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COMMUTATORS IN BANACH ALGEBRAS

by VLASTIMIL P T A K
(Received 24th February 1978)

In a recent paper (6) the present author has shown that, for an element a of a
Banach algebra A, the condition

\ax\^^a\x\a

for all x E A and some constant a is equivalent to [x, a] G Rad a for all x E A; it turns
out that a may be replaced by \a\a. It is the purpose of the present note to
investigate a related condition

\xa-xa\a^a\x\a.

Here a is a fixed element of a Banach algebra A, a is a constant and the inequality is
supposed to be satisfied for all x G A W e intend to describe here the relation of this
condition to the behaviour of [[x, a]a]. This note is divided into three parts. In the first
section we collect some known facts to be used in Section two. Section three is purely
algebraic and the main tool is the Jacobson density theorem for strictly irreducible
representations of Banach algebras.

The idea of applying the density theorem to the study of commutativity belongs to
C. Le Page (3). Recently a number of papers have appeared devoted to spectral
characterisations of commutativity (1,2,5,6,12,14).

1. Preliminaries

Let A be a Banach algebra. The spectral radius of an element xGA will be
denoted by \x\a. An element x G A for which |x|<, = 0 will be called quasinilpotent. The set
of all quasinilpotent elements of A will be denoted by N. For u , i )6Awe write [u, v] for
uv - vu. Let a G A be fixed and denote by / the operator f(x) = [a, x]. Then / is a
derivation on A, i.e. a linear operator which satisfies the following relation

(1)

It follows from this relation that the n-th iterate fM satisfies

In particular, if fa\x) ~ 0, we have, for n s 2

fM(xn) = fXxx1'-1) = 2 (?) f-k\x)f(k\xn-1) =

= nf(x)f("-i\x'-1) + xfM(x-1).
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This relation makes it possible to prove, by induction, the formula

fM(xn)=n\f(x)n (2)

(under the assumption fa\x) = 0, of course).
Assuming (2) for n — 1, we have

fn\x"-1) = /(/'"-"(i"-')) = (n - ly.fifix)"-1) = 0

since each summand in the expression for /(/(*)""') contains one factor fa)(x). It
follows from this formula that

f(2)(x) = 0 implies \f(x% = lim |/(x)"|1/n = lim (1/n !)""
\fM(xn)\lln ^ lim sup (1/n O^O/I")"" = 0.

This is the classical result of Sirokov (10) obtained also by Kleinecke (10). Another
equivalent approach to these questions consists of using the exponential function (1,
2, 7, 8). This is based on the formula

()-iyarxa"-r. (3)

Using this formula, we obtain

*"*•*«*" = 2 S7riA'(-l)W'f l ' = £ £J 2 •&it-lYa'xa' = ±±)L-f<'Xx)
r=0 5=0 » • A • n=0 rl • r+s=n r "J • n=0 " •

in other words

exp (—A.a) x exp (Xa) = (exp A/)(x). (4)

The result of Sirokov-Kleinecke says that /<2)(x) = 0 implies f(x)EN. In the
present note we shall be concerned with the weaker condition f(2\x) G N.

2. The second commutator

In this section we intend to prove the following

Proposition 2.1 Let Abe a Banach algebra and let a be fixed element of A. Suppose
there exists a number a such that

\xa - axb ^ a\x\a

for each x G A. Then \[[x, a], a]\a = 0 for each xG A.

Proof. Let y E.A be given. Let D be the derivation on A defined by the formula
D(x) = [y, x]. According to our assumption, we have the estimate

|[(exp XD)a, a% ^ a|(exp kD)a\a = a|exp (-Ay)a exp (Ay)|CT = a\a\a.

Since

[(exp \D)a, a] = \a + XDa +^j A2D2a + • • , a I = k[Da, a] + ^A
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we have

[(expAD)a,a] =

where

is an entire function for which

for A # 0.

Since A -*g (A)|ff is a subharmonic function by Vesentini's theorem, \g (\)\a = 0 for all A.
In particular |[[y, a], a]\a = \[Da, a]\a = 0.
Since y was an arbitrary element of A, the proof is complete.

3. Algebraic results

In this section we obtain an algebraic description of the behaviour of the second
commutator. For the sake of comparison we also include Proposition 3.1 which is
based on ideas of Le Page. We then show that the conditions of Proposition 3.1 and
those of 3.2 are not equivalent.

Proposition 3.1 Let A be a unital Banach algebra and let a be an element of A.
Then the following conditions are equivalent:

1° for each strictly irreducible representation T of A there exists a scalar \T such
that

T(a-XT) = 0

2° xa-axE Rad A for each xEA
3° xa- ax G N for each x G A

Proof. If 1° is satisfied and x G A is given we have T(xa - ax) = 0 for each
strictly irreducible representation T. It follows that xa - ax G Rad A. This proves 2°.
The implication 2°-»3° is immediate. Now assume 3° and consider a strictly irreduci-
ble representation T. Suppose that 1° is not satisfied. Then there exists a vector u such
that u and T(a)u are linearly independent. By the Jacobson density theorem there
exists an x G A such that T(x)u = 0 and T(x) T(a)u = w; it follows that

T(xa - ax)u = u

whence

\xa - ax\a s \T(xa - ax)\a g 1

which contradicts 3°. The proof is complete.

Proposition 3.2 Let A be a unital Banach algebra and let a be a fixed element of
A. Then the following conditions are equivalent
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1° for each strictly irreducible representation Tof A there exists a scalar \T such that

2° [[x, a], a]2 £ Rad A for each xEA.
3° [[x,a], a] EN for each xE A.

Proof. Assume 1° and let x £ A be given. Write c for [[x, a], a].We intend to
show that T(c2) = 0 for each strictly irreducible representation T of A. Set b = a - kT

so that T(b2) = 0. Since c = [[*, b], b] we have T(c) = -2T(bxb) whence T(c2) = 0. This
proves condition 2°.

The implication 2° -> 3° is immediate.

Now assume 3°. Consider a fixed strictly irreducible representation T of the
algebra A. Let us show first that there exists a polynomial p of degree not exceeding 2
such that p(T(a)) = 0. Indeed, suppose not. It follows that the operators 7X1), T(a),
T(a2) are linearly independent so that there exists a vector u such that the vectors u,
T{a)u, T(a2)u are linearly independent. Hence there exists an x £ A for which

T(x)T(a2)u = u, T(x)T(a)u = 0, T(x)u = 0

It follows that

T(xa2 - laxa + a2x)u = u

whence

\xa2- laxa + a2x\a g \T(xa2-2axa + a2x)\a a 1;

this is a contradiction which proves the existence of p. Let p be a polynomial of minimal
degree for which p(T(a)) = 0. If p is linear, we have T(a) — A = 0 for some A whence

Now consider the case where p is quadratic. Write p in the form

= (f-A)2-a

and let us prove that a = 0. Since p is quadratic, it follows that T(a) - A ̂  0 so that
there exists a vector u for which u and T(a)u are linearly independent. Let xE Abe
such that T(x)u=0 and T(x)T(a)u = T(a - A)«. It follows that T(x(a-\))u =
T(a-\)u.
Now

[[*, a], a] = [[*, a - A], a - A] = x(a - A)2 - 2(a - A)jc(a - A) + (a - A)2*
whence

T([[x, a], a]) = aT(x) - 2T((a - \)x(a - A)) + aT(x)

This implies

T([[x, a], a])u = - 2T((a - \)x(a - \))u = - 2T(a - \)T(a - A)« = - 2au.
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It follows that 0 = \[[x,a],a]\<T^\T([[x,a],a])\a^2\a\ so that a=0. The proof is
complete.

Proposition 3.3. There exists a Hilbert space H and an element a £ B(H) such
that [[x, a], a] G N(B(H)) for all x e B(H) but [[x0, a], a] * 0 for a certain x0.

Proof. A simple example can be constructed.

It follows that condition 3° of Proposition 3.2 does not imply [[x, a], a] E. Rad A in
general. In particular, condition 1° of 3.2 does not imply condition 1° of 3.1.
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