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1. Introduction. An operator A in a von Neumann algebra si is said to be a
commutator in si if A can be expressed in the form A = BC-CB for suitable B
and Cm si. The problem of determining exactly which operators are commutators
has been attacked by several authors ([l]-[4]), and complete solutions for the prob-
lem have been obtained for the following cases : si is type I„ in finite), si is a type
I,*, factor, and si is a type III factor on a separable Hilbert space. The methods
introduced in these papers are sufficiently powerful, however, to enable one to
obtain more information on the nature of commutators at least when si is properly
infinite.

In this article we describe an ideal J which is maximal in the set of commutators
of a properly infinite algebra si. If £ is a maximal ideal in the center of si, the ideal
generated by / and £ is maximal. This implies that / is the radical of si. Every
element of si which is not in the center (zero included) of si modulo some maximal
ideal will be a commutator in si. In particular, an element in a properly infinite
factor will be a commutator if and only if it is not of the form al + B with a / 0 and
BeJ. In case the center is not equal to scalar multiples of the identity there are
operators which we have not been able to analyze (cf. §3). However, we show that
each element of si is of the form B+C where B and C are commutators in si
and where the norm of C may be chosen to be arbitrarily small.

2. An ideal of commutators. Let si be a properly infinite von Neumann algebra.
Let (J) be the set of all projections E in si such that the relation EP~P for some
central projection P implies that F=0. If si is semifinite the set (J) contains all
finite projections of si.

A set 0 of projections in si is said to be a /z-ideal if 0 satisfies the following two
properties :

(1) if F is a projection in si which is equivalent to a subprojection of a pro-
jection in 0*, then F is a projection of 0; and

(2) if E and F are two projections of 0, then the least upper bound of E and F is a
projection of 0.

Then F. Wright [16, §2] proved that the set of projections contained in the
closed two-sided ideal generated by 0 is exactly 0.
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Proposition 2.1. Let si be a properly infinite von Neumann algebra. The set (J)
is a p-ideal and consequently is equal to the set of all projections of the closed two-
sided ideal J generated by (J).

Proof. Let E and F be projections in si and let E<F; then E e (J) whenever
F e (J). We now show that the least upper bound G of two projections E and F in
(/) is in (J). Let G' be the greatest lower bound of E and F. We have that G — E
~F—G' [7, III, §1, Corollary 1 of Theorem 1]. This means that G-Fis an element
of (/). So we may assume that E and F are orthogonal. Suppose there is a nonzero
central projection F such that P(E+F)~P. We obtain a contradiction. If U is a
partial isometric operator in si such that U*U=P and UU*=P(E+F), then
U*PEU and U*PFU are orthogonal projections in (J) whose sum is P. So there is
no loss of generality in assuming E+F=P. There is a central projection Q such that
EQ<FQ and F(l - ß)-<F(l - Q). Assume gF/0. Thus we may assume E+F=P
and E<F. There is a central projection R such that FR is finite and F(l— R) is
properly infinite. If FR is finite so is ER and thus ER + FR=PR is finite. This means
PR = 0. Therefore, we may assume that E+F=P, E<F and F is properly infinite.
There are orthogonal projections Fx and F2 such that F1 + F2 = F and FX~F2~F
[7, III, §8, Corollary 2]. So P=E+F<FX+F2 = F. This means that F e (/). This
is impossible. Thus we have shown that the least upper bound of every pair of
projections in (J) is in (J).   Q.E.D.

To avoid making substantive remarks about the zero ideal we add the following
discussion. If si is a type III von Neumann algebra, let {Qt \ i e S} be a maximal
set of nonzero mutually orthogonal cr-finite central projections of si. Let 2 Qi —
1 — P. Then Fmajorizes no nonzero a-finite central projection. If F is a projection in
si(l-P) with central support Q, then EQQi~QQi [7, III, §8, Corollary 5] since
QQi is the central support of EQt. Thus

f = 2 ¿a ~ 2 fia = e.
This shows that 7(1 —F) = (0). Therefore in our discussion of type III algebras we
shall consider the following two cases separately :

(1) every projection of si is equivalent to its central support; and
(2) no central projection of si is a-finite. If the Hubert space of si is separable,

then si satisfies (1). Factor algebras satisfying (1) were treated in an article by
Brown and Pearcy [3]. On the other hand, if si satisfies (2) and if H is the Hubert
space associated with si, then (/) contains every projection in si which corresponds
to a subspace of H of the form

closure [linear span {A'x | A' e si', x e K}]

where si' is the commutant of si on H and K is a countable subset of H. The set of
projections of si which correspond to subspaces of this form is precisely the set of
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(7-finite projections of si (cf. [7, Chapter I, §1, no. 4 and §2, no. 1]). This means that
every nonzero projection in si majorizes a projection of (/).

We now state a result which we shall need later.

Proposition 2.2. Let si be a properly infinite von Neumann algebra; let
{Pt | ie S} be a set of mutually orthogonal central projections of sum equal to 1 and let
{Ai | i e S} be a set of elements of J such that

lubd^iH \ieS} < +00.
ThenA = 2AtP,eJ.

Proof. First let each At be a projection in J. Suppose Q is a central projection
such that AQ~Q. Then AiQPi = AQPi~PlQ for every ieS. Therefore, we have
that F(Ô = 0 and that g = 0. This means A ej.

For the general case it is sufficient to assume that Atesi+ for each i e S. Let
£ > 0 be given. For each i let F¡ be the spectral projection of At corresponding to the
interval [e, \\Ai\\]. Then F¡ eJand \\At(I —E,)\\ ̂e. But 2 FjF¡ e/and so

¡A(l -2 EiPi)\\ Ú lubiJ^O-FOH | ieS} g e.

This means that A is the limit of elements of / and, therefore, that A e J.   Q.E.D.

Corollary. If A is an element of a properly infinite von Neumann algebra si, then
there is a maximal central projection P such that AP e J. In particular, if E is a
projection in si, there is a central projection P such that EPeJ and E(l — P)~ 1 — F.

Let si he a von Neumann algebra with center 2£. The spectrum Z of the center 3£
is the set of all nonzero complex-valued homomorphisms of 3£ with the w*-
topology. The space Z is compact and Hausdorff and the closure of every open
set in Z is open. Each element of Z is identified with its kernel. Then for each £ 6 Z
the smallest closed two-sided ideal of si containing £ is denoted by [£]. For each
£ e Z there is a unique maximal ideal Mr in si containing £. The map Mr -*■ Mr
n 2t° = £ is a homeomorphism of the set of maximal ideals of si with the hull-
kernel topology onto Z [12]. The intersection of all maximal ideals of si is called
the strong radical of si. Then we see that the strong radical is equal to

f){Mr\ieZ}.

For each maximal ideal M in si and for each element A in si let A(M) denote
the image of A in the algebra si(M)=si/M under the canonical homomorphism
of si onto si(M). For fixed A in si the function

M^ \\A(M)\\ = glb{M + F|| | BeM}

on the space of maximal ideals with hull-kernel topology is lower semicontinuous,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



58 HERBERT HALPERN [May

i.e. for each scalar a the set S of all maximal ideals M such that |/4(M)| S a is a
closed set. In fact, let / be the closed two-sided ideal in si given by

/= (~}{M\MeS};
then

glb{||i4 + 5| \BeI} = hib{||i4(M)|| \ M e S}

[9, Lemma 1.9]. So if M is a maximal ideal which contains /, we have that

\\A(M)\\ = gib{M+511 | BeM} S glb{|^+J?|| | Bel} S «.
For each A in si and £ in Z let A({) be the image of A in the algebra si(Ç)

=si/[Q under the canonical homomorphism. The algebra si(t) is a C*-algebra
under the norm

M(0| = %lb {\A + B\\Be\l\}
and for fixed Ainsi the function £ -> ||/1(£)|| is continuous on Z [10, Lemma 10].

The center S is isometric *-isomorphic to the C*-algebra of all continuous
complex-valued functions on the spectrum Z. Let A-*- A~ denote this isomorphism.
Projections in 2É correspond to characteristic functions of open and closed sets in
Z; so a projection P corresponds to the open and closed set X if

X = {i.eZ\P~(0= 1}.
Finally, we mention that if X is an open and closed set in Z which corresponds to
the central projection P and if A is an element in si then

lnb{\\A(l)\\\teX}=\\AP\\.
Proposition 2.3. Let si be a properly infinite von Neumann algebra with center

2?. Let Z be the spectrum of 2£. For each £ in Z the ideal J-r [£] is the unique maximal
ideal in si containing £ and the ideal J is equal to the strong radical of si.

Proof. First we show that J+ [£] is a proper ideal. Suppose 1 e /+ [£]. There
is an A e J and a B e [£] such that 1 = A + B. Then 1 (£) = A(Q. There is an open and
closed set X containing £ in Z such that || 1 (£')-/!(£') II < 1 for every £' e X. Let F
be the projection in 2£ which corresponds to X. Then \\P—AP\\ < 1. This means that
there is a Cin si with CAP=P. So F e (J). This, however, is impossible since F^O.
So we have that J+ [£] is a proper ideal.

Now we show that J+ [£] is a maximal ideal in si. Let A $ J+ [£], then A*A $ J
+ [£]. Since J+ [£] is a closed two-sided ideal in si (cf. [8,1.8.4]), there is a projection
E equal to a multiple of A*A such that E$J+ [£]. Let F be the central projection
such that EP eJ and F(l-F)~l-F (Corollary, Proposition 2.2). Then 1-F£[£];
otherwise E=EP+E(l -P) e J+ [£]. Thus P e [£]. Now let U be a partial isometric
operator of si such that C/*C/=1-Fand UU* = E(l-P). Therefore, U*E(1-P)U
= l—P. Hence, the ideal in si generated by A and /+[£] contains the identity.
This proves /+ [£] is maximal.
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We now show that J is the strong radical Ç) {J+ [£] | £ e Z} of si. If A is an
element of the strong radical of si, then A(l) is an element of (J+ [£])(£)=/(£) for
every £ in Z. Given e > 0 there is a finite cover Xx, X2,..., Xn of Z consisting of
mutually disjoint open and closed sets and a corresponding collection F1; B2,...,Bn
of elements of J such that ¡|/4(£)-F¡(£)|| <e for every £ e Xt for l£i£n. This state-
ment is obtained from the continuity of the function £ -* ||F(£)|| on Z for fixed F
in si and standard compactness arguments keeping firmly in mind that the closure
of every open set in Z is open. Let P( (1 e¡ún) he projections in 2£ such that
*i = {£eZ | Fr(£)=l} (l Sien). Then F=2F(Fi is an element of J and

M(0-5(01| <e   for every £ e Z.

Thus ||i4 —2?|| <e. This proves that A is an element of J since J is a closed ideal.
Therefore, the strong radical of si is contained in J. Since it is obvious that J is
contained in the strong radical, we conclude that J is the strong radical of si.
Q.E.D.

Recently Brown, Pearcy and Topping [4] proved that the strong radical of a
CT-finite von Neumann algebra si is the ideal generated by the finite projections of
si. So if si is CT-finite, then (J) is exactly the set of finite projections of si. This can
also be seen directly from the definition of (/).

We also notice that if si is a factor algebra, the unique maximal ideal of the center
of si is (0). This means that J is the unique maximal ideal of si.

Let si be a von Neumann algebra; let A be an element of si and let Jf¿' be the
uniform closure of the convex set generated by the set {U*AU | U unitary in si}.
The set X~A always has a nonempty intersection $fA with the center of si. The
algebra si is finite if and only if for every A in the si the set $CA contains precisely
one point. In this case if A e si ^ and J^={0}, then A = 0 [6], [7]. However, if si
is properly infinite the situation is quite different.

Proposition 2.4. Let si be a properly infinite von Neumann algebra. The strong
radical J of si is equal to the closed two-sided ideal

K={Aesi\JfA.A = {0}}.

Proof. The ideal F is characterized as being the largest closed two-sided ideal
in sé whose intersection with the center of si is {0} [7, III, §5, problem 3]. Since
the intersection of J with the center is {0}, we conclude that J<=-K. Conversely, let
F be a projection which is not in J. There is a nonzero central projection F such
that EP~P. There are projections Ex and F2 (respectively, Fx and F2) of sum EP
(respectively, F) and unitary operators Ux and U2 such that UX*EXUX = FX and
U2*E2U2 = F2 [7, III, §8, problem 4]. So by substituting Ex + E2 + E(l-P) for F
we have that

\(UfEUx+U*EU2) = \(P+C)
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where C^O. Since J^e^-^p+cm and since ¿f(í>+C)/2 contains nonzero central ele-
ments, we have that JfE^={0}. Therefore, E is not an element of K. This shows that
every projection in Kis contained in /. Because K is generated by its projections and
because y is closed, we conclude that K^J. Hence K=J.   Q.E.D.

The proof of the following theorem is similar to that of Theorem 2 of Brown,
Pearcy and Topping [4] and, therefore, is omitted.

Theorem 2.5. Every element in the strong radical of a properly infinite von
Neumann algebra is a commutator.

We remark that any closed two-sided ideal / which properly contains / has a
nonzero projection E which is equivalent to its central support. This shows that /
contains a nonzero central projection. This projection cannot be a commutator in
si [15]. So the strong radical is the largest ideal in the set of commutators.

3. Operators which are strongly nonscalars. Let si be a properly infinite
von Neumann algebra. Let (F) (respectively, (F')) be the complement in si of the
set of all Ainsi for which there is a scalar a such that A — al is in some maximal
ideal of si (respectively, the set of all A in si for which there is a nonzero scalar a
such that A — al is in some maximal ideal). If A e si is a commutator in si, then
A e (F'). We prove, on the other hand, that every element of (F) is a commutator
in si. Then an element A in a factor si is a commutator in si if and only if A e (F')
since (F') is the union of the two disjoint sets (F) and J. The proofs rest heavily
on the method of [2] and [3].

It is plausible to conjecture that the elements in the set (F') are commutators. If
this were so, then one would have a complete description of all commutators in si
[15]. We have been unable to show that the elements of (F') are commutators and
are forced to settle for less conclusive results.

First we need some definitions. Let H be a Hubert space and let A be a bounded
linear operator on H. Let F be a projection on H. Define the gauge -qA(F) to be

?]A(F) = lub {\\Ax — (Ax, x)x\\ | x is a unit vector in F(H)}.

The numerical range of A on F(H) is defined to be the convex set

{(Ax, x) | x is a unit vector in F(H)}.

The closure of the numerical range of A on F(H) will be denoted by WA(F). For
every a e WA(F) we have

||F4-a)F||2 S 65\\A\\Va(F)       [2].

Let si be a properly infinite von Neumann algebra. Until further notice we
assume that si is either semifinite or that si is type III in which no central projection
is o--finite. Let Aesi; for each projection F in si let

vA(F) = lub {\\AE-EAE\\ \Ee(J) and E S F}.
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Define v(A) to be

,L4) = glbK(F)| 1-Fe(/)}.

We now obtain some inequalities.

Proposition 3.1. Let si be a von Neumann algebra (of the kind described) and
let A e(F). There is a number v>0 such that v(AP)^v for every nonzero central
projection P.

Proof. First let F be any element of si and let </> be an irreducible representation
of si on a Hubert space H such that </>(J)^(0). Let F be any projection in si; we
show that v<¡>xb)((p(F)) = vb(F)- We may assume that ^(F)^0. Let x be a unit vector
in cf>(F)(H). There is a selfadjoint operator C in J such that </>(C)x=x and </>(C)
(</>(FB)x-(<f>(B)x, x)x) = 0. Indeed, the representation </> restricted to J is irreducible
on //. By the result of Kadison [11] there is a selfadjoint C in J such that </>(C) is
equal to the one-dimensional projection on the subspace in H spanned by x at the
two points x and (/>(FBF)x — (</>(FBF)x,x)x = (f>(FB)x — (<p(B)x,x)x. Now by
replacing C by FCF, we obtain a selfadjoint element in J such that </>(FCF)x = x and
</>(FCF)y = 0 where y = <f>(B)x — (</>(B)x, x)x. So we may assume C is a selfadjoint
element in J n siF such that </>(C)x = x and ^(C)j = 0. There is no loss of generality
in assuming that O^C^l. In fact, <p(C2)x = </>(C)2x=x and </>(C2)y = <p(C)2y=0.
So we may assume that CeJ n si/. Let/be the continuous real-valued function
defined on the interval [0, ||C|| +1] by

f(t) = 0 if/ái,
= 1 ift^i,
= linear in between \ and f.

The function/is the uniform limit on [0, ¡|C|| + 1] of polynomials {/»„} with real
coefficients and without constant term. If

■/»„(/) = 2 {«¿m I 1 ¿ m g k},

then

</>(pn(C))x = 2 *m<KC)nx = £ «m* = Pn(l)x   and   <p(pn(C))y = 0.

Because 1 =/(l) = lim/»„(l), we have that

</>(f(C))x = lim <KpÁC))x = x   and   <¿(/(C))j = 0.

However, the operator/(C) is a positive operator in J r\ siF of norm equal to 1.
So we may assume 0 ̂  C S1.

Now let e>0 be given. There are mutually orthogonal projections Ex, E2,..., E„
in (F) n J3^ and scalars a1; a2,..., an in the half-open interval ]0, 1] such that
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EjC=CEj (ISjSn) and C-ßl SI ccjEj S C where ß = e2(4(\\B\\ + l))'2. We have
that

1 = ¡x||2 = ||<¿(C)*I¡2 = (</>(C)x,x) S (2^(E^,x)+ß

s(Zm)x,*)+ß-
Also we have that

0 s2«Á\m)y\\2 = (2^(E,)y,y) S (</>(C)y,y) = 0.
This means that </>(E¡)y = 0 (ISjSn) since each a¡ is strictly positive. We set
F=2 F;; then we see that Fis a projection in (/) n siF which satisfies the relations

1 S \\</>(E)x\\2 + ß   and   </>(E)y = 0.
Therefore,

U(B)x-(</>(B)x, x)x\\ S \\(4>(B)x, x)(l -cf,(E))x\\ + \\(l -</>(E))<f,(B)</>(E)x\\

+ \\(l-<f>(EM(B)(l-</>(E))x\\
S ll^ll |(1-£)ií£||W+2||^|| |ií|||x-^(£)jc||
S ||(1 -E)BE\\ + 2||5||(||x||2- ||<¿(£);t||2)1/2

S ||(l-F)ÄF||+2|5||i81'2 S yB(F) + c

Since e>0 is arbitrary, we obtain that \\</>(B)x-(<f>(B)x, x)x\\ SvB(F). This means
that^{m(</>(F))SvB(F).

We are now ready to prove the proposition. We argue by contradiction. Let
{Pn} be a sequence of nonzero central projections such that v(APn)Sn~1, for
zz = 1, 2,_Let Z be the spectrum of the center of si and let Xn be the open and
closed set in Z which corresponds to Pn. Suppose there is a subsequence {Xnj} of
{Xn} such that p)> Xn¡^0. Let £ £ Hz <*V We have that [£] does not contain /.
Indeed, if [£] contains /, then £ is a nonzero maximal ideal in the center of si for by
hypothesis the ideal J is nonzero. So there are two nonzero orthogonal projections
Qx and Q2 of sum 1 in the center. Suppose ßi(£)=l and Q2(C)=0. Let F be a
projection in (/) of central support Qx. We have that Ee [£]. So F(£) = 0. Since the
two-valued function £' -> ||F(£')|| on Z is continuous, there is a nonzero central
projection Q majorized by Qx such that EQ = 0. This means that the central support
of E is not Qi. This is a contradiction. Hence, the ideal [£] does not contain J.
Then there is an irreducible representation </> of si on a Hubert space H whose
kernel contains [£] but not J [8, 2.9.7](2). By the first part of the proof we have

■»«apMF)) ^ vAPn(F)

(2) Actually the ideal [Q is primitive. We plan to show this and its consequences in this regard
in a future paper.
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for every F such that 1 -Fe (J). However, 0(Pnj)=F^.(£)l = 1 (here 1 is the identity
on H) since £ e C\¡ Xn¡. Thus, </>(APn¡) = <p(A). This means that v^a)(<p(F))úvAPic(F)
for every F with 1 — Fe (J) and for every k=n¡ with/'= 1, 2,.... Thus, there is a
sequence {Fnj} of projections in si with 1 - Fn¡ e (J) and Fni ^ Fn2 ̂  • • • such that
7lcKA)(<p(Fni)) = 2nj~1. There is a scalar a such that

c/>(A)-a<p(l)e<p(J)       [2].

Since J+[Q is the unique maximal ideal containing [£], we have that A-al eJ
+ [£]. This is contrary to assumption.

We may therefore assume that every subsequence {Xnj} of {Xn} has a void inter-
section. There is a sequence {77J of nonempty, finite, mutually disjoint subsets of
natural numbers such that (1) if i<j and keir^ and le-n^ then k<l; (2) Qt =
x {Pj | j e 77,} ,¿ 0 ; and (3) if ;' <j, then Pk is orthogonal to Q¡ for every fc e 7r,. Let

ny be the maximal natural number in rr,. We have that {n,} is a sequence of natural
numbers by (1). Let £, be a point in the spectrum Z such that Q^(i,) = l. Because [£]
does not contain J, there is an irreducible representation </>,- of si which is zero on
[£,] but not on J. For each y there is a projection F, with 1 -F, e (J) such that

V<t>,íAPkí<p(F,)) = vAPk(F¡) = 2«f S   where £ = »,.

Notice that <p/,Pn,) = <f>i(l)- Then for any number a; in the set W^u^/F,)) relative
to the representation space of <p¡ we have the relation

¡UiA-a^FM3 tí 65MII2«,-1.
Hence, there is an element F; e J such that

||((^-a,)Fy-Fy)(0)||2 ú 65MII4«-1.

Indeed, the kernel of <£, is contained in /+[£,]. However, (A — a;l)(l — F¡) is an
element of 7 and so there is a Cf s J such that

¡(A-^-CMQW2 = 65MII4«,"1.
Here for example C; might be L4-a;l)(l -F^ + Bj. We have that

||C,(0)|| Ú ||(/l-«,)(0)||+(260«i-1|M||)1'2 S 2|M||+(260«ri|M||)i'2

since | a, | 5; || ,41|. We may assume therefore that there is a constant ß such that
llQll Sß and \a,\ Sß for every/ Indeed, the canonical isomorphism of J/J n [0]
onto (J+ [£,])/[£,] is also an isometry since the norm of a C*-algebra is unique.
Now let

C = 2 {«,0/1 1 *j < co} + 2 {CjQj I 1 á j < 00}.
We have that 2 {«/ôj I 1 új<oo} is a central element of si and that

2{Q&i 1 =/<co}
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is in J (Proposition 2.2). Let £0 be a limit point of the infinite set {£y | j= 1, 2,...}.
We show that \(A — C)(£0)j| =0. Indeed, let £>0 be given; there is an infinite set S
of natural numbers such that / e S implies

\\\(A-C)(Q\\-\\(A-C)(t.0)\\\ Se.
So

\\(A-C)(l0)\\ S £+||F4-C)(£;)|| = £+|p-«.-Q)(£,)|| ^ £ + (260zz-1M!|)1'2.

This shows that \(A — C)(£0)|| Sc Since e>0 is arbitrary, we have that

||F4-C)(£o)|| =0.
Now let

« = 2Kßzii sj<cora0y,
then A-a-1 eJ+[(0]- This is a contradiction. Therefore, v>0 exists.    Q.E.D.

The next proposition will be needed in Theorem 3.6.

Proposition 3.2. The set (F) is open in the uniform topology.

Proof. Let A e (F) and let v > 0 be a scalar such that v(AP) ^ v for every nonzero
central projection F. Let B be an element of si such that \\B — A\\ <v/8. We show
that v(BP) ^ v/4 for every nonzero central projection P. Let F be a projection in si
with 1 — Fe (J). Let £ be a projection in (J) majorized by F such that

\\(AE-EAE)P\\ ^ v/2.
Then we have that

\(BE-EBE)P\ ^ \\(AE-EAE)P\\-\\E(B-A)EP\\-\\(B-A)EP\\
ä v/2-vß-vß = v/4.

Hence, v(BP)^v/4.
If there is a £0 in the spectrum of the center and a scalar a such that B — al is an

element of the maximal ideal J + [£0], then there is a C e J such that B — al—Ce [£0].
Let Cx = (C* + C)/2 and C2 = (C— C*)/2i. Let Gx and G2 be the spectral projections
for Cx and C2 respectively that correspond to the union of intervals ] —co, v/16] u
[v/16, oo [. Let G be the least upper bound of Gx and G2. Since Gx and G2 are
elements of (J), the projection G is also an element of (J). We have that

||C(1-G)H S \\Cx(l-Gx)\\ + \\C2(l-G2)\\ S v/8.

So there is a projection G in (J) such that

H(F-al)(l-G)(£o)|| èv/%.

By continuity of the function £-> |¡(5-al)(l-G)(£)|| on the spectrum of the
center there is a central projection Q such that ß"(£0)= 1 and

||(5-al)(l-C)Ô||  < v/4.
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If F is any projection of (J) majorized by 1 — G we have that

||(F-al)ßF||  Ú  ||(F-al)ß(l-G)||.
Therefore, we have

||FßF-FFßF|| = ||(Fß-«ß)F-F(Fß-aß)F||
= ||(l-F)(F-al)Fß|| S |(F-«l)ß(l-G)||.

This means that v(BQ)<v/4. We have obtained a contradiction. Therefore, if
\\B-A\\<vß, then Be (F).    Q.E.D.

The second stage of the analysis is contained in the inequality presented in the
next proposition.

Proposition 3.3. Let A be an operator in (F). Let v>0 be a number such that
v(AP) ^ v for every nonzero central projection P. Then given a projection F with
l—Fe(J), there is a projection E in (J) which is majorized by F and which has central
support 1 such that EA*AE-EA*EAE^(v2ß)E.

Proof. For every nonzero central projection F and for every F with 1 — Fe (J)
we have vAP(F) ä v. So there is a projection G in (J) majorized by F such that
\\(l-G)APG\\^v/2. Thus, ||GF^*(1-G)^FG|| ^v2/4. Let G' be the spectral
projection for GPA*(l — G)APG corresponding to the interval [v2/8, co[. Then G' is
a nonzero projection majorized by GP; hence, G' is a projection in (/) majorized
by F. We have that

G'(GPA*(l-G)APG) = (GPA*(l-G)APG)G' ^ v2ßG'
and so

G'^*(1-G')^G' = G'A*(P-G')AG' ^ G'A*(P-GP)AG' è (v2ß)G'.

Now let {G¡ | / e S} be a maximal set of nonzero projections in (J) majorized by
F such that the central supports of the G¡ are mutually orthogonal and 3iA*(l — G¡)
■AGi^(v2jci)Gi for each i e S. Let Q¡ be the central support of G¡ (i e S) and let
G = 2 {G | / e 5} and ß = 2 {ß, | / e S}. The central support of G e (J) (Proposi-
tion 2.2) is Q, and G is majorized by F. If ß^ 1 then v(A(l — ß))^ v. So there is a
nonzero projection G' in (/) majorized by F(l — Q) such that G'A*(l-G')AG'^
(v2/8)G'. This is the content of the first paragraph of this proof. This, however,
contradicts the fact that the set {G¡ | i'e S} is maximal. So we have ß=l. Finally
we have that

G^*(l - G)AGQi = G,A*(l - Gt)AG( ä í>2/8)Gt = (v*ß)GQl   for each i e S.

This means that
GA*(I - G)AG ̂  (v2ß)G. Q.E.D.

Let A he an element of the von Neumann algebra si. The domain support of A is
defined to be 1 -F where F is the maximal projection in si such that AE=0. The
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range support F of A is the domain support of A*. The domain support and the
range support of A are equivalent [7, III, §1, Proposition 2].

Proposition 3.4. Suppose A is an operator in si and suppose E is a nonzero
projection in si such that F^*(l — E)AE^rjEfor some 17 > 0. Then the projection E is
the domain support of AE. Let F be the range support of AE; then

\\FE\\ è (l-r,\\AE\\-2y12.

Proof. Let |/4F| = (Fj4*v4F)1/2; there is a partial isometric operator U whose
domain support is equal to that of AE and whose range support is F such that
U\AE\=AE. We have that \AE\2^EA*(l-E)AE^vE. This implies that \AE\
^ij1,2F. There is an element F in si¿ such that B\AE\ = \AE\B=E. Now let E' be
the domain support of AE. It is clear that E'^E. Suppose x is a vector of the
Hubert space of si such that (F—F')x=x. Then

0 = \\AEx\\2 = (\AE\2x,x) ^ r,\\x\\2 ^ 0.

Thus, the vector x is 0. This proves that E' = E. Thus we have that the relation

EA*F(l-E)FAE = EA*(l-E)AE £ r,E
implies the relation

\AE\U*(F-FEF)U\AE\ ^ i¡E
and

[/F|^F|f/*(F-FFF)F|^F|FF* ^ -nUBEBU*.

Because UB\AE\U* = F, we obtain F-FEF^VUB2U*. We have that B\AE\=E
and that \AE\ £ ||v4F|F. Because F, F and \AE\ all commute, we find that

F á \\AE\\B   and   (\\AE\\-l)2E ^ B2.
Hence

UB2U* ä c7[|AE|| ~2Ft/* = MF||-2F.

This means that r¡\\AE\\ ~2F^F-FEF and so that FFF£(1 —n\\AE\\ _2)F. Finally
we obtain

||FF|| S (I-tjMFII"2)1'2. Q.E.D.

Proposition 3.5. Let A e (F); there are projections Ex and E2 in si and a number
r¡ > 0 such that

(1) ExA*(l-Ex)AEx^Ex;
(2) F2 is the range support of AEX;
(3) Ex ~ E2 ~ I ; and
(4) z/lub (Ex, F2) is the least upper bound of Ex and E2, then 1 -lub (Ex, F2)~ 1.

Proof. Let v > 0 be a scalar such that v(AP) ä v for every nonzero central pro-
jection F. Let tj = v2/8. Now let {EXi \ i e S}, {E2i | /' e S}, {F3i | / e S} be three sets
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of nonzero projections in (J). Suppose each one of these sets consists of mutually
orthogonal projections and suppose the sets are maximal with respect to the follow-
ing properties :

(1) ExiE2i = 0 for all M/in S;
(2) ExiE3j = E2iE3] = 0 for all i and j in S;
(3) E2l is the range support of AEXi (i e S) ;
(4) EXiA*AEXi-ExiA*ExiAEXi^-nEXi (ieS); and
(5) Exl~E3i(ieS).

We remark that Exi~E2i follows from (3) and (4). We show that

^-JífU/eS}"!      (lÚj¿3).

Indeed, let F be the central projection such that PEX e (J) and (1 -P)EX~ 1 -P.
Since EX~E2~E3, we have that PE, e (J) and (1 -P)E¡~ 1 -P (j=2, 3). We shall
show that F=0 by obtaining a contradiction from assuming F^O. If F is the least
upper bound of PEX, PE2, and PE3, then Ee(J). Let E' be the range projection
of A*E; since E'' <E, the projection E' is an element in (/). Let F' be the least
upper bound of E' and F; the projection F' is in (J) and F' is majorized by P. Let
F= 1 -F'. For every nonzero central projection Q we have that v(AQ)ä v.

There is a projection Gi in (/) of central support F majorized by F such that

GXA*AGX-GXA*GXAGX ^ r,Gx

(Proposition 3.3). Let G2 be the range support of AGX. We have that Gx ~ G2 and so
G2e(J). Also F4*F=0. This implies that G!^*F=0 and thus that F^Gi = 0.
Then, ES 1 -G2 and G2^ 1 -E.

Now there is a central projection ß such that QGX < Q(P- G) and (1 - ß)(F- G)
"<0 _ Q)GX where G is the least upper bound of PE, Gx and G2. We have that
Ge(J). This means that (I - Q)(P- G) e (J) and that (l-ß)(F-G) + (l-ß)G
= (1-0F is in (J). Thus (1-0F = O and QP=P. This implies that GX=QGX
<Q(P-G)=P-G. Let GX~G3SP-G. However, the three sets {En\ieS}
u {Gj} (1 ̂ /^3) each of which consists of mutually orthogonal projections of (/)
have properties (l)-(5). We have now obtained the contradiction. Thus, EX~E2
~E3~1. Therefore, 1 ~E3S 1 — lub (Ex, E2)S 1 and so 1 ~ 1 — lub (Eu E2).

We show that statement (1) of the conclusion is true. We have that

EXi(ExA*(l-Ex)AEx) = EXiA*(l-Ex)AEx
= EXiA*E2i(l-Ex)AEx = ExiA*(E2i-E2iEx)AEx
= EXiA*(E2i- E2iExi)AEx

= ExiA*(E2i- E2lEXi)^ E2jAEx
i

= EXiA*(E2l- E2iExiE2i)AEx

= EXiA*(E2i-E2iExiE2i)AExi ^ i¡Eu.
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The second to the last step is obtained from the fact that E2iAEXj = E2iE2jAEXj = 0
for iVj. Also

ExA*(l - Ex)AExEXi = EXiA*(l-Ex)AEx.
Hence,

ExA*(l -EX)AEX = 2 EXi(ExA*(l-Ex)AEx) ^ r, £ Flf = VEX.

Now if F is a projection in si such that FAEx=0, we have that F4Flä = 0 for
every i e S. Therefore FE2i = 0 for every ie S and so F S 1 —E2. Because (1 —E2)AEX
= 0, the projection E2 is the range projection of AEX. This is statement (2) of the
proposition.    Q.E.D.

We now state the theorem on commutators for the class (F).

Theorem 3.6. Let si be a properly infinite semifinite von Neumann algebra or a
type III algebra in which no central projection is a-finite. Then every operator A in the
class (F) is a commutator in si.

Proof. Let Ex and F2 be projections in si and let ijbea strictly positive scalar
that satisfy the conditions of Proposition 3.5. Let F3 = 1 - lub (Ex, E2). We have that

\E2EX\ S (l-n\\AEx\\-2yi2 < 1

by Proposition 3.4 because ExA*(l -Ex)AEx^r¡Ex. We show that AEX is a one-one
mapping of EX(H) onto E2(H). Here H is the Hubert space associated with si. The
fact that AEX is one-one on EX(H) is exactly the statement that Ex is the domain
support of AEX. Now let y e E2(H). Since E2 is the range support of AEX, the linear
manifold {AExx \ x e H} is dense in E2(H). There is a sequence {xn} in EX(H) such
that limn AExxn=y. But

\\(l-Ex)AEx(xn-xm)\\2 ^ r¡(Ex(xn-Xm), Xn-Xm) = rj\\xn-Xm\\2.

Therefore {xn} is a Cauchy sequence in EX(H). This proves that y e {AExx | x e H}.
The remainder of the analysis is carried to completion using exactly the same

sequence of steps as [3]. The only additional result which is needed is Proposition
3.2. We omit all the remaining details.

We consider the kind of properly infinite algebra that we have hitherto neglected.

Theorem 3.7. Let si be a type III von Neumann algebra in which every projection
is equivalent to its central support. Then every operator A in the class (F) of si is a
commutator in si.

Proof. Let H be the Hubert space of si. We first construct three projections
Ex, E2, E3 in si with the following properties:

(1) E3 is the orthogonal complement of the least upper bound of Ei and E2;
(2) F1~F2~F3~1;
(3) ll^i'all < 1 ; and
(4) AEX is a one-one map of EX(H) onto E2(H).
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Let Z be the spectrum of the center of si. The set {[£] | £ e Z} is the set of all maxi-
mal ideals of si since J=(0) (Proposition 2.3). For each [£] the center of si (I)
consists of scalar multiples of the identity [7, III, §5, problem 7]. For each £ e Z
there is a projection Er in si such that (1— Er)AE, is not in [£]. Otherwise, the
element ^4(£) would be a scalar multiple of the identity of si (I). Since £ -> ||F(£)|| is
continuous, there is for each £ in Z an open and closed neighborhood V, of £ such
that ||((l-Ft)/lFc)(£')| èi||((l -Ec)AEr)(Ol whenever £' e Vt. The compactness of
Z allows us to choose a finite set Vx, V2,..., Vn of disjoint open and closed sets
which cover Z and corresponding projections E'x, E'2,..., E'n in si such that for
some fixed e>0 we have ||((1 -F;)^f;)(£)|| ^e whenever £ £ V, (1 S jan). Let Q,
be the central projection that corresponds to V} (1 S jèn) and let

E=2{E'jQj\l újún}.
We have that

|¡((i-f)^f)(£)|| = ||((i-f;)^f;)(£)|| zE

whenever £ e V¡ (1 SjSn), and so for every £ eZ we see that ||((1— E)AE)((,)\\ }Ze.
(This relation incidentally shows that the set (F) is open. Indeed, if M —F|| r£e/2,
then ||((l-F)FF)(£)||^E/2 for every £eZ.) Let C=EA*(l-E)AE and let F be
the spectral projection for C corresponding to the interval [<;2/2, oo[. We notice that
F ^E. The central support of Fis 1. Indeed, if F(£)=0 for some £ eZ, then ||C(£)||
= ||0(1 -F)©]) Se2/2. However,

||C(£)|| = ||((l-F)^F)(£)||2ä£2.

Therefore, F(£) ̂  0 for every £ e Z. This means that the central support of F is 1.
Now we have that

ie2F S FCF = FA*(l-E)AF á FA*(l -F)AF

and so by the same reasoning as was employed in Theorem 3.6 we see that the
operator AF is a one-one map of F(H) onto a subspace F'(H) and |F'F|| < 1. Here
of course F' is the range projection of AF. We then have that F'~F~ 1. Because si
is of type III, there are orthogonal projections Fx and F2 such that FX + F2 = F and
FX~F2~F. Let F'x be the range projection of AFX. We see immediately that AFX is
one-one on FX(H). Let y e F'X(H). There is a sequence {xn} in FX(H) such that
j = limn AFxxn. However, since ^Fis one-one on F(H) onto F'(H), there is a bound-
ed linear operator D on H such that DAFz = z for every z e F(H). This means that
there is a vector x in FX(H) such that lim„ x„=x. So y = AFxx. So AFX maps onto
F[(H). We have that \\F'XFX|| S \\F'F\\ < 1 and that F'x ~Fx ~F~ 1. Let F^Fi and
E2=F'X. We complete this paragraph by showing that the central support ß of the
orthogonal complement F3 of the least upper bound of Ex and F2 is 1. Let F = 1 - ß ;
we show that F=0. We have that F(1-F3)=F. Let xePF2(H). Since F is the
least upper bound of the two projections PFX and PF'X such that \\PFX-PF'X\\ < I,
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there are unique vectors y in PFX(H) and z in PF'X(H) such that x=y+z (cf. [3,
Lemma 2.1]). However, x is also a vector in the subspace F(H). Because \\FF'\\ < 1
any vector in the subspace corresponding to the least upper bound of F and F'
can be written uniquely as the sum of a vector in F(H) and a vector in F'(H). In the
case of x, however, the component in F'(H) must be zero. Because y e F(H) and
z e F'(H), we have that z=0 and x=y. Therefore, xePFx(H). This means x=0.
Consequently, the projection PF2 is zero and the projection P which is equivalent to
PF2 is zero.

Therefore, the projections Ex, E2, E3 satisfy properties (l)-(4). Now, however,
the remarks used to complete the Theorem 3.6 also apply here.   Q.E.D.

The following theorem is then apparent.

Theorem 3.8. Let si be a properly infinite factor von Neumann algebra. The set
J u (F') is the set of all commutators in si.

This is, of course, known for type lx and type III cr-finite factors.
The next theorem gives a partial result for the class (F').

Theorem 3.9. Let si be a properly infinite von Neumann algebra and let A be an
element of the class (F'). There is a set {F,} of mutually orthogonal central projections
of least upper bound 1 such that AP¡ is a commutator in si for each Pt.

Proof. Let F be a nonzero central projection. We show that there is a nonzero
central projection Q such that A Q is a commutator in siP. There is a central pro-
jection R majorized by F such that AR e J and such that AR' $ J for any nonzero
central projection R' majorized by P—R (Corollary, Proposition 2.2). Because
every operator in J is a commutator we may assume R=0. There is a £ in the
spectrum Z of the center of si such that P~(£) = 1 and such that A is not equal to a
scalar multiple of the identity modulo /+[£]. Otherwise, given £>0 and

teX={t'eZ\P-(t')= 1},

there is a B^ e J with \(A — 5C)(£)|| =0. Indeed 0 is the only possible scalar multiple.
So there is an open and closed neighborhood Ur of £ in A' such that

||L4-.BC)(£')1 < e   whenever £' e Ur.

There is a disjoint open and closed cover Vx, V2,..., Vn of X and corresponding
Bx, B2,..., Bn in J of this form, since Xis compact. If Q} are the central projections
corresponding to F; (1 SjSn), then B=Ji{BjQj | 1 SjSn} is an element in J and

\\(A-B)(L)\\ = \\AiQ-B¿Q\\ S £
whenever £ g V¡(lSjSn). So ||P(.4-F)|| < e. This means AP is the limit of elements
in /. This is contrary to assumption. Then if A is not a scalar multiple of the
identity modulo /+ [£], there is a projection E in si such that (1 - E)AE i J+ [£].
For each £' e Z and each Be si let B(J+ [£']) be the image of B in sij(J+ [£'])
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under the canonical homomorphism of si into si/(J+ [£]). Because the function
£' -> \\B(J+ [£'])|| is lower semicontinuous on Z (cf. §2), there is an open and closed
set F in A' that contains £ such that

||(1 -E)AE(J +[£'])|| > 2-1||(l-F)^F(y+[£])|| > 0

whenever £' e V. Let ß be the nonzero central projection which corresponds to V.
If ß = 1, we see immediately that A e (F) and so A is a commutator. If 1 - ß ^ 0,
let Ex and F2 be two orthogonal projections of sum 1 — ß such that 1 — ß ~ Ex ~ E2.
Then AQ + EX is an element of class (F). Indeed, let Y be the subset of Z corre-
sponding to 1-ß; we have that Z=Vu Y. If £'e V, then (AQ + Ex)(J+[r'\)
= A(/+[£']). So AQ + EX is not equal to scalar multiple of the identity modulo
/+[£']• On the other hand, if £'e Y, then (AQ + Ex)(J+[l']) = Ex(J+ [£']). If
F1(y-r[£']) = al(/+ [£']), then E2(J+[l']) = 0 if a/0 and so F1(7+[£']) = 0 since
EX~E2. This is impossible. So a = 0 and Ex(J+[r,']) = E2(J+[r,'])=0, i.e. leJ
+ [£']. This also is impossible. Consequently AQ + EX is a commutator in si
because AQ + Exe (F), and so Aß is a commutator in si.

The proof of Theorem 3.9 is completed by a maximality argument. Let {FJ be a
maximal set of mutually orthogonal nonzero central projections such that AP{ is a
commutator in si for each F¡. By the first paragraph of this proof we obtain that
2F=1.   Q.E.D.

Corollary. Let si be a properly infinite von Neumann algebra and let A e si.
For every B e Jf^ there is a set {F¡} of mutually orthogonal central projections of sum 1
such that (A — B)P¡ is a commutator in si for each F¡.

Proof. Since Oe CtA_B, we may assume F=0. Suppose A — al is in the maximal
ideal M. For every e>0 there is a set Ux, U2,..., Un of unitary operators in si
and a set ax, a2,..., an of positive scalars of sum 1 such that ||2i ^UfAU^ <e.
Thus,

|a| = glb{||al+C|| | CeM} = gib ilÇ2<XiUi*AUi\ + CÍ \ C e Ml S e.

Because e > 0 is arbitrary, the number a is zero. Therefore, A e (F') and we may
apply Theorem 3.9.   Q.E.D.

If si is a finite type I algebra and if A esi, then ^A = {0} implies that there is a
sequence {F„ | n= 1, 2,...} of central projections such that APn is a commutator
in si. In fact F„ may be chosen so that siPn is the homogeneous component of si
of degree n [5]. If A is also selfadjoint, then a proper choice of the factors giving the
commutator expression for each component APn allows us to write A as a commu-
tator in si.

Let si be properly infinite on H and let A e (F') and let {F¡} be a set of mutually
orthogonal central projections of si of sum 1 such that ^F¡ is a commutator in si
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for each F¡. Let APl = BiCi-CiBi (Bu C, e si). We may assume that 5¡ and C¡ are
in siP¡. Now let

D = {x e H | F¡x = 0 save for finitely many F¡}.

Then D is a dense linear manifold of H. Let B (respectively, C) be defined on D by
Bx = I FjFjX (respectively, Cx=1 QPtx). The sum is extended only over finitely
many summands. This definition defines B and C uniquely on D. It is not hard to
show that B and C are closed linear operators on D and that the ranges of B and C
are contained in D. We have that B and C are affiliated with si in the sense that
U*BUx=Bx and U*CUx= Cx for every x e D and every unitary operator in the
commutant of si. Also Ax=(BC- CB)x for every xe D.

We now prove an approximation theorem.

Theorem 3.10. Let si be a properly infinite von Neumann algebra and let Aesi;
given e>0 there is a commutator C in si of norm less than or equal to e such that
A + C is a commutator in si.

Proof. Let Z be the spectrum of the center of si; for each £ e Z let Mr be the
unique maximal ideal in si containing [£]. Let F be a projection in si such that
1~1— E~E. Suppose a is a scalar such that A —ale Mt = M. We show that
A + eEis not a scalar multiple of the identity modulo M. Indeed, if A+eE—ßl e M,
then (a—ß)l +eEe M. If a—ß=-e, then 1 — EeM and consequently, 1 e M.
Therefore, a—ß^—e and E((a—ß)l+eE) = (a—ß + e)EeM. This means that
Ee M and so I e M. This is impossible. Hence, A + eEis not a scalar multiple of
the identity modulo M whenever A is equal to a scalar multiple of the identity
modulo M. Since the center of si(M) is precisely the set of scalar multiples of the
identity, there is a projection Fr in si such that

\\((l-F,)(A + eE)FK)(M)\\ >0.
Because the function £' -> ¡|5(MC.)|| is lower semicontinuous, there is an open and
closed neighborhood Fc of £ such that

||((1 - F¿)(A + eE)Fr)(Mc)I > 2-11|(1 -FK)(A + eE)Fr(Mr)\\ > 0

whenever £' 6 Vr. Now let the set X be given by

X = {£ e Z | A is a scalar multiple of the identity modulo Mr} ;

then X is compact in Z. Indeed £ e X if and only if AB—BA e Mr for every B in si.
So Z—X is open by the lower semicontinuity of £ -> | B(Mr) ||. Therefore, there is a
finite cover Fj, V2,.. .,Vn of X by open and closed sets such that A + eEis not
equal to a scalar multiple of the identity modulo Mz whenever £ e (J¡ V¡. Let F
be the central projection corresponding to (Jy F,. We have that A(\ -P) + (A + eE)P
is an element in the class (F). Indeed, if £ e IJ Vh then

F4(l -P) + (A + eE)P)(Mr) = (A + eE)(Mr) / al(Mc)   for any a;
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if £ xt U V„ then £ xt X and

04(1 - F) + (A + aE)P)(Mr) = A(Mr) ï a 1 (Mr)   for any a.

Therefore, A + eEP is a commutator. Since EP~P-EP~P, the element EP in siP
is not a scalar multiple of the identity modulo any maximal ideal in siP provided
F^0. So eEP is a commutator in si.   Q.E.D.

We have recently improved the Corollary to Theorem 3.9 by showing that A —B
is a commutator in si whenever B e $fA.
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