example. A description of its syntax and semantics follows. An
implementation of COMMSET within a parallelizing compiler is
explained step by step, followed by an evaluation and a discussion
of related work.

2. Motivating Example
Figure 1 shows a code snippet from a sequential implementation
of md5sum (plus highlighted pragma directives introduced for
COMMSET that are discussed later). The main loop iterates through
a set of input files, computing and printing a message digest for
each file. Each iteration opens a file using a call to fopen, then calls
the mdfile function which, in turn, reads the file’s contents via
calls to fread and then computes the digest. The main loop prints

the digest to the console and closes the file by calling fclose on the
file pointer. Although it is clear that digests of individual files can
be safely computed out of order, a parallelizing tool cannot infer
this automatically without knowing the client specific semantics of
I/O calls due to its externally visible side effects. However, the loop
can be parallelized if the commuting behaviors of fopen, fread,
fclose, and print digest on distinct files are conveyed to the
parallelizing tool.

One way to specify commuting behavior is at the interface dec-
larations of file operations. Galois [18] extracts optimistic paral-
lelism by exploiting semantic commutativity assertions specified
between pairs of library methods at their interface declarations.
These assertions can optionally be predicated on their arguments.
To indicate the commuting behaviors of the calls on distinct files,
one would ideally like to predicate commutativity on the filename.
Since only fopen takes in the filename as an argument, this is not
possible. Another approach is to predicate commutativity on the
file pointer fp that is returned by fopen. Apart from the fact that
expensive runtime checks are required to validate the assertions be-
fore executing the I/O calls (which are now on the critical path),
this approach may prevent certain valid commuting orders due to
recycling of file pointers. Operations on two distinct files at differ-
ent points in time that happen to use the same file pointer value
are now not allowed to commute. This solution is also not valid
for all clients. Consider the following sequence of calls by a client
that writes to a file (fp1) and subsequently reads from it (fp2)
in the next iteration: fwrite(fp1), fclose(fp1), fopen(fp2),
fread(fp2). Here, even though fp1 and fp2 may have different
runtime values, they still may be pointing to the same file. Com-
muting fopen(fp2), fread(fp2) with fclose(fp1) may cause
a read from the file before the write file stream has been completed.
Approaches that annotate data (file pointer fp in this case) to im-
plicitly assert commutativity between all pairs of operations on that
file pointer [27], run into the same problem.

Allowing predication on the client’s program state can solve the
above problem for md5sum. Since the input files naturally map to
different values of the induction variable, predicating commutativ-
ity on the induction variable (in the client) solves the problems as-
sociated with interface based predication. First, no legal commuting
behavior is prohibited since induction variables are definitely dif-
ferent on each iteration. Second, runtime checks for commutativity
assertions are avoided since the compiler can use static analysis to
symbolically interpret predicates that are functions of the induction
variable to prove commutativity on separate iterations.

In order to continue using commutativity specifications on func-
tion declarations while still predicating on variables in client state,
programmers either have to change existing interfaces or create
new wrapper functions to take in those variables as arguments.
Changing the interface breaks modularity since other clients which
do not want commutative semantics are now forced to pass in ad-

1 The commutativity specifications languages of Galois, Paralax, VELOC-
ITY and COMMSET are conceptually amenable to task and speculative par-
allelism

#pragma CommSetDecl(FSET, Group) 1
#pragma CommSetDecl(SSET, Self) 2
#pragma CommSetPredicate(FSET, (i1), (i2), (i1 != i2)) 3
#pragma CommSetPredicate(SSET, (i1), (i2), (i1 != i2)) 4

for (i=0 ; i < argc; ++i) { // Main Loop A
 FILE *fp; unsigned char digest[16];

#pragma CommSet(SELF, FSET(i)) 5
 {
 fp = fopen(argv[i], FOPRBIN);
 } B

#pragma CommSetNamedArgAdd(READB(SSET(i), FSET(i))) 6
 mdfile(fp, digest);

#pragma CommSet(SELF, FSET(i)) 7
 {
 print_digest(digest);
 } H
#pragma CommSet(SELF, FSET(i)) 8
 {
 fclose(fp);
 } I
}

#pragma CommSetNamedArg(READB) 9
int mdfile(FILE *fp, unsigned char *digest);

int mdfile(FILE *fp, unsigned char *digest)
{
 unsigned char buf[1024]; MD5_CTX ctx; int n;
 MD5Init(&ctx); C
 do {
#pragma CommSetNamedBlock(READB) 10
 {
 n = fread(buf, 1, sizeof(buf), fp);
 } D
 if (n == 0) break;
 MD5Update(&ctx, buf, n); E
 } while (1); F

 MD5Final(digest, &ctx);
 return 0; G
}

M
a
i
n

L
o
o
p

M
e
s
s
a
g
e

D
i
g
e
s
t

C
o
m
p
u
t
a
t
i
o
n

F
u
n
c
t
i
o
n

Figure 1: Sequential version of md5sum extended with COMMSET

ditional dummy arguments to prevent commuting behaviors. Cre-
ating wrapper functions involves additional programmer effort, es-
pecially while replicating functions along entire call paths. In the
running example, the mdfile interface has to be changed to take
in the induction variable as an argument, to allow for predicated
commutativity of fread calls with other file operations (fopen and
fclose) in the main loop.

The additional programmer effort in creating wrappers can be
avoided by allowing structured code blocks enclosing the call sites
to commute with each other. This is easily achieved in md5sum
by enclosing the call sites of fopen, fread, print digest, and
fclose within anonymous commutative code blocks. Commuta-
tivity between multiple anonymous code blocks can be specified
easily by adding the code blocks to a named set, at the begin-
ning of their lexical scope. Grouping commutative code blocks
or functions into a set, as presented here, has linear specification
complexity. In contrast, existing approaches [5, 18] require speci-
fying commutativity between pairs of functions individually lead-
ing to quadratic specification complexity. The modularity problem
(mentioned above) can be solved by allowing optionally commut-
ing code blocks and exporting the option at the interface, without
changing interface arguments. Clients can then enable the commu-
tativity of the code blocks if it is in line with their intended seman-
tics, otherwise default sequential behavior is preserved. In the case
of md5sum, the fread call can be made a part of an optionally
commuting block. The option is exported at the interface declara-

Comm-DOALL Comm-PS-DSWP

B

Par

D

E

G

H

I

C

B

Par

D

E

G

H

I

C

B

Seq

D

E

G

H

I
C

ico(7,10)

uco(5)

ico(5,7)

ico(5,8)

ico(10,5)

ico(10,7)

ico(10,5)

ico(7,5)
ico(7,8)

ico(8,5)

uco(8)

uco(7)

uco(10)

uco(8)
ico(5,8)

uco(5)

ico(10,8)
ico(10,8)

ico(8,5)

ico(7,5)

ico(7,8)

ico(5,7)

ico(10,7) ico(7,10)

Seq

Intra-Iteration Dependence
Loop Carried Dependence

uco: Unconditionally Commutative

ico: Inter-Iteration Commutative

Commutative EdgeI

Non-Deterministic Output Deterministic Output

COMMSET Node

Non COMMSET Node

Figure 2: PDG for md5sum with COMMSET extensions

Core 1

Time

B1

C1

G1

I1

F1

D1

Sync Op Communication COMMSET Code Block

A1

G1

H1

A2 A3

B1

C1

D1

F1

Comm-PS-DSWP Comm-DOALL

H2

H1

Core 2 Core 3 Core 1 Core 2 Core 3

B2

C2

G2

I2

F2

D2

I1

G2

B2

C2

D2

F2

G3

B3

C3

D3

F3

E3

E2

H2

I2

H3

I3

B3

C3

D3

A1

E1

G1

H1

B1

C1

D1

F1

Seq

Core 1

I1

A2

B2

C2

D2

E3

G3

F3

I3 H3

G2

H2

F2

I2

A3

B3

C3

D3

G3

H3

F3

I3

E3

E1 E1

A3

E2

E2

A1 A2

Output:

digest1 , digest2 , digest3

[Deterministic]

Output:

digest2 , digest1 , digest3

[Non-Deterministic]

Figure 3: Timeline for md5sum Parallelizations

tion of mdfile and is enabled by the main loop, while other clients
that require sequential semantics can ignore the option.

A commuting code block gives the programmer the flexibility
to choose the extent to which partial orders can be relaxed in a
program. This, in turn, determines the amount of freedom a par-
allelizing tool has, to extract parallelism. For instance, enclosing

fread calls inside mdfile within a commuting block gives more
freedom to a parallelizing tool to extract performance, as opposed
to the outer call to mdfile. Depending on the intended semantics,
the programmer can choose the right granularity for the commuting
blocks which a parallelizing system should automatically guarantee
to be atomic. Commuting blocks allow for a declarative specifica-
tion of concurrency which a parallelizing tool can exploit to au-
tomatically select the concurrency mechanism that performs best
for a given application. Automatic concurrency control has the ad-
vantage of not requiring invasive changes to application code when
newer mechanisms become available on a particular hardware sub-
strate.

Parallelizing tools should be able to leverage the partial orders
specified via commutativity assertions without requiring the pro-
grammer to specify parallelization strategies. Existing runtime ap-
proaches require the use of additional programming extensions that
couple parallelization strategies to program semantics. Galois [18]
requires the use of set iterators that constrain parallelization to data
parallelism. Jade [27] requires the use of task parallel constructs.
DPJ [5] uses explicitly parallel constructs for task and data paral-
lelism. COMMSET does not require such additional extensions. For
instance, in md5sum, a programmer requiring deterministic output
for the digests, should be able to express the intended semantics
without being concerned about parallelization. The implementation
should be able to automatically change to the best parallelization
strategy given the new semantics. Returning to md5sum, specify-
ing that print digest commutes with the other I/O operations,
but not with itself constrains output to be deterministic. Given the
new semantics, the compiler automatically switches from a better
performing data parallel execution of the loop to a slightly less per-
forming (in this case) pipelined execution. In the data parallel ex-
ecution, each iteration of the loop executes in parallel with other
iterations. In a pipeline execution, an iteration is split into stages,
with the message digests computed in parallel in earlier stages of
the pipeline being communicated to a sequential stage that prints
the digest in order to the console.

Parallelization within the compiler is based on the Program De-
pendence Graph (PDG) structure [12]. Figure 2 shows the simpli-
fied PDG for sequential md5sum. Each labeled code block is rep-
resented by a node in the PDG and a directed edge from a node
n1 to n2 indicates that n2 is dependent on n1. Parallelizing trans-
forms (e.g. DOALL [16] and PS-DSWP [26]) partition the PDG
and schedule nodes onto different threads, with dependences span-
ning threads automatically respected by insertion of communica-
tion and/or synchronization operations. With the original PDG,
DOALL and PS-DSWP cannot be directly applied due to a cycle
with loop carried dependences: B → D → H → I → B and
self loops around each node in the cycle. The COMMSET exten-
sions help the compiler to relax these parallelism-inhibiting depen-
dences, thereby enabling wider application of existing parallelizing
transforms.

Figure 3 shows three schedules with different performance char-
acteristics for md5sum execution. The first corresponds to sequen-
tial execution and the other two parallel schedules are enabled by
COMMSET. Each of these schedules correspond to three different
semantics specified by the programmer. The sequential execution
corresponds to the in-order execution of all I/O operations, as im-
plied by the unannotated program. The PS-DSWP schedule cor-
responds to parallel computation of message digests overlapped
with the sequential in-order execution of print digest calls. Fi-
nally, the DOALL schedule corresponds to out-of-order execution
of digest computation as well print digests. Every COMMSET
block in both the DOALL and PS-DSWP schedules is synchronized
by the use of locks (provided by libc), while PS-DSWP has addi-
tional communication operations. The DOALL schedule achieves

a speedup of 7.6x on eight threads over sequential execution while
PS-DSWP schedule gives a speedup of 5.8x. The PS-DSWP sched-
ule is the result of one less COMMSET annotation than the DOALL
schedule. The timeline in Figure 3 illustrates the impact of the se-
mantic choices a programmer makes on the freedom provided to
a parallelizing tool to enable well performing parallelizations. In
essence, the COMMSET model allows a programmer to concen-
trate on high-level program semantics while leaving the task of
determining the best parallelization strategy and synchronization
mechanism to the compiler. In doing so, it opens up an parallel per-
formance optimization space which can be systematically explored
by automatic tools.

3. Syntax and Semantics
This section describes the semantics of various COMMSET features
and the syntax of the COMMSET primitives.

3.1 CommSet Semantics
Self and Group Commutative Sets. The simplest form of se-
mantic commutativity is a function commuting with itself. A Self
COMMSET is defined as a singleton set with a code block that is
self-commutative. An instantiation of this COMMSET allows for
reordering dynamic invocation sequences of the code block. A
straightforward extension of self-commutativity that allows com-
mutativity between pairs of functions has quadratic specification
complexity. Grouping a set of commuting functions under a name
can reduce the specification burden. However, it needs to account
for the case when a function commutes with other functions, but not
with itself. For instance, the insert() method in a STL vector
implementation does not commute with itself, but commutes with
search() on different arguments. A Group COMMSET is a set of
code blocks where pairs of blocks commute with each other, but
each block does not commute with itself. These two concepts to-
gether achieve the goal of completeness and conciseness of com-
mutativity specification.

Domain of Concurrency. A COMMSET aggregates a set of code
blocks that read and modify shared program state. The members are
executed concurrently in a larger parallelization scope, with atom-
icity of each member of the COMMSET guaranteed by automatic
insertion of appropriate synchronization primitives. In this sense,
COMMSET plays the role of a “concurrency domain,” with updates
to the shared mutable state being done in arbitrary order. However,
the execution orders of members of a COMMSET with respect to
the rest of code (sequential or other COMMSETs) are determined
by flow dependences present in sequential code.

Non-transitivity and Multiple Memberships. Semantic commu-
tativity is intransitive. Given three functions f, g, and h where two
pairs (f, g), (f, h) semantically commute, the commuting behavior
of (g, h) cannot be automatically inferred without knowing the se-
mantics of state shared exclusively between g and h. Allowing code
blocks to be members of multiple COMMSETs enables expression
of either behavior. Programmers may create a single COMMSET
with three members or create two COMMSETs with two members
each, depending on the intended semantics. Two code blocks com-
mute if they are both members of at least one COMMSET .

Commutative Blocks and Context Sensitivity. In many programs
that access generic libraries, commutativity depends on the client
code’s context. The COMMSET construct is flexible enough to al-
low for commutativity assertions at either interface level or in client
code. It also allows arbitrary structured code blocks to commute
with other COMMSET members, which can either be functions or
structured code blocks themselves. Functions belonging to a mod-
ule can export optional commuting behaviors of code blocks in
their body by using named block arguments at their interface, with-

out requiring any code refactoring. The client code can choose to
enable the commuting behavior of the named code blocks at its call
site, based on its context. For instance, the mdfile function in Fig-
ure 1 that has a code block containing calls to fread may expose
the commuting behavior of this block at its interface via the use
of a named block argument READB. A client which does not care
about the order of fread calls can add READB to a COMMSET op-
tionally at its call site, while clients requiring sequential order can
ignore the named block argument. Optional COMMSET specifica-
tions do not require any changes to the existing interface arguments
or its implementation.

Predicated Commutative Set. The COMMSET primitive can be
predicated on either interface arguments or on variables in a client’s
program state. A predicate is a C expression associated with the
COMMSET and evaluates to a Boolean value when given arguments
corresponding to any two members of the COMMSET . The pred-
icated expression is expected to be pure, i.e. it should return the
same value when invoked with the same arguments. A pure pred-
icate expression always gives a deterministic answer for deciding
commutativity relations between two functions. The two members
commute if the predicate evaluates to true when its arguments are
bound to values of actual arguments supplied at the point where the
members are invoked in sequential code.

Orthogonality to Parallelism Form. Semantic commutativity re-
lations expressed using COMMSET are independent of the specific
form of parallelism (data/pipeline/task) that are exploited by the
associated compiler technology. Once COMMSET annotations are
added to sections of a sequential program, the same program is
amenable to different styles of parallelization. In other words, a
single COMMSET application can express commutativity relations
between (static) lexical blocks of code and dynamic instances of
a single code block. The former implicitly enables pipeline paral-
lelism while the latter enables data and pipeline parallelism.

Well-defined CommSet members. The structure of COMMSET
members has to obey certain conditions to ensure well-defined se-
mantics in a parallel setting, especially when used in C/C++ pro-
grams that allow for various unstructured and non-local control
flows. The conditions for ensuring well-defined commutative se-
mantics between members of a COMMSET are: (a) The control
flow constructs within each code block member should be local or
structured, i.e. the block does not include operations like longjmp,
setjmp, etc. Statements like break and continue should have
their respective parent structures within the commutative block. (b)
There should not be a transitive call from one code block to an-
other in the same COMMSET . Removing such call paths between
COMMSET members not only avoids the ambiguity in commuta-
tivity relation defined between a caller and a callee, but also sim-
plifies reasoning about deadlock freedom in the parallelized code.
Both these conditions are checked by the compiler.

Well-formedness of CommSets. The concept of well-definedness
can be extended from code blocks in a single COMMSET to mul-
tiple COMMSETs by defining a COMMSET graph as follows: A
COMMSET graph is defined as a graph where there is a unique
node for each COMMSET in the program, and there exists an edge
from a node S1 to another node S2, if there is a transitive call
in the program from a member in COMMSET S1 to a member in
COMMSET S2. A set of COMMSETs is defined to be well-formed if
each COMMSET has well-defined members and there is no cycle in
the COMMSET graph. Our parallelization system guarantees dead-
lock freedom in the parallelized program if the only form of paral-
lelism in the input program is implicit and is expressed through a
well-formed set of COMMSETs. This guarantee holds when either

CSets ::= PredCSet | PredCSet, CSets
PredCSet ::= CSet | CSet(CVars)
CVars ::= Cvar | Cvar, Cvars
CSet ::= SELF | Setid

BPairs ::= Bid(CSets) |Bid(CSets), BPairs
Blocks ::= Bid | Bid, Blocks

#pragma CommSetNamedArgAdd(BPairs)
retval = functionname(x1, ...,xn);

CommSet
Global
Declarations

#pragma CommSetDecl(CSet, SELF|Group)

#pragma CommSetPredicate(CSet,
 (x1, ..., xn), (y1, ..., yn),
 Pred(x1, ..., xn, y1, ..., yn))

#pragma CommSetNoSync(CSet)

CommSet
Instance
Declarations

#pragma CommSet(CSets)
 |CommSetNamedArg(Blocks)
typereturn functionname(t1 x1, ..., tn xn);

#pragma CommSet(CSets)
 |CommSetNamedBlock(Bname)
{
 Structured code region
}

CommSet
List

Figure 4: COMMSET Syntax

pipeline or data parallelism is extracted and for both pessimistic
and optimistic synchronization mechanisms (see Section 4.6).

3.2 CommSet Syntax

The COMMSET extensions are expressed using pragma directives
in the sequential program. pragma directives were chosen because
a program with well-defined sequential semantics is obtained when
they are elided. Programs with COMMSET annotations can also be
compiled without any change by a standard C/C++ compiler that
does not understand COMMSET semantics.

Global Declarations. The name of a COMMSET is indicative of
its type. By default, the SELF keyword refers to a Self COMM-
SET, while COMMSETs with other names are Group COMMSETs.
To allow for predication of Self COMMSETs, explicit type decla-
ration can be used. The COMMSETDECL primitive allows for dec-
laration of COMMSETs with arbitrary names at global scope. The
COMMSETPREDICATE primitive is used to associate a predicate
with a COMMSET and is declared at global scope. The primitive
takes as arguments: (a) the name of the COMMSET that is pred-
icated, (b) a pair of parameter lists, and (c) a C expression that
represents the predicate. Each parameter list represents the subset
of program state that decides the commuting behavior of a pair of
COMMSET members, when they are executed in two different par-
allel execution contexts. The parameters in the lists are bound to
either a commutative function’s arguments, or to variables in the
client’s program state that are live at the beginning of a structured
commutative code block. The C expression computes a Boolean
value using the variables in the parameter list and returns true if
a pair of COMMSET members commute when invoked with the
appropriate arguments. By default, COMMSET members are auto-
matically synchronized when their source code is available to the
parallelizing compiler. A programmer can optionally specify that
a COMMSET does not need compiler inserted synchronization us-
ing COMMSETNOSYNC. The primitive is applied to COMMSETs
whose members belong to a thread-safe library which has been sep-
arately compiled and whose source is unavailable.

Instance Declarations and CommSet List. A code block can be
declared a member of a list of COMMSETs by using the COMM-
SET directive. Such instance declarations can be applied either at

a function interface, or at any point in a loop or a function for
adding an arbitrary structured code block (a compound statement
in C/C++) to a COMMSET. Both compound statements and func-
tions are treated in the same way as far as reasoning about com-
mutativity is concerned. In the case of predicated COMMSETs in
the COMMSET list, the actual arguments for the COMMSETPRED-
ICATE are supplied at the instance declaration. For function mem-
bers of a COMMSET, the actual arguments are a list of parameter
declarations, while for compound statements, the actual arguments
are a set of variables with primitive type that have a well-defined
value at the beginning of the compound statement. Optionally com-
muting compound statements can be given a name by enclosing the
statements within COMMSETNAMEDBLOCK directive. A function
containing such a named block can expose the commuting option to
client code using COMMSETNAMEDARG at its interface declara-
tion. The client code that invokes the function can enable the com-
muting behavior of the named block by adding it to a COMMSET
using the COMMSETNAMEDARGADD directive at its call site.

3.3 Example

Figure 1 shows the implicitly parallel program obtained by ex-
tending md5sum with COMMSET primitives. The code blocks B,
H, I enclosing the file operations are added to a Group COMM-
SET FSET using annotations 5, 7, and 8. Each code block is also
added to its own Self COMMSET. FSET is predicated on the loop
induction variable’s value, using a COMMSETPREDICATE expres-
sion (3) to indicate that each of the file operations commute with
each other on separate iterations. The block containing fread call
is named READB (10) and exported by mdfile using the COMM-
SETNAMEDARG directive at its interface (9). The client code adds
the named block to its own Self set (declared as SSET in 2) using
the COMMSETNAMEDARGADD directive at 6. SSET is predicated
on the outer loop induction variable to prevent commuting across
inner loop invocations (4). A deterministic output can be obtained
by omitting SELF from annotation 7.

4. Commutative Set Implementation
We built an end-to-end implementation of COMMSET within a par-
allelizing compiler. The compiler is an extension of the clang/L-
LVM framework [19]. Figure 5 shows the parallelization workflow.
The parallelization focuses on hot loops in the program identified
via runtime profiling. The PDG for the hottest loop is constructed
over the LLVM IR, with each node representing an instruction in
the IR. The memory flow dependences in the PDG that inhibit par-
allelization are displayed at source level to the programmer, who
inserts COMMSET primitives and presents the program back to the
compiler. The subsequent compiler passes analyze and transform
this program to generate different versions of parallelized code.

4.1 Frontend

The COMMSET parser in the frontend parses and checks the syntax
of all COMMSET directives, and synthesizes a C function for ev-
ery COMMSETPREDICATE. The predicate function computes the
value of the C expression specified in the directive. The argument
types for the function are automatically inferred by binding the
parameters in COMMSETPREDICATE to the COMMSET instances.
Type mismatch errors between arguments of different COMMSET
instances are also detected. Commutative blocks are checked for
enclosing non-local control flow by a top-down traversal of the ab-
stract syntax tree (AST) starting at the node corresponding to the
particular commutative block. Finally, global COMMSET meta-data
is annotated at the module level, while COMMSET instance data
is annotated on individual compound statement or function AST
nodes. This meta-data is automatically conveyed to the backend
during the lowering phase.

P
r
o
g

r
a
m

m
e
r

C
O

M
M

S
E
T
 A

n
a
ly

s
is

P
a
r
a
ll
e
li
z
a
ti

o
n

Add COMMSET

Annotations

Front-End

Section 4.1

Original Sequential

Source Code

Parallel Code

COMMSET Pragma

Parser

COMMSET Predicate

Synthesizer

COMMSET Block

Structuredness

Checker

COMMSET Metadata

Manager

Section 4.2

COMMSET Block

Canonicalizer

COMMSET Well

Formedness Checker

COMMSET Predicate

Purity Analysis

IR + Metadata

COMMSET Sync

Engine

Section 4.6

COMMSET Sync

Analysis

Optimistic &

Pessimistic Sync

HTML

Dependence

Renderer

COMMSET

Dep

Analyzer

Section 4.4

Implicitly Parallel Code

Source Level

Deps

Deps at

IR Level

COMMSET

Metadata

UnSync Parallel IR

COMMSET

Metadata

DAG-SCC

+ PDG

Parallelizing

Transforms

Section 4.5

DOALL

PS-DSWP

UnSync Parallel IR

PDG Builder

Section 4.3

SCC Computation

Loop Carried

Dependence Detector

Annotated

PDG
PDG

DAG-SCC

+ PDG

Canonicalized IR

Figure 5: COMMSET Parallelization Workflow

4.2 CommSet Metadata Manager
In the backend, the COMMSET meta-data is an abstraction over the
low-level IR constructs, instead of the AST nodes. The COMM-
SET Metadata Manager processes and maintains a meta-data store
for all COMMSET instances and declarations, and answers queries
posed by subsequent compiler passes. The first pass of the manager
canonicalizes each commutative compound statement, now a struc-
tured region (set of basic blocks) within the control flow graph,
by extracting the region into its own function. Nested commuta-
tive regions are extracted correctly by a post-order traversal on the
control flow graph (CFG). The extraction process ensures that argu-
ments specified at a COMMSET instance declaration are parameters
to the newly created function. At the end of this pass, all the mem-
bers of a COMMSET are functions. Call sites enabling optionally
commutative named code blocks are inlined to clone the call path
from the enabling function call to the COMMSETNAMEDBLOCK
declaration. A robust implementation can avoid potential code ex-
plosion by automatically extending the interface signature to take
in additional arguments for optional commuting blocks. Next, each
COMMSET is checked for well-formedness using reachability and
cycle detection algorithms on the call graph and the COMMSET
graph respectively. The COMMSETPREDICATE functions are tested
for purity by inspection of its body.

4.3 PDG Builder
The PDG builder constructs the PDG over the LLVM IR instruc-
tions for the target loop using well-known algorithms [12]. A loop
carried dependence detector module annotates dependence edges

Algorithm 1: CommSetDepAnalysis
1 foreach edge e ∈ PDG do
2 let n1 = src(e); let n2 = dst(e);
3 if typeOf(n1) 6= Call ∨ typeOf(n2) 6= Call then
4 continue
5 end
6 let Fn(n1) = f(x1, . . . , xn) and Fn(n2) = g(y1, . . . , yn);;
7 let Sin = CommSets(f) ∩ CommSets(g);
8 foreach Cs ∈ Sin do
9 if not Predicated(Cs) then

10 Annotate(e, PDG, uco);
11 end
12 else
13 let fp = PredicateFn(Cs);
14 let args1 = CommSetArgs(Cs, f);
15 let args2 = CommSetArgs(Cs, g);
16 let fargs = FormalArgs(fp);
17 for i = 0 to | args1 − 1 | do
18 let x1 = args1(i) ; let x2 = args2(i);
19 let y1 = fargs(2 ∗ i) ; let y2 = fargs(2 ∗ i+ 1);
20 Assert(x1 = y1); Assert(x2 = y2);
21 end
22 if LoopCarried(e) then
23 Assert(i1 6= i2); // induction variable;
24 r = SymInterpret(Body(fp), true);
25 if (r = true) and (Dom(n2, n1)) then
26 Annotate(e, PDG, uco);
27 end
28 else if (r = true) then
29 Annotate(e, PDG, ico);
30 end
31 end
32 else
33 r = SymInterpret(Body(fp), true);
34 if (r = true) then
35 Annotate(e, PDG, uco);
36 end
37 end
38 end
39 end
40 end

as being loop carried whenever the source and/or destination nodes
read and update shared memory state.

4.4 CommSet Dependence Analyzer

The COMMSET Dependence Analyzer (Algorithm 1) uses the
COMMSET metadata to annotate memory dependence edges as
being either unconditionally commutative (uco) or inter-iteration
commutative (ico). Figure 2 shows the PDG edges for md5sum an-
notated with commutativity properties along with the correspond-
ing source annotations. For every memory dependence edge in the
PDG, if there exists an unpredicated COMMSET of which both the
source and destination’s target functions are members, the edge is
annotated as uco (Lines 9-11). For a predicated COMMSET, the
actual arguments of the target functions at their call sites are bound
to corresponding formal parameters of the COMMSETPREDICATE
function (Lines 17-19). The body of the predicate function is then
symbolically interpreted to prove that it always returns true, given
the inequality assertions about induction variable values on sepa-
rate iterations (Lines 21-22). If the interpreter returns true for the
current pair of COMMSET instances, the edge is annotated with a
commutativity property as follows: A loop carried dependence is
annotated as uco if the destination node of the PDG edge dominates
the source node in the CFG (Lines 23-34), otherwise it is annotated
as ico (Lines 26-27). An intra-iteration dependence edge is always
annotated as uco if the predicate is proven to be true (Lines 32-34).
Once the commutative annotations are added to the PDG, the PDG

builder is invoked again to identify strongly connected components
(SCC) [16]. The directed acyclic graph of SCCs (DAG-SCC) thus
obtained forms the basis of DSWP family of algorithms [24].

4.5 Parallelizing Transforms

The next step runs the DOALL and PS-DSWP parallelizing trans-
forms, which automatically partition the PDG onto multiple threads
for extracting maximal data and pipelined parallelism respectively.
For all the parallelizing transforms, the ico edges are treated as
intra-iteration dependence edges, while uco edges are treated as
non-existent edges in the PDG. The DOALL transform tests the
PDG for absence of inter-iteration dependencies, and statically
schedules a set of iterations to run in parallel on multiple threads.
The DSWP family of transforms partition the DAG-SCC into a
sequence of pipeline stages, using profile data to obtain a bal-
anced pipeline. The DSWP algorithm [25] only generates sequen-
tial stages, while the PS-DSWP algorithm [26] can replicate a
stage with no loop carried SCCs to run in parallel on multiple
threads. Dependences between stages are communicated via lock-
free queues in software. Together, the uco and ico annotations on
the PDG enable DOALL, DSWP, and PS-DSWP transforms when
previously they were not applicable. Currently, the compiler gener-
ates one of each (DSWP, PS-DSWP, and DOALL) schedule when-
ever applicable, with a corresponding performance estimate. A pro-
duction quality compiler would typically use heuristics to select the
optimal across all parallelization schemes.

4.6 CommSet Synchronization Engine

This step automatically inserts synchronization primitives to ensure
atomicity of COMMSET members with respect to each other, taking
multiple COMMSET memberships into account. The compiler gen-
erates a separate parallel version for every synchronization method
used. Currently three synchronization modes are supported: op-
timistic (via Intel’s transactional memory (TM) runtime [33]),
pessimistic (mutex and spin locks) and lib (well known thread
safe libraries or programmer specified synchronization safety for a
COMMSET). Initially, the algorithm assigns a unique rank to each
COMMSET which determines the global order of lock acquires and
releases. The next step determines the set of potential synchro-
nization mechanisms that apply to a COMMSET. Synchronization
primitives are inserted for each member of a COMMSET by taking
into account the other COMMSETs it is a part of. In the case of
TM, a new version of the member wrapped around transactional
constructs is generated. For the lock based synchronizations, lock
acquires and releases are inserted according to the assigned global
rank order. The global ordering along with the acyclic communica-
tion primitives that use the lock free queues preserve the invariants
required to ensure deadlock freedom [20].

5. Evaluation
The COMMSET programming model was evaluated on a set of eight
programs shown in Table 2. The programs were selected from a
repository sourced from a variety of benchmark suites. Seventeen
randomly selected programs with potential parallelism-inhibiting
memory flow dependencies were examined. Out of these, programs
whose hottest loops did not require any semantic changes for par-
allelization were omitted. For the remaining programs, COMMSET
primitives were applied to relax certain execution orders after a
careful examination of the intended program semantics. Apart from
evaluating parallelization schemes enabled by COMMSET primi-
tives in these programs, alternative parallelization schemes without
using COMMSET primitives were also evaluated whenever applica-
ble. Figure 6 shows the speedup of the parallelized programs run-
ning on a 1.6GHz Intel Xeon 64-bit dual-socket quad core machine
with 8GB RAM running Linux 2.6.24.

Program Origin Main loop Exec. Lines of Code COMMSET Parallelizing Best Best
Time # COMMSET Total Attributes Transforms Speedup Scheme

Annotations SLOC
md5sum Open Src [2] main 100% 10 399 PC, C, S&G DOALL, PS-DSWP 7.6x DOALL + Lib
456.hmmer SPEC2006 [14] main loop serial 99% 9 20658 PC, C&I, S&G DOALL, PS-DSWP 5.8x DOALL + Spin
geti MineBench [23] FindSomeETIs 98% 11 889 PI&PC, C&I, S&G DOALL, PS-DSWP 3.6x PS-DSWP + Lib
ECLAT MineBench [23] newApriori 97% 11 3271 PC, C&I, S&G DOALL, DSWP 7.5x DOALL + Mutex
em3d Olden [9] initialize graph 97% 8 464 I, S&G DSWP, PS-DSWP 5.8x PS-DSWP + Lib
potrace Open Src [29] main 100% 10 8292 PC, C, S&G DOALL, PS-DSWP 5.5x DOALL + Lib
kmeans STAMP [22] work 99% 1 516 C, S DOALL, PS-DSWP 5.2x PS-DSWP
url NetBench [21] main 100% 2 629 I, S DOALL, PS-DSWP 7.7x DOALL + Spin

Table 2: Sequential Programs evaluated, their origin, execution time spent in target loop, number of COMMSET annotations over sequential
code, total number of lines of source code, COMMSET features applied (PI: Predication at Interface, PC: Predication at Client, C: Commuting
Blocks, I: Interface Commutativity, S: Self Commutativity, G: Group Commutativity), Parallelizing Transforms, Best Speedup Obtained on
eight threads, and corresponding Parallelization Scheme with synchronization mechanism (Mutex: Mutex locks, Spin: Spin locks, Lib:
Thread-safe Libraries).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

P
ro

g
ra

m
 S

p
ee

d
u
p

#Threads

Comm-DOALL

Comm-DSWP+[S,DOALL,S]

Non-Comm-Seq

(a) md5sum

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

P
ro

g
ra

m
 S

p
ee

d
u
p

#Threads

Comm-DOALL

Comm-DSWP+[S, DOALL]

Non-Comm-Seq

(b) 456.hmmer

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

P
ro

g
ra

m
 S

p
ee

d
u
p

#Threads

Comm-DSWP+[S,DOALL]

Comm-DOALL

Non-Comm-Seq

(c) geti

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

P
ro

g
ra

m
 S

p
ee

d
u
p

#Threads

Comm-DOALL

Comm-DSWP+[S,S]

Non-Comm-Seq

(d) ECLAT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

P
ro

g
ra

m
 S

p
ee

d
u
p

#Threads

Comm-DSWP+[S,DOALL]

Non-Comm-DSWP+[S,S,S]

(e) em3d

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

P
ro

g
ra

m
 S

p
ee

d
u
p

#Threads

Comm-DOALL

Comm-DSWP+[S,DOALL,S]

Non-Comm-Seq

(f) potrace

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

P
ro

g
ra

m
 S

p
ee

d
u
p

#Threads

Non-Comm-DSWP+[S,DOALL,S]

Comm-DOALL

(g) kmeans

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

P
ro

g
ra

m
 S

p
ee

d
u
p

#Threads

Comm-DOALL

Comm-DSWP+[S,DOALL,S]

Non-Comm-DSWP+[S,DOALL,S]

(h) url

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

P
ro

g
ra

m
 S

p
ee

d
u
p

#Threads

CommSet Best

Non CommSet Best

(i) Geomean

Figure 6: Performance of DOALL and PS-DSWP schemes using COMMSET extensions. Parallelization schemes in each graph’s legend are
sorted in decreasing order of speedup on eight threads, from top to bottom. The DSWP + [. . .] notation indicates the DSWP technique with
stage details within [. . .] (where S denotes a sequential stage and DOALL denotes a parallel stage). Schemes with Comm- prefix were enabled
only by the use of COMMSET . For each program, the best Non-COMMSET parallelization scheme, obtained by ignoring the COMMSET
extensions is also shown. In some cases, this was sequential execution.

5.1 456.hmmer: Biological Sequence Analysis

456.hmmer performs biosequence analysis using Hidden Markov
Models. Every iteration of the main loop generates a new protein
sequence via calls to a random number generator (RNG). It then
computes a score for the sequence using a dynamically allocated
matrix data structure, which is used to update a histogram struc-
ture. Finally the matrix is deallocated at the end of the iteration.
By applying COMMSET annotations at three sites, all loop car-
ried dependences were broken: (a) The RNG was added to a SELF
COMMSET, since any permutation of a random number sequence
still preserves the properties of the distribution. (b) The histogram
update operation was also marked self commuting, as it performs
an abstract SUM operation even though the low-level statements
involve floating point additions and subtractions. (c) The matrix
allocation and deallocation functions were marked as commuting
with themselves on separate iterations. Overall, the DOALL par-
allelization using spin locks performs best for eight threads, with
a program speedup of about 5.82x. A spin lock works better than
mutex since it does not suffer from sleep/wakeup overheads in the
midst of highly contended operations on the RNG seed variable.
The three stage PS-DSWP pipeline, gives a speedup of 5.3x (doing
better than the mutex and TM versions of DOALL) by moving the
RNG to a sequential stage, off the critical path.

5.2 GETI: Greedy Error Tolerant Itemsets

GETI is a C++ data mining program that determines a set of fre-
quent items that are bought together frequently in customer transac-
tions (itemsets). Itemsets are implemented as Bitmap objects, with
items acting as keys. Items are queried and inserted into the Bitmap
by calls to SetBit() and GetBit(). Each itemset is inserted into
an STL vector and then printed to the console. By adding COMM-
SET annotations at three sites, the main loop was completely par-
allelizable with DOALL and PS-DSWP: (a) Itemset constructors
and destructors are added to a COMMSET and allowed to com-
mute on separate iterations. (b) SetBit() and GetBit() interfaces
were put in a COMMSET predicated on the input key values, to al-
low for insertions of multiple items to occur out of order. (c) The
code block with vector::push back() and prints was context
sensitively marked as self commutative in client code. The correct-
ness of this application follows from the set semantics associated
with the output. The inter-iteration commutativity properties for
constructor/destructor pairs enabled a well performing three-stage
PS-DSWP schedule. Transactions were not applicable due to use
of external libraries and I/O. Although DOALL schemes initially
did better than PS-DSWP, the effects of buffering output indirectly
via lock-free queues for PS-DSWP and the increasing number of
acquire/release operations for DOALL led to a better performing
schedule for PS-DSWP on eight threads. PS-DSWP achieved a lim-
ited speedup of 3.6x due to the sequential time taken for console
prints but maintained deterministic behavior of the program.

5.3 ECLAT: Association Rule Mining

ECLAT is a C++ program that computes a list of frequent item-
sets using a vertical database. The main loop updates objects of
two classes Itemset and Lists<Itemset∗>. Both are internally
implemented as lists, the former as a client defined class, and the
latter as an instantiation of a generic class. Insertions into Itemset
have to preserve the sequential order, since the Itemset intersec-
tion code depends on a deterministic prefix. Insertions into the
Lists<Itemset∗> can be done out of order, due to set seman-
tics attached with the output. COMMSET extensions were applied
at four sites: (a) Database read calls (that mutate shared file de-
scriptors internally) were marked as self commutative. (b) Inser-
tions into Lists<Itemset∗> are context-sensitively tagged as self
commuting inside the loop. Note that it would be incorrect to tag

Itemset insertions as self-commuting as it would break the in-
tersection code. (c) Object construction and destruction operations
were marked as commuting on separate iterations. (d) Methods be-
longing to Stats class that computes statistics were added to a un-
predicated Group COMMSET. A speedup of 7.4x with DOALL was
obtained, despite pessimistic synchronization, due to a larger frac-
tion of time spent in computation outside critical sections. Transac-
tions are not applicable due to use of I/O operations. The PS-DSWP
transform, using all the COMMSET properties generates a schedule
(not shown) similar to DOALL. The next best schedule is from
DSWP, that does not leverage COMMSET properties on database
read. The resulting DAG-SCC has a single SCC corresponding to
the entire inner for loop, preventing stage replication.

5.4 em3d: Electro-magnetic Wave propagation

em3d simulates electromagnetic wave propagation using a bipartite
graph. The outer loop of the graph construction iterates through
a linked list of nodes in a partition, while the inner loop uses a
RNG to select a new neighbor for the current node. Allowing the
RNG routine to execute out of order enabled PS-DSWP. The pro-
gram uses a common RNG library, with routines for returning ran-
dom numbers of different data types, all of which update a shared
seed variable. All these routines were added to a common Group
COMMSET and also to their own SELF COMMSET . COMMSET
specifications to indicate commutativity between the RNG routines
required only eight annotations, while specifying pair-wise com-
mutativity would have required 16 annotations. Since the loop does
a linked list traversal, DOALL was not applicable. Without commu-
tativity, DSWP extracts a two-stage pipeline at the outer loop level,
yielding a speedup of 1.2x. The PS-DSWP scheme enabled by
COMMSET directives achieves a speedup of 5.9x on eight threads.
A linear speedup was not obtained due to the short execution time
of the original instructions in the main loop, which made the over-
head of inter-thread communication slightly more pronounced.

5.5 potrace: Bitmap tracing

potrace vectorizes a set of bitmaps into smooth, scalable images.
The code pattern is similar to md5sum, with an additional option of
writing multiple output images into a single file. In the code section
with the option enabled, the SELF COMMSET annotation was
omitted on file output calls to ensure sequential output semantics.
The DOALL parallelization yielded a speedup of 5.5x, peaking
at 7 threads, after which I/O costs dominate the runtime. For the
PS-DSWP parallelization, the sequentiality of image writes limited
speedup to 2.2x on eight threads.

5.6 kmeans: K means clustering algorithm

kmeans clusters high dimensional objects into similar featured
groups. The main loop computes the nearest cluster center for each
object and updates the center’s features using the current object.
The updates to a cluster center can be re-ordered, with each such or-
der resulting in a different but valid cluster assignment. Adding the
code block that performs the update to a SELF COMMSET breaks
the only loop carried dependence in the loop. The DOALL scheme
with pessimistic synchronization showed promising speedup until
five threads (4x), beyond which frequent cache misses due to failed
lock/unlock operations resulted in performance degradation. Trans-
actions (not shown) do not help either, with speedup limited to 2.7x
on eight threads. The three-stage PS-DSWP scheme was best per-
forming beyond six threads, showing an almost linear performance
increase by executing the cluster update operation in a third se-
quential stage. It achieved a speedup of 5.2x on eight threads. This
highlights the performance gains achieved by moving highly con-
tended dependence cycles onto a sequential stage, an important
insight behind the DSWP family of transforms.

5.7 URL: url based switching
The main loop in the program switches a set of incoming pack-
ets based on its URL and logs some of the packet’s fields into a
file. The underlying protocol semantics allows out-of-order packet
switching. Adding the function to dequeue a packet from the packet
pool and the logging function to SELF COMMSETs broke all the
loop carried flow dependences. No synchronization was necessary
for the logging function while locks were automatically inserted
to synchronize multiple calls to the packet dequeuing function.
A two stage PS-DSWP pipeline was also formed by ignoring the
SELF COMMSET annotation on the packet dequeue function. The
DOALL parallelization (7.7x speedup on eight threads) outper-
forms the PS-DSWP version (3.7x on eight threads) because of low
lock contention on the dequeue function and the overlapped parallel
execution of the packet matching computation.

5.8 Discussion
The application of COMMSET achieved a geomean speedup of 5.7x
on eight threads for the programs listed in Table 2, while the ge-
omean speedup for Non-COMMSET parallelizations is 1.49x (Fig-
ure 6i). For four out of the eight programs, the main loop was
not parallelizable at all without the use of COMMSET primitives.
With the application of COMMSET, DOALL parallelization per-
forms better than PS-DSWP on 5 benchmarks, although PS-DSWP
has the advantage of preserving deterministic output in two of
them. For two of the remaining programs, PS-DSWP yields bet-
ter speedup since its sequential last stage performs better than con-
currently executing COMMSET blocks in the high lock contention
scenarios. DOALL was not applicable for em3d, due to pointer
chasing code. In terms of programmer effort, an average of 8 lines
of COMMSET annotations were added to each program to enable
the various parallelization schemes. Predication based on the client
state, as a function of the induction variable enabled well perform-
ing parallelizations without the need for runtime checks. The use
of commuting blocks avoided the need for major code refactoring.
The applicability of COMMSET compared favorably to the appli-
cability of other compiler based techniques like Paralax and VE-
LOCITY. VELOCITY and Paralax cannot be used to parallelize
four benchmarks: geti, eclat, md5sum and potrace since they do
not support predicated commutativity. For 456.hmmer, VELOC-
ITY would require a modification of 45 lines of code (addition of
43 lines and removal of 2 lines) in addition to the commutativity
annotations. COMMSET did not require those changes due to the
use of named commuting blocks.

6. Related Work
Semantic Commutativity based Parallelizing Systems. Jade [27]
supports object-level commuting assertions to specify commuta-
tivity between every pair of operations on an object. Additionally,
Jade exploits programmer written read/write specifications for ex-
ploiting task and pipeline parallelism. The COMMSET solution re-
lies on static analysis to avoid read/write specifications and runtime
profiles to select loops for parallelization. Galois [18], a runtime
system for optimistic parallelism, leverages commutativity asser-
tions on method interfaces. It requires programmers to use special
set abstractions with non-standard semantics to enable data paral-
lelism. The COMMSET compiler currently does not implement run-
time checking of COMMSETPREDICATEs required for optimistic
parallelism. However, the COMMSET model is able to extract both
data and pipelined parallelism without requiring any additional pro-
gramming extensions. DPJ [5], an explicitly parallel extension of
Java uses commutativity annotations at function interfaces to over-
ride restrictions placed by the type and effect system of Java. Sev-
eral researchers have also applied commutativity properties for se-
mantic concurrency control in explicitly parallel settings [10, 17].

Paralax [30] and VELOCITY [6, 7] exploit self-commutativity at
the interface level to enable pipelined parallelization. VELOCITY
also provides special semantics for commutativity between pairs of
memory allocation routines for use in speculative parallelization.
Compared to these approaches, the COMMSET language extension
provides richer commutativity expressions. Extending the compiler
with a speculative system to support all COMMSET features at run-
time is part of future work. Table 1 summarizes the relationship
between COMMSET and the above programming models.

Implicit Parallel Programming. OpenMP [3] extensions re-
quire programmers to explicitly specify parallelization strategy and
concurrency control using additional primitives (“#pragma omp
for”, “#pragma omp task”, “critical”, “barrier”, etc.). In
the COMMSET model, the choice of parallelization strategy and
concurrency control is left to the compiler. This not only frees the
programmer from having to worry about low-level parallelization
details, but also promotes performance portability. Implicit par-
allelism in functional languages have been studied recently [13].
IPOT [31] exploits semantic annotations on data to enable par-
allelization. Hwu et al. [15] also propose annotations on data to
enable implicit parallelism. COMMSET extensions are applied to
code rather than data, and some annotations like reduction pro-
posed in IPOT can be easily integrated with COMMSET.

Compiler Parallelization. Research on parallelizing FORTRAN
loops with regular memory accesses [11, 16] in the past has been
complemented by more recent work on irregular programs. The
container-aware [32] compiler transformations parallelize loops
with repeated patterns of collections usage. Existing versions of
these transforms preserve sequential semantics. The COMMSET
compiler can be extended to support these and other parallelizing
transforms without changes to the language extension.

Commutativity Analysis. Rinard et al. [28] proposed a static
analysis that determines if commuting two method calls preserves
concrete memory state. Aleen et al. [1] apply random interpre-
tation to probabilistically determine function calls that commute
subject to preservation of sequential I/O semantics. Programmer
written commutativity assertions are more general since they allow
multiple legal outcomes and give a programmer more flexibility to
express intended semantics within a sequential setting.

7. Conclusion
This paper presented an implicit parallel programming solution
based on a unified, syntactically succinct and generalized seman-
tic commutativity construct called COMMSET. The model provides
programmers the flexibility to specify commutativity relations be-
tween arbitrary structured blocks of code and does not require the
use of any additional parallel constructs. Parallelism exposed im-
plicitly using COMMSET is independent of any particular paral-
lelization strategy or concurrency control mechanism. A complete
end-to-end implementation of COMMSET exists in a parallelizing
compiler. Evaluation of eight real world programs indicates that
the use of COMMSET extensions and the associated compiler tech-
nology enables scalable parallelization of programs hitherto not
amenable to automatic parallelization. This demonstrates the ef-
fectiveness of the COMMSET construct in exposing different paral-
lelization opportunities to the compiler.

Acknowledgments
We thank the entire Liberty Research Group for their support and
feedback during this work. We also thank the anonymous reviewers
for their insightful comments. This material is based on work sup-
ported by National Science Foundation Grants 1047879, 0964328,
and 0627650, and United States Air Force Contract FA8650-09-C-
7918.

References

[1] F. Aleen and N. Clark. Commutativity analysis for software
parallelization: Letting program transformations see the big
picture. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2009.

[2] Apple Open Source. md5sum: Message Digest 5 computation.
http://www.opensource.apple.com/darwinsource/.

[3] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Mas-
saioli, X. Teruel, P. Unnikrishnan, and G. Zhang. The design
of OpenMP tasks. IEEE Transactions on Parallel and Dis-
tributed Systems, 2009.

[4] G. E. Blelloch and J. Greiner. A provable time and space
efficient implementation of NESL. In Proceedings of the
First ACM SIGPLAN International Conference on Functional
Programming (ICFP), 1996.

[5] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A type and effect system for Deter-
ministic Parallel Java. In Proceedings of the 24th ACM SIG-
PLAN Conference on Object Oriented Programming Systems,
Languages, and Applications (OOPSLA), 2009.

[6] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. Au-
gust. Revisiting the sequential programming model for multi-
core. In Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2007.

[7] M. J. Bridges. The VELOCITY compiler: Extracting efficient
multicore execution from legacy sequential codes. PhD thesis,
2008.

[8] D. R. Butenhof. Programming with POSIX threads. Addison-
Wesley Longman Publishing Co., Inc., 1997.

[9] M. C. Carlisle. Olden: Parallelizing programs with dynamic
data structures on distributed-memory machines. PhD thesis,
1996.

[10] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and
K. Olukotun. Transactional collection classes. In Proceedings
of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2007.

[11] R. Eigenmann, J. Hoeflinger, Z. Li, and D. A. Padua. Ex-
perience in the automatic parallelization of four Perfect-
benchmark programs. In Proceedings of the Fourth Inter-
national Workshop on Languages and Compilers for Parallel
Computing (LCPC), 1992.

[12] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst., 9(3), 1987.

[13] T. Harris and S. Singh. Feedback directed implicit parallelism.
In Proceedings of the 12th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP), 2007.

[14] J. L. Henning. SPEC CPU2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 2006.

[15] W.-m. Hwu, S. Ryoo, S.-Z. Ueng, J. Kelm, I. Gelado, S. Stone,
R. Kidd, S. Baghsorkhi, A. Mahesri, S. Tsao, N. Navarro,
S. Lumetta, M. Frank, and S. Patel. Implicitly parallel pro-
gramming models for thousand-core microprocessors. In Pro-
ceedings of the 44th annual Design Automation Conference
(DAC), 2007.

[16] K. Kennedy and J. R. Allen. Optimizing Compilers for Mod-
ern Architectures: a Dependence-based Approach. Morgan
Kaufmann Publishers Inc., 2002.

[17] E. Koskinen, M. Parkinson, and M. Herlihy. Coarse-grained
transactions. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), 2010.

[18] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew. Optimistic parallelism requires ab-
stractions. In Proceedings of the 2007 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI).

[19] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis and transformation. In Proceedings
of 2nd International Symposium on Code Generation and
Optimization (CGO), 2004.

[20] R. Leino, P. Müller, and J. Smans. Deadlock-free channels
and locks. In Proceedings of the 19th European Symposium
on Programming (ESOP), 2010.

[21] G. Memik, W. H. Mangione-Smith, and W. Hu. NetBench: a
benchmarking suite for network processors. In Proceedings of
the 2001 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2001.

[22] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford Transactional Applications for Multi-
Processing. In IEEE International Symposium on Workload
Characterization (IISWC), 2008.

[23] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and
A. Choudhary. MineBench: A benchmark suite for data min-
ing workloads. In IEEE International Symposium on Work-
load Characterization (IIWSC), 2006.

[24] G. Ottoni. Global Instruction Scheduling for Multi-Threaded
Architectures. PhD thesis, 2008.

[25] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic
thread extraction with decoupled software pipelining. Pro-
ceedings of the 38th annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2005.

[26] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. Au-
gust. Parallel-stage decoupled software pipelining. In Pro-
ceedings of the 6th annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO), 2008.

[27] M. C. Rinard. The design, implementation and evaluation of
Jade, a portable, implicitly parallel programming language.
PhD thesis, 1994.

[28] M. C. Rinard and P. Diniz. Commutativity analysis: A new
analysis framework for parallelizing compilers. In Proceed-
ings of the ACM SIGPLAN 1996 Conference on Programming
Language Design and Implementation (PLDI).

[29] P. Selinger. potrace: Transforming bitmaps into vector graph-
ics. http://potrace.sourceforge.net.

[30] H. Vandierendonck, S. Rul, and K. De Bosschere. The Paralax
infrastructure: Automatic parallelization with a helping hand.
In Proceedings of the 19th International Conference on Paral-
lel Architectures and Compilation Techniques (PACT), 2010.

[31] C. von Praun, L. Ceze, and C. Caşcaval. Implicit parallelism
with ordered transactions. In Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2007.

[32] P. Wu and D. A. Padua. Beyond arrays - a container-centric
approach for parallelization of real-world symbolic applica-
tions. In Proceedings of the 11th International Workshop on
Languages and Compilers for Parallel Computing (LCPC),
1999.

[33] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai,
and H.-H. S. Lee. Kicking the tires of software transactional
memory: Why the going gets tough. In Proceedings of the
Twentieth Annual Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2008.

[34] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Un-
covering hidden loop level parallelism in sequential applica-
tions. In Proceedings of 14th International Conference on
High-Performance Computer Architecture (HPCA), 2008.

