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COMMUTING MAPS: A SURVEY

Matej Brešar

Abstract. A map f on a ring A is said to be commuting if f(x) commutes
with x for every x ∈ A. The paper surveys the development of the theory of
commuting maps and their applications. The following topics are discussed:
commuting derivations, commuting additive maps, commuting traces of multi-
additive maps, various generalizations of the notion of a commuting map, and
applications of results on commuting maps to different areas, in particular to
Lie theory.

1. INTRODUCTION

Let A be a ring and let X be a subset of A. A map f : X → A is called
commuting (on X ) if

f(x)x = xf(x) for all x ∈ X .(1)

In the sequel we shall usually write [x, y] for the commutator xy− yx of x, y ∈ A.
Accordingly (1) will be written as [f(x), x] = 0.
The usual goal when treating a commuting map is to describe its form. Therefore

we first point out two basic and obvious examples of commuting maps: these are
the identity map and every map having its range in the center ZA of A. Further,
the sum and the pointwise product of commuting maps are again commuting maps.
So, for example, the map

f(x) = λ0(x)x
n + λ1(x)x

n−1 + . . .+ λn−1(x)x+ λn(x), λi : A→ ZA(2)
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is commuting for any choice of central maps λi. Of course there are other examples;
namely, elements commuting with x may not necessarily be equal to a polynomial
in x (with central coefficients) and so in most rings there is a variety of possibilities
of how to find commuting maps different from those described in (2). Nevertheless,
a typical result does say that a commuting map must be necessarily of (some version
of) the form (2). Obviously we cannot consider just arbitrary set-theoretic maps to
prove something like this, so some restrictions must be imposed.
The first important result on commuting maps is Posner’s theorem [153] from

1957. This theorem says that the existence of a nonzero commuting derivation on a
prime ring A implies that A is commutative. Considering this theorem from some
distance it is not entirely clear to us what was Posner’s motivation for proving it
and for which reasons he was able to conjecture that the theorem is true. Anyhow,
it is a fact that the theorem has been extremely influential and at least indirectly
it initiated many issues discussed in this paper. In Section 2 we shall consider
commuting derivations, i.e. the topic arising directly from Posner’s theorem. In
spite of the purely algebraic nature of the present paper a part of this section will
be devoted to derivations on Banach algebras, since in our opinion this may give a
better insight on the meaning of the notion of a commuting map.
Much more recently it has been found out that it is possible to characterize a

commuting map f (by assertions in the spirit of (2)) without assuming how f acts
on the product of elements (as in the case of derivations), but assuming only the
additivity of f (the theme of Section 3), or even more generally assuming that f
is the trace of a multiadditive map, i.e. f(x) = M(x, x, . . . , x) where M is a
multiadditive map in n variables (Section 4). The initial results on such maps were
obtained in the beginning of the 90’s by the author. Since then there has been a
lot of activity on this subject. Important contributions have been made by Ara,
Banning, Beidar, Chebotar, Fong, P.-H. Lee, T.-K. Lee, Lin, Martindale, Mathieu,
Miers, Mikhalev, Villena, Wang, Wong, and others.
The main reason for describing commuting traces of multiadditive maps is a wide

variety of applications. One of them is the solution of a long-standing open problem
by Herstein on Lie isomorphisms of associative rings. We shall consider this and
other applications in Section 5. Most of them are connected with nonassociative
(especially Lie) algebras. Commuting maps also naturally appear in some linear
preserver problems. This is another relevant area of applications.
Throughout the paper we shall also briefly discuss various extensions of the

notion of a commuting map. The most general and important one among them is
the notion of a functional identity. An introductory account on functional identities
is given in our preceding survey paper [55], which however does not cover the most
recent developments of this theory, especially the powerful theory of d-free sets by
Beidar and Chebotar [26,27] which has to some extent changed our comprehension
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of functional identities. The concepts of a commuting map and a functional identity
are intimately connected. The theory of functional identities originated from the
results on commuting maps, and from another point of view, commuting maps
give rise to the most basic and important examples of functional identities. A
similar interaction holds with regard to applications: various problems can be solved
at some basic level of generality by using results on commuting maps, while in
order to solve some more sophisticated versions of these problems one has to apply
deeper results on functional identities. We have decided, however, not to examine
functional identities in greater detail in this paper. A partial reason for this is that
we would like to avoid the paper being too lengthy, and another reason is that we
would like to keep the exposition at an introductory level and accessible to a wider
audience. Occasionally we will make some digressions primarily more interesting
for specialists, and in such instances we shall omit stating definitions and results
precisely. But otherwise the paper is fairly self-contained; in order to understand
the core of the exposition no specific knowledge is required. Moreover, we shall
deliberately avoid presenting the results in their most general forms, and only some
simple proofs illustrating the general methods will be presented or outlined. The
reader having a deeper interest in some particular topic considered in this paper
shall not find complete answers here. However, in that case the comprehensive list
of references together with our comments could be of some help.

2. COMMUTING DERIVATIONS

We start with some general remarks and basic definitions. By a ring (algebra) we
shall mean an associative ring (algebra). We shall also consider some nonassociative
rings and algebras, but this will be always pointed out. Here it should be remarked
that by a nonassociative ring we mean a ring in which the multiplication is not
necessarily associative, while by a noncommutative ring we mean an (associative)
ring in which the multiplication is not commutative. We are primarily interested in
noncommutative rings; usually the noncommutativity will not be assumed, but most
of our results are trivial in the commutative case. Further, the existence of unity is
not assumed in advance, so the assumption that a ring is unital shall be explicitly
mentioned.
Recall that a ring A is said to be prime if the product of any two nonzero ideals

of A is nonzero. Equivalently, aAb = 0 with a, b ∈ A implies a = 0 or b = 0.
A ring A is called semiprime if it has no nonzero nilpotent ideals. Equivalently,
aAa = 0 with a ∈ A implies a = 0.
An additive map d from a ring A into itself is called a derivation if d(xy) =

d(x)y + xd(y) for all x, y ∈ A. When speaking about a derivation of an algebra
we assume additionally that d is linear. A simple example is of course the usual
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derivative on various algebras consisting of differentiable functions. Basic examples
in noncommutative rings are quite different. Noting that [a, xy] = [a, x]y + x[a, y]
for all a, x, y ∈ A we see that for every fixed a ∈ A, the map d : x 7→ [a, x] is a
derivation. Such maps are called inner derivations. In some rings and algebras the
inner derivations are in fact the only derivations.

2.1 Posner’s Theorem and Its Generalizations

We restate Posner’s theorem already mentioned above as follows.

Theorem 2.1. If d is a commuting derivation on a noncommutative prime
ring, then d = 0.

It should be mentioned that Posner in fact proved this theorem under the more
general condition that d satisfies [d(x), x] ∈ ZA for every x ∈ A. Maps satisfying
this condition are usually called centralizing in the literature. It has turned out that
under rather mild assumptions a centralizing map is necessarily commuting (see for
example [48, Proposition 3.1]). Therefore (and also for the sake of simplicity of the
exposition) we shall not treat centralizing maps in this paper.
A typical example of a ring that is not prime is the direct product A = A1×A2

of two nonzero rings A1 and A2. If A1 is a commutative ring having a nonzero
derivation d1 and A2 is a noncommutative ring, then A is a noncommutative ring
and d : (x1, x2) 7→ (d1(x1), 0) is a nonzero commuting derivation on A. This is a
trivial example, but it explains well why the assumption of primeness is natural in
Theorem 2.1. Many results in this paper will be stated for prime rings, and often
similar simple-minded examples can be constructed to show why this restriction is
necessary.
As we shall now see, the proof of Posner’s theorem is short, simple and elemen-

tary. The original proof from [153] is longer, but the main idea to make substitutions
and then manipulate the identities obtained is the same.

Proof of Theorem 2.1. Linearizing [d(x), x] = 0 (i.e. replacing x by x+ y in
this identity) we get

[d(x), y] = [x, d(y)] for all x, y ∈ A.(3)

In particular,

[d(x), yx] = [x, d(yx)] = [x, d(y)x+ yd(x)] for all x, y ∈ A.(4)

Since d(x) and x commute we have [d(x), yx] = [d(x), y]x. By (3) it follows
that [d(x), yx] = [x, d(y)]x, which is further equal to [x, d(y)x]. Therefore (4)
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reduces to [x, yd(x)] = 0 for all x, y ∈ A. This can be rewritten as [x, y]d(x) = 0.
Substituting zy for y and using [x, zy] = [x, z]y+z[x, y] we then get [x, z]yd(x) = 0
for all x, y, z ∈ A. Since A is prime it follows that for every x ∈ A we have
either x ∈ ZA or d(x) = 0. In other words, A is the set-theoretic union of its
additive subgroups ZA and the kernel of d. However, since a group cannot be the
union of its two proper subgroups, and since A 6= ZA by assumption, it follows
that d = 0.
Posner’s theorem has been generalized by a number of authors in several ways.

Let us briefly describe some of them. For details the reader should consult the
papers mentioned and references therein.

• Derivations that are commuting on some additive subgroups of (semi)prime
rings.
Typical subgroups that one studies in this context are ideals, Lie ideals, one-

sided ideals, and the sets of all symmetric elements {x ∈ A |x∗ = x} and all skew
elements {x ∈ A |x∗ = −x} in the case the ring is equipped with an involution ∗
[7, 37, 106, 110, 111]. The usual conclusion is that Posner’s theorem remains true
in these more general situations, unless the ring is very special (say, its characteristic
is 2 or it satisfies some special polynomial identity).

• More general conditions with derivations.
This is a very broad subject. Numerous identities satisfied by derivations, all of

them more general than [d(x), x] = 0, have been studied; so the list [74, 84, 107,
108, 109, 112, 115, 117, 148, 170, 173] is far from complete. As a sample result
we state a simplified version of a theorem of Lanski [108]: If d is a derivation
of a noncommutative prime ring A such that for some positive integer n we have
[d(x), x]n = [[. . . [d(x), x], x], . . . , x] = 0 for all x ∈ A (here x appears n times),
then d = 0. In the papers mentioned the authors often combine elementary combi-
natorial arguments (as presented in the proof of Theorem 2.1) with the much more
profound Kharchenko’s theory of differential identities [99] (see also [36, 100]).
We also mention the paper [13] which in the last part deals with some related con-
ditions, but uses a different approach, based on a version of the density theorem for
outer derivations [13, 68].

• Commuting automorphisms.
In 1970 Luh [124], extending an earlier result by Divinsky [86], proved an

analogue of Theorem 2.1 for automorphisms: If α is a commuting automorphism
on a noncommutative prime ring, then α = 1. This result has also been extended
in various directions [37, 38, 93, 121, 139, 140, 141]. The reader might think
that treating a commuting automorphism α must be quite different than treating
a commuting derivation. However, note that ∆ = α − 1 is also commuting and
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satisfies a condition similar to the derivation law: ∆(xy) = ∆(x)y + α(x)∆(y) =
∆(x)α(y) + x∆(y). So in fact the treatment is quite similar and in particular the
result of Luh can be proved by just modifying the proof of Theorem 2.1.

• Measuring the size of T = {[d(x), x] |x ∈ A}.
Theorem 2.1 tells us that T 6= 0 in the case when d is a nonzero derivation of

a noncommutative prime ring A. In the series of papers [73, 76, 78, 80, 81, 85,
175] it was shown that much more can be said about the size of T . For example,
combining the results of [80] and [85] the following assertion can be stated: If A
is prime, noncommutative, char(A) 6= 2 and d is a nonzero derivation of A, then
the additive subgroup generated by T contains a noncentral Lie ideal of A.

2.2 Commuting Derivations in Banach Algebras

By a Banach algebra we shall mean a complex normed algebra A whose under-
lying vector space is a Banach space. By rad(A) we denote the Jacobson radical
of A.
It is easy to find examples of nonzero derivations on commutative rings and

algebras. Say, just take the usual derivative on the polynomial algebra C[X]. In
the Banach algebra context the situation is quite different. In 1955 Singer and
Wermer [161] proved that every continuous derivation on a commutative Banach
algebra A has its range in rad(A). So in particular, it must be 0 when A is
semisimple (i.e. when rad(A) = 0). Of course the same result does not hold in
noncommutative Banach algebras (say, because of inner derivations), but there are
many ways how to obtain noncommutative versions of Singer-Wermer theorem. One
of them is another classical result, the so-called Kleinecke-Shirokov theorem [102,
159], which in one of its forms considers the local version of the conditon that a
derivation is commuting: If d is a continuous derivation of a Banach algebra A
and a ∈ A is such that [d(a), a] = 0, then d(a) is quasinilpotent. We also remark
that the Kleinecke-Shirokov theorem is an analytic extension of Jacobson’s lemma
[95] from 1935 which treats this condition in finite dimensional algebras. Another
noncommutative extension of the Singer-Wermer theorem was proved by Sinclair
[160] in 1969: Every continuous derivation of a Banach algebra A leaves primitive
ideals of A invariant. As it is evident from the arguments below, this theorem can
indeed be regarded as a generalization of the Singer-Wermer theorem.
Results of this kind make it possible for us to obtain more information about

commuting derivations in Banach algebras than in usual algebras. To our knowledge,
the first result in this direction was obtained in our joint work with Vukman [72]. It
treats the condition that is somewhat more general than a derivation being commuting
and is somehow more natural in this context:

Theorem 2.2. Let d be a continuous derivation of a Banach algebra A. If
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[d(x), x] ∈ rad(A) for all x ∈ A, then d maps A into rad(A).

Proof. Let P be a primitive ideal of A. Since d(P) ⊆ P by Sinclair’s theorem,
d induces a derivation dP on A/P defined by dP(x+ P) = d(x) + P . Note that
dP is commuting. Since A/P is a primitive and hence a prime algebra, Theorem
2.1 tells us that either dP = 0 or A/P is commutative. However, since C is the
only commutative primitive Banach algebra, dP = 0 in every case (this follows
immediately from the fact that every derivation maps the unity 1 into 0, which is a
consequence of 1 = 12 and the derivation law). Accordingly, d(A) ⊆ P for every
primitive ideal P of A and hence d(A) ⊆ rad(A).
Is the assumption of continuity superfluous in Theorem 2.2? This is a very

interesting and deep question. Let us give some comments about its background.
Already in [161] Singer and Wermer conjectured that the assumption of con-

tinuity is superfluous in their theorem. This became known as the Singer-Wermer
conjecture and it stood open for over thirty years till it was finally confirmed by
Thomas [167]. A natural conjecture that now appears is that Sinclair’s theorem
also holds without assuming continuity, that is, that every (possibly discontinuous)
derivation on a Banach algebra A leaves primitive ideals of A invariant. This is
usually called the noncommutative Singer-Wermer conjecture in the literature. A
number of mathematicians have tried to prove it, but, to our knowledge, without
success so far. It is known that for every derivation d there can be only finitely
many primitive ideals which are not invariant under d, and each of them has finite
codimension [168]. But it is not known whether such ideals actually exist. The
conjecture that Theorem 2.2 holds without assuming the continuity of d is equivalent
to the noncommutative Singer-Wermer conjecture. For details we refer the reader
to Mathieu’s survey article [135] where in particular one can find other different
versions of this conjecture (see also [71] for some new results).
Various partial answers to this conjecture have been obtained. For example,

Mathieu and Runde [138] proved that every centralizing derivation of a Banach al-
gebraA has its range in rad(A). We shall prove this only for commuting derivations;
the argument in this particular case is somewhat different and more direct.
For every subset S of A we let C(S) = {x ∈ A| [s, x] = 0 for every s ∈ S}

denote the centralizer of S in A (in the Banach algebra theory this set is more often
called the commutant). We shall write C(a) for C({a}).

Theorem 2.3. Every commuting derivation of a Banach algebra A has its
range in rad(A).

Proof. Let d be a commuting derivation on A and let S be an arbitrary non-
empty subset ofA. For every x ∈ C(S) we have 0 = d([s, x]) = [d(s), x]+[s, d(x)].
On the other hand, from the linearized form of [d(x), x] = 0 (cf. (3)) we see that
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[d(s), x] = [s, d(x)]. Accordingly [s, d(x)] = 0. That is to say, C(S) is invariant
under d. In particular, for every a ∈ A we have d(C(C(a)) ⊆ C(C(a)). It is
straightforward to check that C(C(a)) is a commutative Banach algebra. There-
fore, we can apply Thomas’ theorem [167] for the restriction of d to C(C(a)), and
conclude that d(C(C(a))) ⊆ rad(C(C(a)). In particular, d(C(C(a))) consists of
quasinilpotent elements. Since a ∈ C(C(a)) we see that d(a) is quasinilpotent.
Let P be a primitive ideal of A. Since d(A) contains only quasinilpotent

elements in A, d(A)+P contains only quasinilpotent elements in A/P . Therefore,
for every p ∈ P and x ∈ A we see that (d(p) + P)(x + P) = d(px) + P is a
quasinilpotent element in A/P . By a well-known characterization of the radical
it follows that d(p) + P ∈ rad(A/P). However, as a primitive algebra A/P is
semisimple, and so it follows that d(p) ∈ P . That is, every primitive ideal is
invariant under d, and now the same argument as in the proof of Theorem 2.2
works.
For more related results see for example [12, 52, 63, 70, 136, 137, 158, 171].

3. COMMUTING ADDITIVE MAPS

Our aim now is to investigate arbitrary additive maps that are commuting. Since
derivations are just very special additive maps, this of course appears to be a much
more entangled problem than the one treated in the previous section. Fortunately, at
least at some basic level of generality, the problem is not so difficult. It may come
as a surprise to the reader that the notion of a derivation will also play an important
role in this section. But the reason is simple: whenever we consider a condition
involving commutators (as is the case with the notion of a commuting map) we can
express it through (inner) derivations. Sometimes this point of view is useful, and
perhaps the treatment of additive commuting maps is a typical example for this. Let
us now describe the main idea of our approach.
Let A be a ring and let f : A → A be an additive commuting map. A

linearization of (1) gives

[f(x), y] = [x, f(y)] for all x, y ∈ A.(5)

Hence we see that the map (x, y) 7→ [f(x), y] (= [x, f(y)]) is an inner derivation
in each argument. This gives rise to the following definition: a biadditive map
∆ : A2 → A is called a biderivation on A if it is a derivation in each argument,
that is, for every y ∈ A the maps x 7→ ∆(x, y) and x 7→ ∆(y, x) are derivations.
For example, for every λ ∈ ZA, (x, y) 7→ λ[x, y] is a biderivation. We shall
call such maps inner biderivations. It is easy to construct non-inner biderivations
on commutative rings. For instance, if d is nonzero derivation of a commutative
domain A, then ∆ : (x, y) 7→ d(x)d(y) is such an example. In noncommutative
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rings, however, it happens quite often that all biderivations are inner. If A is such
a ring, then every additive commuting map f on A is of the form

f(x) = λx+ µ(x), λ ∈ ZA, µ : A→ ZA(6)

with µ being an additive map. Indeed, since (x, y) 7→ [f(x), y] is a biderivation it
follows that there is λ ∈ ZA such that [f(x), y] = λ[x, y] for all x, y ∈ A, from
which it clearly follows that µ(x) = f(x)− λx lies in ZA.
Thus, in order to show that every commuting additive map on a ring A is of

the form (6), it is enough to show that every biderivation is inner. To establish this
the following simple lemma will be of crucial importance.

Lemma 3.1. Let ∆ be a biderivation on a ring A. Then

∆(x, y)z[u, v] = [x, y]z∆(u, v) for all x, y, z, u, v ∈ A.(7)

Proof. Consider ∆(xu, yv) for arbitrary x, y, u, v ∈ A. Since∆ is a derivation
in the first argument, we have

∆(xu, yv) = ∆(x, yv)u+ x∆(u, yv),

and since it is also a derivation in the second argument it follows that

∆(xu, yv) = ∆(x, y)vu+ y∆(x, v)u+ x∆(u, y)v + xy∆(u, v).

On the other hand, first using the derivation law in the second and after that in the
first argument we get

∆(xu, yv) = ∆(xu, y)v + y∆(xu, v)

= ∆(x, y)uv + x∆(u, y)v + y∆(x, v)u+ yx∆(u, v).

Comparing both relations we obtain∆(x, y)[u, v] = [x, y]∆(u, v) for all x, y, u, v ∈
A. Replacing v by zv and using [u, zv] = [u, z]v+ z[u, v], ∆(u, zv) = ∆(u, z)v+
z∆(u, v), the desired identity follows.
The next result illustrates the utility of this lemma.

Theorem 3.2. Let A be a unital ring such that the ideal of A generated
by all commutators in A is equal to A. Then every biderivation on A is inner.
Accordingly, every commuting additive map f on A is of the form (6).

Proof. By assumption there are zi, ui, vi, wi ∈ A such that
P
i zi[ui, vi]wi = 1.

Lemma 3.1 implies that

∆(x, y) =
X
i

∆(x, y)zi[ui, vi]wi =
X
i

[x, y]zi∆(ui, vi)wi.
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That is, ∆(x, y) = [x, y]λ for all x, y ∈ A where λ =Pi zi∆(ui, vi)wi ∈ A. We
claim that λ ∈ ZA. Indeed, we have

[x, y]zλ+ y[x, z]λ = [x, yz]λ = ∆(x, yz)

= ∆(x, y)z + y∆(x, z) = [x, y]λz + y[x, z]λ,

showing that [x, y][z,λ] = 0 for all x, y, z ∈ A. Replacing z by zw and using
[zw,λ] = [z,λ]w+z[w,λ] we obtain [A,A]A[λ,A] = 0. UsingPi zi[ui, vi]wi = 1
again it follows that [λ,A] = 0, i.e. λ ∈ ZA.

Corollary 3.3. Let A be a simple unital ring. Then every commuting additive
map f on A is of the form (6).

Proof. If A is commutative this is trivial (just take λ = 0 and µ = f ). If A
is noncommutative then this follows from Theorem 3.2.
The idea to describe commuting additive maps through the commutator ideal was

used for the first time in [46] where the main goal was to show that the conclusion
of Corollary 3.3 holds for von Neumann algebras. Unfortunately, this idea has a
limited applicability, it works only in rather special rings. Before describing a more
common approach we point out the delicate nature of the problem. First of all, the
assumption that A is unital can not be removed in Corollary 3.3. Namely, taking a
simple ring A with ZA = 0 we see that, for instance, the identity map is certainly
commuting, but it cannot be expressed by (6). But suppose that A is unital, and
even that ZA is a field. Is it possible to prove Corollary 3.3 for some more general
classes of rings? The following example shows that even for rings that are close to
simple ones the expected form (6) is not entirely sufficient.

Example 3.4. Let V be an infinite dimensional vector space over a field E and
let F(V ) be the algebra of all finite rank E-linear operators on V . Note that F(V )
is a simple algebra with ZF(V) = 0. Let F be a proper subfield of E, and let A be
the algebra over F consisting of all operators of the form u + α where u ∈ F(V)
and α ∈ F (here elements in F are identified by corresponding scalar operators).
Pick λ ∈ E \F and define f : A→ A by f(u+α) = λu for all u ∈ F(V), α ∈ F .
Clearly f is an additive commuting map. However, since ZA = F it is clear that f
is not of the form (6). On the other hand, f can be written as f(x) = λx+ µ(x)
for all x ∈ A where µ is defined by µ(u+α) = −λα. But here λ and µ(x) do not
lie in ZA but in the field extension E of ZA. Similarly, ∆ : (x, y) 7→ λ[x, y] is a
biderivation on A which is not inner in the sense defined above.
The reader may feel that the map f is “essentially” of the form (6), just formally

this is not true. The example suggests that in order to describe commuting maps
it will sometimes be necessary to deal with some extensions of the center of the
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ring . In the context of (semi)prime rings, the so-called extended centroid is the
most appropriate extension for our purposes. We shall now recall just a few facts
about it, and refer the reader to [36] for details. Let A be a prime ring. The
extended centroid CA of A is usually defined as the center of the right (or left,
or symmetric) Martindale ring of quotients of A. We omit giving definitions of
these rings of quotients, let us just say that these are prime rings containing A as
their subring. Instead we point out a characteristic property of elements belonging
to the extended centroid. Let I be a nonzero ideal of A. One can regard I and
A as (A,A)-bimodules. If f : I → A is an (A,A)-bimodule homomorphism
then there exists λ ∈ CA such that f(x) = λx for all x ∈ I. Conversely, giving
λ ∈ CA there is a nonzero ideal I of A such that λI ⊆ A and so x 7→ λx is a
bimodule homomorphism from I into A. It turns out that CA is a field containing
ZA as a subring. In many important instances CA coincides with ZA. In particular
this is true in simple unital rings. Incidentally we mention that it is also true in
various significant Banach algebras (e.g. in unital primitive Banach algebras and
unital prime C∗-algebras) which often makes this algebraic theory applicable in the
analytic setting. If ZA is not a field then of course it cannot coincide with CA. But
in such case it sometimes turns out (e.g. in PI prime rings) that CA is the field of
fractions of ZA. In general, however, CA can be larger. For instance, this is true
for the algebra A from Example 3.4. We leave as an exercise for the reader to show
that CA = E while, as already mentioned, ZA = F . In view of this example and
Corollary 3.3 it seems natural that

f(x) = λx+ µ(x), λ ∈ CA, µ : A→ CA(8)

is the expected form of a commuting additive map on a prime ring A. This is
true indeed. To show this we only need to know an extremely useful property
of the extended centroid, discovered by Martindale in his classical work [130].
This property is concerned (at least in its simplest version) with the situation when
a, b ∈ A, a 6= 0, satisfy

axb = bxa for all x ∈ A.(9)

The conclusion is that there exists λ ∈ CA such that b = λa. The idea of the proof
goes back to Amitsur [3, p. 215]. We define ϕ : AaA→ A by

ϕ
³X

i

xiayi

´
=
X
i

xibyi,

and claim that ϕ is an (A,A)-bimodule homomorphism. Everything is clear except
that ϕ is well-defined. To show this, assume that

P
i xiayi = 0 for some xi, yi ∈

A. Multiplying this identity from the left by bx and using (9) it follows that
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P
i axxibyi = 0 for every x ∈ A. That is, aA(

P
i xibyi) = 0 and hence, since A

is prime,
P
i xibyi = 0. Thus our claim is true and so there is λ ∈ CA such that

ϕ(u) = λu for every u ∈ AaA, from which b = λa follows.
Now assume that A is a noncommutative prime ring and ∆ is a biderivation

on A. Picking u, v ∈ A such that [u, v] 6= 0 and applying (7) with x = u,
y = v, it follows from what we have just discussed that ∆(u, v) = λ[u, v] for
some λ ∈ CA. Again using (7), this time in its full generality, it follows that
(∆(x, y)− λ[x, y])A[u, v] = 0. Consequently, the following is true.

Theorem 3.5. Let A be a noncommutative prime ring and let∆ be a bideriva-
tion on A. Then there exists λ ∈ CA such that ∆(x, y) = λ[x, y] for all x, y ∈ A.
Theorem 3.5 was published in our paper [61] with Martindale and Miers. How-

ever, Professor I. P. Shestakov pointed out to us that it was already obtained some-
what earlier by Skosyrskii [162] who treated biderivations for different reasons,
namely, in connection with noncommutative Jordan algebras. Moreover, Theorem
3.5 was rediscovered by Farkas and Letzter [89] in their study of Poisson algebras.
So it seems that biderivations appear naturally in different areas.
Our interest in biderivations of course proceeds from their connection with com-

muting additive maps. Note that Theorem 3.5 yields the following basic result.

Theorem 3.6. Let A be a prime ring. Then every commuting additive map f
on A is of the form (8).
Theorem 3.6 appeared for the first time in our paper [48]. The original proof

also makes use of derivations, but it is longer and somewhat different. A short cut
based on biderivations was found a little bit later. A different and very short proof
was obtained also in [114].
One can define the extended centroid also for semiprime rings (though it is

no longer always a field), and it turns out that Theorem 3.6 is also true in the
semiprime case. This was proved by Ara and Mathieu [4]. A shorter proof based
on the description of biderivations of semiprime rings was given in [50]. In arbitrary
rings, however, the problem to describe the structure of additive commuting maps
seems to be unapproachable. The next example, a modification of the one found
by Cheung [82, p. 123], shows that in general not much can be said. In [82]
this example was used to show that not every additive commuting map of the so-
called triangular algebra is of the form (6). As we shall see, the example shows
considerably more. From the result just mentioned (or more directly, just by using
Lemma 3.1 for a biderivation arising from an additive commuting map) the following
is clear: If an additive map f on a semiprime ring A is commuting (in other words,
f(x) ∈ C(x) for every x ∈ A), then f(x) ∈ C(C(x)) for every x ∈ A. Let us
show that this is not true in every ring.

Example 3.7. Let T be a ring containing an element a such that the ideal
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U of T generated by a is commutative and t1at2 6= t2at1 for some t1, t2 ∈ T . A
concrete example is the ring of all 2× 2 upper triangular matrices over a field and
a =

µ
0 1
0 0

¶
. Further, let A be the algebra of all matrices of the form

µ
u t
0 v

¶
where u, v ∈ U and t ∈ T . Define f : A→ A according to the ruleµ

u t
0 v

¶
7→
µ
ta 0
0 at

¶
.

(If one prefers the context of unital rings, then one can adjoin 1 to A and define
f(1) = 0 – everything that follows is then still true). Note that f is commuting.
However, it is not true that f(x) ∈ C(C(x)) for every x ∈ A. Namely, the element
x =

µ
0 t1
0 0

¶
commutes with y =

µ
0 t2
0 0

¶
, but f(x) and y do not commute.

The results presented so far in this section have been generalized in many dif-
ferent ways. We shall now superficially describe the main directions of these gen-
eralizations, but only those that are concerned with additive maps and are closely
related to the concept of an additive commuting map.

• Additive commuting maps on other rings and algebras.
There are other rings and algebras in which additive commuting maps can be

characterized by the forms similar to (6) or (8). One type of algebras that have
been studied are triangular algebras [15, 82]. Another significant example are C∗-
algebras [4, 46]. An account on commuting maps in C∗-algebras is given in the
recently published book [5] by Ara and Mathieu.

•Additive maps that are commuting on some additive subgroups of (semi)prime
rings.
Let X be an additive subgroup of a prime (or semiprime) ring A and let f :

X → A be a commuting map. Then one can hope to prove that f is of the form (8)
(restricted to X of course) provided that X is “large enough”. Specifically, this has
been established in the case when X is a Lie ideal [65, 120], a one-sided ideal [65,
120], the set of all symmetric [34, 113] and all skew elements [34, 61, 116] in the
case the ring has an involution. Most of these conclusions, however, can be obtained
only under some restrictions which we shall not discuss here. We also remark that
some of these results were recently superseded by more general theorems on d-free
sets [26, 27].

• More general conditions with additive maps.
Numerous conditions concerning an additive map f which are more general than

f being commuting, but usually implying the same conclusion, have been studied. It
would occupy too much space to discuss at greater length all of them, so we just list
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some references: [11, 33, 47, 53, 54, 90, 119]. As an example we state the result of
[54], an extension of a theorem from [108] mentioned earlier: If A is a prime ring
and an additive map f : A→ A satisfies [f(x), x]n = [[. . . [f(x), x], x], . . . , x] = 0
for all x ∈ A and some fixed n ≥ 1, then f is commuting (and hence of the form
(8)), provided that char(A) = 0 or char(A) > n. We remark that a considerably
more general result was obtained somewhat later in [33]. We also point out the
result from [90] which provides an appropriate extension of Theorem 3.6 to prime
associative superalgebras. The problem to study more general functional identities
in superalgebras now naturally appears.

• Related conditions with derivations.
In view of Posner’s theorem and Theorem 3.6 one might wonder what can be

said about an additive map f : A → A such that [f(x), d(x)] = 0 for all x ∈ A,
where d is some nonzero derivation of a prime ring A. The expected result is of
course that f(x) = λd(x) + µ(x) for some λ ∈ CA and µ : A → CA. This has
turned out to be true indeed, the only restriction being that char(A) 6= 2. A partial
solution was first obtained in [65], and recently the complete one was given in
[17]. The proof, however, is no longer elementary and it relies heavily on advanced
results on functional identities. Even more recently [174] a related result stating that
d([f(x), x]) = 0 for all x ∈ A implies that f is commuting was obtained. In view
of several similarities between these two results and their proofs one can conjecture
that both are special cases of some more general and global phenomenon.

• Associating additive maps in Jordan algebras.
Let J be a Jordan algebra with product · and set [x, y, z] = (x ·y) ·z−x · (y ·z)

for the associator of x, y, z ∈ J . We say that f : J → J is an associating map
if [f(x),J , x] = 0 for all x ∈ J . For example, if A is an associative algebra, A+
is its associated Jordan algebra (i.e. A+ is the linear space of A equipped with the
symmetrized product x · y = 1

2(xy + yx)), and f is a commuting map on A, then
f is readily seen to be an associating map on A+. Therefore, the concept of an
associating map can be regarded as a Jordan analogue of the concept of a commuting
map. In [58] it was shown that if J is a prime nondegenerate algebra, then every
associating additive map f : J → J is of the standard form f(x) = λx+µ(x) (we
remark that one can define the extended centroid also in this setting). The proof
uses Zelmanov’s classification theorem [176].

• Range-inclusive maps.
In [101] Kissin and Shulman initiated the study of additive maps f on a ring A

satisfying [f(x),A] ⊆ [x,A] for every x ∈ A. They call them range-inclusive maps
(the exact definition in [101] is different, we stated only a simplified version). From
(5) we see that every additive commuting map is also range-inclusive. In [101] it
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was shown that linear range-inclusive maps on certain C∗-algebras are necessarily
commuting and of the form (6). In [57] we investigated analogous algebraic prob-
lems. It has turned out that even in division rings a range-inclusive map may not
be commuting, so it is a challenging problem to find a reasonable class of rings
in which range-inclusive and commuting additive maps coincide. In primitive GPI
rings and algebraic prime algebras this is true [57]. We conjecture that it is also
true in prime rings containing nontrivial idempotents; perhaps the existence of one
nontrivial idempotent is not enough, maybe more nontrivial orthogonal idempotents
should exist. Anyway, this is an open problem.

4. COMMUTING TRACES OF MULTIADDITIVE MAPS

Passing from the study of commuting derivations to the study of arbitrary addi-
tive commuting maps has been of course an important step. We shall now take a
step further. The topic of this section considerably exceeds the preceding ones by
the level of generality, difficulty, and especially by the significance of applications.
Anyhow, the results and the methods presented above show us the way how to
approach this more complicated setting.
We start with the fundamental, yet the simplest, topic of this section. For the

first time it was treated in the author’s paper [49] from 1993.
A map q from a ring A into itself is said to be the trace of a biadditive map if

there exists a biadditive map B : A×A→ A such that

q(x) = B(x, x) for all x ∈ A.

Another (and perhaps better) name is a quadratic map (cf. [5]), but we shall not
use it since traces of multiadditive maps in more than two variables will also appear
in the sequel. Assume that q is commuting. The results in the preceding section
suggest to us what is the expected form of q in this case. Our basic theorem is a
“quadratic analogue” of Theorem 3.6.

Theorem 4.1. Let A be a prime ring with char(A) 6= 2 and let q : A → A
be the trace of a biadditive map. If q is commuting then it is of the form

q(x) = λx2 + µ(x)x+ ν(x), λ ∈ CA, µ, ν : A→ CA,(10)

where µ is an additive map and ν is the trace of a biadditive map into CA.
Let us briefly sketch the proof. Now there are different proofs available, but

we shall follow the original approach from [49]. We have assumed that char(A) 6=
2 (in problems like this one is often forced to exclude rings having some small
characteristic). This in particular allows us to assume that B is a symmetric map,
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i.e. B(x, y) = B(y, x) for all x, y ∈ A, since otherwise we can replace B by the
symmetric map (x, y) 7→ B(x, y)+B(y, x). Using a standard linearization process
we see that [B(x, x), x] = 0, x ∈ A, yields

[B(x, y), z] + [B(z, x), y] + [B(y, z), x] = 0 for all x, y, z ∈ A.

So again inner derivations appear, but the situation is much more unclear than in
the case of additive maps when we arrive, after a linearization, at a rather tractable
situation with a biderivation. We have to take a step further and show (it is easy
but we omit details) that for any fixed z, w ∈ A the map eB : A×A→ A defined
by eB(x, y) = [B(x, zw), y] + z[y,B(x,w)] + [y,B(x, z)]w
satisfies eB(x, y) = − eB(y, x) for all x, y ∈ A.
By the definition we see that the map y 7→ eB(x, y) is the sum of compositions of
inner derivations and multiplications with fixed elements z and w, and from the
last identity we see that the same is true for the map y 7→ eB(y, x). This is of
course still much more complicated than in the biderivation situation, but at least
there is some similarity. Based on these observations one can after a rather long
computation involving several substitutions derive the crucial identity

([w2, z]y[w, z]− [w, z]y[w2, z])uq(x)
= f(w, y, z)ux2 + g(x,w, y, z)ux+ h(x,w, y, z)u(11)

for all u,w, x, y, z ∈ A,

where f, g, h are certain maps arising from B (we could express them explicitly
but their role is insignificant in the sequel). Now we have to assume that a =
[w2, z]y[w, z] − [w, z]y[w2, z] 6= 0 for some w, y, z ∈ A. Rewriting (11) with
w, z, y fixed we have

auq(x) = bux2 + eg(x)ux+ eh(x)u for all u, x ∈ A(12)

and some eg,eh : A → A. So far the assumption on primeness has not been used.
The relation (12) makes it possible for us to use it in an efficient way. Again the
clue is Martindale’s result concerning the identity (9). Making some manipulations
with (12) one can show that (bva − avb)Aa = 0 for all v ∈ A, hence bva = avb
by the primeness of A, which yields b = λa for some λ ∈ CA. Accordingly, (12)
can now be written as au(q(x)− λx2) = eg(x)ux+ eh(x)u. This is the same kind
of relation as (12), just that the first summand on the right-hand side is missing.
Repeating the same computational tricks one can then easily complete the proof.
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Of course this was done under the additional condition that [w2, z]y[w, z] −
[w, z]y[w2, z] 6= 0 for some w, z, y ∈ A. It is known by standard PI theory that
this condition is not fulfilled if and only if A satisfies St4, the standard poly-
nomial identity of degree 4, i.e.

P
σ∈S4(−1)σxσ(1)xσ(2)xσ(3)xσ(4) = 0 for all

x1, x2, x3, x4 ∈ A. Equivalently, A can be embedded in the ring M2(F ) of 2× 2
matrices over some field F . Another equivalent condition is that deg(A)≤ 2where
deg(A) ≤ n means that everyelement in A is algebraic of degree at most nover CA.
So far we followed the proof from [49]. In this first paper on this subject

Theorem 4.1 was proved under the additional assumption that A does not satisfy
the conditions from the preceding paragraph. Such rings are indeed very special
and moreover their structure can be rather precisely described by Posner’s theorem
on prime PI rings [154] (see also [155, 157]). Nevertheless, it has been a mystery
for the author for quite some time whether the exclusion of these rings in Theorem
4.1 is really necessary or not. Just recently in our paper with Šemrl [69] we have
found out that the answer is no, that is, that Theorem 4.1 holds true also when
deg(A) ≤ 2. The proof in this special case, however, is quite different. It is
obtained as an application of two results. The first one is an elementary linear
algebraic result obtained in the same paper [69], and the second one is a much
deeper result by Lee, Lin, Wang and Wong [114] which we shall now formulate.
But first we state explicitly the following definition: A map t from an additive
group X into an additive group Y is called the trace of an n-additive map if there
exists a map M : Xn → Y which is additive in every argument and such that
t(x) =M(x, x, . . . , x) for all x ∈ X .

Theorem 4.2. Let A be a prime ring, let n be a positive integer, and suppose
that char(A) = 0 or char(A) > n. Let t : A → A be the trace of an n-additive
map. If t is commuting then the following holds:
(i) For every x ∈ A there exist λi(x) ∈ CA, i = 0, 1, . . . , n, such that

t(x) = λ0(x)x
n + λ1(x)x

n−1 + . . .+ λn−1(x)x+ λn(x).

(ii) If deg(A) 6≤ n, then we can choose λi(x) so that λ0 = λ0(x) is independent
of x and for each i = 1, . . . , n the map x 7→ λi(x) is the trace of an
i-additive map into CA.

We remark that the assertion (i), which is of course the one that we used when
proving the St4 case of Theorem 4.1 in [69], is of special interest also because the
results of this type do not follow by using the general functional identities machinery.
The assertion (ii) is a generalization of our result in [49] from n = 2 to an arbitrary
n. In view of [69] one can now of course conjecture that the exclusion of rings
with deg(A) ≤ n is not necessary in (ii). From the arguments in [69] it does not
seem obvious how to prove this for n ≥ 3, so in our opinion this is a challenging
problem.
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Commuting traces were studied also on some other rings. Banning and Mathieu
[9] extended the result from [49] to semiprime rings; taking into account [69] one
can now ask whether their theorem can be improved. Further results concerning
semiprime (as well as some other) rings can be extracted (they are not stated explic-
itly) from [16]. Commuting traces of multilinear maps on the algebra of all upper
triangular matrices were characterized in [15], and commuting traces of biadditive
maps in C∗-algebras were studied in [5, 64].
There has been a considerable interest in commuting traces of multiadditive maps

in rings with involution. The first result in this context was obtained by Beidar,
Martindale and Mikhalev [35] who considered commuting traces of 3-additive maps
on the Lie subring K of skew elements of a (non-GPI and centrally closed) prime
ring with involution. Commuting additive maps on K were studied previously in
[61], and the reader might wonder why the simpler biadditive case was not the next
one. This will be revealed in the next section on applications. The last result in
this section that we explicitly state is due to Beidar and Martindale [34, Corollary
5.6] (combined with [26, Lemma 2.2]) which is obtained as an application of more
general results on functional identities in prime rings with involution.

Theorem 4.3. Let A be a prime ring with involution, and let X be either
the set of all symmetric or the set of all skew elements in A. Let n be a positive
integer and suppose that deg(A) 6≤ 2(n + 1) and char(A) = 0 or char(A) > n
(and char(A) 6= 2 if n = 1). Let t : X → A be the trace of an n-additive map. If t
is commuting then there exist λ0 ∈ CA and traces of i-additive maps λi : X → CA,
i = 1, . . . , n such that

t(x) = λ0x
n + λ1(x)x

n−1 + . . .+ λn−1(x)x+ λn(x) for all x ∈ X .
In the special case when n = 2 and X is the set of symmetric elements Lee and

Lee [113] proved a result similar to (i) in Theorem 4.2 without any restriction on
deg(A). So it is possible to predict that Theorem 4.3 could be strengthened. We
also mention that the method by Lee and Lee was used in characterizing associating
traces of biadditive maps on nondegenerate Jordan algebras [59].
It is about time to say a few words about the theory of functional identities. The

name “functional identity” was introduced by the author in [52]. This paper and
[53] were predecessors of the general theory. The major breakthroughs were done
by Beidar [11] and Chebotar [77]. The basic functional identity considered in the
general theory is
nX
i=1

Ei(x1, . . . , xi−1, xi+1, . . . , xn)xi+
nX
i=1

xjFj(x1, . . . , xj−1, xj+1, . . . , xn) = 0

where Ei, Fj are maps from X n−1 into A (here of course X is a subset of the ring
A). For example, if t is a commuting trace of a symmetric (n − 1)-additive map
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M , then by linearizing [t(x), x] = 0 we get this identity with Ei = M = −Fj for
each i and j. On the other hand, it is easy to see that every multilinear polynomial
identity can be interpreted as the identity of this type. One can consider even far
moregeneral functional identities, for example such involving summands of the form

xi1 . . . xirF (xj1 , . . . , xjs)xk1 . . . xkt ,

or such that also involve some fixed elements from the ring (the so-called generalized
functional identities) etc. In fact, all identities mentioned in this paper can be
regarded as special examples of functional identities.
The usual goal when studying a functional identity is to describe the form of the

maps involved or to show that a ring admitting a functional identity in which maps
can not be described must have a special structure (often the conclusion is that it is
a PI ring of some special degree). A more precise description of the main results
and methods of the theory of functional identities would necessarily occupy a lot of
space, so we feel that it is better to resist the temptation to expose this subject in
greater detail and instead refer to [55] for an introductory account and to some of
the most recent articles [14, 16, 17, 19, 26, 27, 56] for the advanced theory.

5. APPLICATIONS

The result on commuting traces of biadditive maps, which has been discussed
in the previous section, particularly stimulated the further development of the theory
because of various applications that were found already in [49]. Before encountering
some specific topics we point out a different aspect from which the condition treated
in this result may be viewed.
Let A be a ring. A biadditive map from A2 into A can be regarded as an-

other multiplication (x, y) 7→ x ∗ y on A under which the additive group of A
becomes a nonassociative ring. The condition that the trace of this biadditive map
is commuting, i.e.

(x ∗ x)x = x(x ∗ x) for all x ∈ A,(12)

thus means that the square (with respect to the new multiplication) of each element
in A commutes (with respect to the original multiplication) with this element. This
point of view indicates why several applications lie in the meeting place of the
associative and the nonassociative algebra.

5.1 Lie Isomorphisms

Let A be a ring. If we replace the original product by the Lie product [x, y] =
xy − yx, the additive group of A becomes a Lie ring. If char(A) = 2 then the
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Lie product coincides with the Jordan product x ◦ y = xy + yx which makes the
treatment of these notions rather muddled. We shall therefore usually assume that
our rings have characteristic different from 2.
An additive subgroup of A closed under the Lie product is called a Lie subring

of A. Let L0 be a Lie subring of the ring A0 and let L be a Lie subring of the ring
A. A bijective additive map θ : L0 → L is called a Lie isomorphism if

θ([u, v]) = [θ(u), θ(v)] for all u, v ∈ L0,
that is, θ is an isomorphism between Lie rings L0 and L. In his 1961 AMS Hour Talk
[92] Herstein formulated several conjectures on various “Lie type” maps in associa-
tive rings. Roughly speaking, he conjectured that these maps arise from appropriate
“associative” maps, so for example that Lie isomorphisms can be expressed through
(anti)isomorphisms between A0 and A. In the classical case of finite dimensional
algebras the results of this kind have been known for a long time (see e.g. [96,
Chapter 10]), and Herstein proposed the problem to extend them to a much more
general level. There have been numerous publications by several mathematicians
on Herstein’s conjectures, but we mention Martindale as a major force in this pro-
gram. Until the 90’s all solutions had been obtained under the assumption that the
rings contain some nontrivial idempotents (see e.g. Martindale’s survey [134] from
1976). We also mention that similar problems have also been considered in operator
algebras [8, 91, 142–147] where idempotents also play an important role. Roughly
speaking, there are many important rings that contain nontrivial idempotents, but
there are also many that do not (say, domains and in particular division rings). The
problem whether the assumptions on idempotents can be removed in the results of
Martindale and others was open for a long time. Rather recently it was finally
solved by making use of commuting maps and more general functional identities.
The great advantage of this approach is that it is independent of some local prop-
erties of rings; say, the existence of some special elements such as idempotents is
irrelevant.
We first consider the simplest case when L0 = A0 and L = A. Isomorphisms

between A0 and A are of course also Lie isomorphisms. Other basic examples are
maps of the form θ = −ψ where ψ is an antiisomorphism. Moreover, if a map
τ : A0 → ZA vanishes on commutators then θ+τ also preserves the Lie product for
every Lie isomorphism θ. Thus, a typical example of a Lie isomorphism θ : A0 → A
is θ = ϕ+τ where ϕ is either an isomorphism or the negative of an antiisomorphism
and τ is a central additive map such that τ([A0,A0]) = 0. It has been known for
a long time that in the fundamental case when A0 = A =Mn(F ) with F a field
these are also the only possible examples of Lie isomorphisms. In 1951 Hua [94]
generalized this by proving that the same is true if A0 = A =Mn(D) where n ≥ 3
and D is a division ring. Herstein [92] conjectured that this should be true in all
simple and perhaps even prime rings. This problem was studied by Martindale
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in [126, 128, 129, 131]. The culminating result of this series of papers is that a
Lie isomorphism θ between unital prime rings A0 and A is of the expected form
θ = ϕ + τ , provided, however, that A contains an idempotent e 6= 0, 1. Here, τ
does not necessarily map into the center ZA but into the extended centroid CA, and
the range of ϕ lies in the so-called central closure AC of A, that is, the subring
of the right (or left, or symmetric) Martindale ring of quotients of A generated by
A and CA. An example in [126] shows that the range of ϕ need not be contained
in A. In fact, it was the Lie isomorphism problem which motivated Martindale to
introduce the concept of the extended centroid.
Recently the following generalization of Martindale’s theorem, giving the com-

plete solution of Herstein’s conjecture, was proved.

Theorem 5.1. Let A0 and A be noncommutative prime rings of characteristic
not 2. Then every Lie isomorphism θ of A0 onto A is of the form θ = ϕ+ τ , where
ϕ is either an isomorphism or the negative of an anti-isomorphism of A0 onto the
subring of AC , and τ is an additive map of A0 into CA sending commutators to 0.
Theorem 5.1 was proved by the author in [49], however, under the additional

technical assumption that A and A0 do not satisfy St4. This assumption was
removed by Blau [44] who used the classical structure theory of PI rings together
with Martindale’s result [129]. Another more straightforward proof based only on
commuting maps was found recently in [69].
The main idea of the proof can be easily described. Every element commutes

with its square and so θ satisfies [θ(u2), θ(u)] = 0 for every u ∈ A0. Setting
x = θ(u) we can rewrite this as

[q(x), x] = 0 for all x ∈ A, where q : x 7→ θ(θ−1(x)2).

That is, q is a commuting map and clearly it is the trace of a biadditive map
B : (x, y) 7→ θ(θ−1(x)θ−1(y)). So we are in a position to apply Theorem 4.1.
Hence there are λ ∈ CA and µ, ν : A→ CA with µ additive such that

q(x) = λx2 + µ(x)x+ ν(x) for all x ∈ A.

Setting η = µθ : A0 → CA and writing u for θ−1(x) it follows that

θ(u2)− λθ(u)2 − η(u)θ(u) ∈ CA for all u ∈ A0.

So we now have some control concerning the action of θ on squares, and hence
(linearization!) also on the Jordan product; by the initial assumption we know how
θ acts on the Lie product and so it should not be of surprise anymore that we are
able to describe the action of θ on the original product xy = 1

2([x, y] + x ◦ y).
The main breakthrough has already been made, but there is more to the proof.

Let us briefly sketch what remains to be done. We have to divide the proof by
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considering separately two cases, the one that none of A0 and A satisfies St4, and
another one when one of them does satisfy St4. In the first case (cf. [49]) we
define ϕ : A0 → AC by

ϕ(u) = λθ(u) +
1

2
η(u),

and then prove that either λ = 1 and ϕ is an isomorphism or λ = −1 and ϕ is an
antiisomorphism. The argument in the second case is somewhat shorter (cf. [69]).
Assume, for example, that A satisfies St4, that is, deg(A) ≤ 2. Then for every
u ∈ A0 there is ρ(u) ∈ CA such that θ(u)2 − ρ(u)θ(u) ∈ CA. Moreover, one can
show that ρ(u) can be chosen so that the map u 7→ ρ(u) is additive. Without loss
of generality we may assume that λ = 0. We define ϕ : A0 → AC by

ϕ(u) = θ(u)− 1
2
(ρ(u)− η(u))

and then prove that ϕ is an isomorphism (antiisomorphisms do not appear in the
St4 case, since in this very special situation they can be expressed by isomorphisms
and central maps).
Theorem 5.1 settles only the simplest one among Herstein’s conjectures on Lie

isomorphisms between Lie subrings of associative rings. Let us consider another
important case when A0 and A are rings with involution and L0 = K0 and L = K are
their Lie subrings of skew elements. This problem is considerably more difficult,
in particular since in certain finite dimensional algebras there are counterexamples
to the expected and usual conclusion [133, pp. 942-943]. We shall assume that
A0 and A are prime rings and that involutions are of the first kind, meaning that
they are linear over the extended centroid (see [36, Section 9.1] for a more detailed
explanation; we also mention that an involution is said to be of the second kind if
it is not of the first kind). This problem was considered in the 70’s by Martindale
for rings containing idempotents [132, 133]. The approach avoiding idempotents is
based on the observation that the cube of every skew element is skew again, and so
a Lie isomorphism θ : K0 → K satisfies [θ(l3), θ(l)] = 0 for all l ∈ K0. Note that
this can be interpreted as

[t(k), k] = 0 for all k ∈ K, where t : k 7→ θ(θ−1(k)3).

Thus, t is a commuting trace of a 3-additive map on K, and so Theorem 4.3
can be applied. This approach was used by Beidar, Martindale and Mikhalev in
[35]. Actually Theorem 4.3 did not yet exist in this form at that time, so they had to
consider commuting traces of 3-additive maps on K first. Their work was continued
in [45] and [79]. In the result that we are now going to state we shall also take into
account a technical improvement of their result obtained by Chebotar [79] who also
gave a shorter proof.
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Theorem 5.2. Let A0 and A be prime rings with involutions of the first kind
and of characteristic not 2. Let K0 and K denote respectively the skew elements
of A0 and A. Assume that the dimension of the central closure of A0 over CA0
is different from 1, 4, 9, 16, 25 and 64. Then any Lie isomorphism θ of K0 onto
K can be extended uniquely to an associative isomorphism of hK0i onto hKi, the
associative subrings generated by K0 and K respectively.
If Φ was the negative of an antiisomorphism from hK0i onto hKi which coincides

with θ on K 0, then x 7→ −Φ(x∗) would be an isomorphism from hK0i onto hKi
which also extends θ. This explains why the presence of antiisomorphisms can be
avoided in Theorem 5.2.
There are other important examples of Lie subrings that have not been considered

so far, for example [A,A] or [K,K] (i.e., the additive subgroups generated by
all commutators in A and K respectively), and more generally Lie ideals of A
and K (i.e., ideals of the Lie rings A and K). Since these Lie subrings are not
necessarily closed under some powers of elements, the same tricks as above, which
basically reduce the Lie isomorphism problems to the commuting map problems,
do not always work. But in this case more profound functional identities methods
can be used. In the recent series of papers [20, 22, 29] Lie epimorphisms (not
only isomorphisms) between various Lie subrings of associative rings have been
characterized; in particular, all of Herstein’s Lie map conjectures have been settled
(see the last paper in the series [22]). The proofs in these papers are based on
advanced results on functional identities, especially the concept of d-freeness [26,
27] plays an important role. Explaining this in greater detail exceeds the scope of
this paper.
We also mention that certain modified versions of the results presented in Section

4 have been used in the study of Lie isomorphisms in Banach algebras [5, 41, 42,
60, 64]. Some of these works are concerned with automatic continuity problems.
For instance, Berenguer and Villena [41] proved that the separating space of every
Lie isomorphism from a semisimple Banach algebra A0 onto a semisimple Banach
algebra A lies in the center of A.
The reader might wonder whether analogous Jordan map problems could also be

handled by using the methods exposed in this paper. Indeed Theorem 4.1 was used
in the solution of Herstein’s problem [92] on n-Jordan homomorphisms [62]. To
treat some similar but more difficult problems, the more general functional identities
approach has to be used [20, 23, 32].

5.2 Other Applications to Lie Theory

Let L be a Lie subring of a ring A. An additive map δ : L→ L is called a Lie
derivation if

δ([x, y]) = [δ(x), y] + [x, δ(y)] for all x, y ∈ L.
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A typical example is the sum of a derivation and a central map sending commutators
to 0. Lie derivations can be studied similarly as were Lie isomorphisms, and almost
all results on Lie isomorphisms have their Lie derivation parallels. The history of
both problems is also similar: Lie derivations are also a part of Herstein’s program
[92] and with the presence of idempotents they have been examined by Martindale
[127] and others (apparently the first result in this direction was obtained in an
unpublished work of Kaplansky, cf. [92, p. 529]). We shall therefore examine this
topic very briefly, pointing out only some initial ideas.
Suppose that L = A is a prime ring. It is clear every Lie derivation δ on A

satisfies [δ(x), x2] + [x, δ(x2)] = 0. Since [δ(x), x2] = [δ(x)x+ xδ(x), x], we can
rewrite the last identity as

[q(x), x] = 0 for all x ∈ A, where q : x 7→ δ(x2)− δ(x)x− xδ(x).
Clearly q is the trace of a biadditive map and so we are in a position to apply
Theorem 4.1. This gives us an information how δ acts on the Jordan product. This
is the idea upon which the proof of the following theorem is based. For rings not
satisfying St4 this theorem was proved in [49], while the St4 case was covered
recently in [69].

Theorem 5.3. Let A be a prime ring with char(A) 6= 2. Then every Lie
derivation δ of A is of the form δ = d+ τ , where d is a derivation of A into AC
and τ is an additive map of A into CA sending commutators to 0.
An analogue of Theorem 5.2 for Lie derivations was proved by Swain in [165].

The critical observation in the proof is that every Lie derivation δ of K satisfies
[t(k), k] = 0 for all k ∈ K, where t : k 7→ δ(k3)− δ(k)k2 − kδ(k)k − k2δ(k).
For more recent results on Lie derivations on rings we refer to [9, 21, 22, 28, 166].
The most complete results are contained in the last paper [22] of this series.
Commuting maps have also been successfully applied to the analytic study of Lie

derivations [1, 5, 40, 41, 43, 169]. For example, Johnson’s result on the structure of
continuous Lie derivations from C∗-algebras into their bimodules [97] was proved
in [1] without assuming the continuity for some classes of C∗-algebras (in particular
for von Neumann algebras). It this context we mention that commuting maps from
a ring into its arbitrary bimodule can also be described in some cases.
We continue by presenting the initial ideas from the paper [25] by Beidar and

Chebotar. For further development see [31].
Let (U ,+, ∗) be a nonassociative algebra. We say that U is Lie-admissible if

U becomes a Lie algebra when replacing the original product in U by the product
[x, y] = x ∗ y − y ∗ x. Of course, associative algebras are Lie-admissible. These
algebras were introduced by Albert [2] in 1949 and they have been studied by a
number of authors (see [25] for references).
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In this context we introduce another concept. Let A be an associative algebra
over a field F . Suppose there exists an additional nonassociative multiplication
∗ : A2 → A such that for some nonzero γ ∈ F we have y ∗ x − x ∗ y = γ[y, x]
for all x, y ∈ A. In this case we say that ∗ is Lie-compatible (of course (A,+, ∗)
is then a Lie-admissible algebra). Assume further that ∗ is third-power associative,
that is, (x ∗ x) ∗ x = x ∗ (x ∗ x) holds for all x ∈ A. Replacing y by x ∗ x in the
former identity we get

[q(x), x] = 0 for all x ∈ A, where q : x 7→ x ∗ x.

So again we have arrived at the situation when Theorem 4.1 is applicable. As a
corollary we obtain the result which we are now going to state; we omit giving
details of the proof, but actually they are quite simple. It should be pointed out,
however, that this is just one of the simplest results in this setting, and an interested
reader should consult [25] and [31].
We say that a prime algebra A over a field F is a centrally closed prime algebra

over F if it is unital and ZA = CA = F1. In this case A of course coincides with
its central closure.

Theorem 5.4. Let F be a field with char(F ) 6= 2 and let A be a centrally
closed prime algebra over F . Let ∗ be a Lie-compatible multiplication on A. Then
∗ is third-power associative if and only if there exist λ1,λ2 ∈ F , λ1 6= λ2, an
F -linear map µ : A→ F , and a symmetric F -bilinear map τ : A2 → F such that

x ∗ y = λ1xy + λ2yx+ µ(x)y + µ(y)x+ τ(x, y)1 for all x, y ∈ A.

For the matrix algebra A = Mn(F ) this theorem was proved by Benkart and
Osborn [39] who used completely different methods. We also remark that in [25,
Theorem 1.3] this result is stated under the additional assumption that A does not
satisfy St4. The reason for this is that when [25] was published it was not yet
known that in Theorem 4.1 this assumption is superfluous.
Finally we give just a hint how to tackle another Lie theoretic topic. We say

that (P,+, . , {. , .}) is a Poisson algebra if (P,+, .) is an associative algebra,
(P,+, {. , .}) is a Lie algebra, and {x · y, z} = x · {y, z} + {x, z} · y for all
x, y, z ∈ P . These algebras originally appeared in differential geometry and have
also been studied as algebraic structures [87-89, 103, 104]. First we remark that if
(P,+, {. , .}) is a Lie subalgebra of some associative algebra A so that {x, y} =
[x, y] (= xy − yx where xy denotes the product of x and y in A), then setting
x = y = z we arrive at a now familiar situation

[q(x), x] = 0 for all x ∈ A, where q : x 7→ x · x.
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Given a (commutative) Poisson algebra (P,+, . , {. , .}), Dirac’s problem is to find
all Lie homomorphisms from P to noncommutative algebras (specifically, for al-
gebras of linear operators acting on a Hilbert space) [98, 163, 164]. Since a non-
commutative algebra is a Poisson algebra under the standard Lie operation, in the
framework of noncommutative prime algebras Dirac’s problem includes Herstein’s
Lie isomorphism problem. The study of Lie homomorphisms of (not necessar-
ily commutative) Poisson algebras onto noncommutative associative algebras is the
main theme of another work of Beidar and Chebotar [30]. The identity [q(x), x] = 0
plays an important role in their study.

5.3 Linear Preservers

The theory of linear preservers deals with maps on algebras which, roughly
speaking, preserve some properties of some elements in an algebra. The usual goal
is to describe such maps. Since automorphisms, as well as antiautomorphisms, pre-
serve algebraic properties of elements, they appear very often in these descriptions.
The list of publications on linear preservers is voluminous and so we refer only to
some survey papers [6, 67, 122, 125]. Most of results on linear preserver treat alge-
bras of matrices or operators. We shall see that the approach based on commuting
maps allows us to obtain ring–theoretic generalizations of some of these results.
One of the most thoroughly studied problems is that on commutativity preservers.

Consider a bijective linear map θ between unital algebras A0 and A such that θ(x)
and θ(y) commute whenever x and y commute. Lie isomorphisms clearly have
this property. The standard conclusion is that θ(x) = λϕ(x) + µ(x)1 where λ is
a nonzero scalar, µ is a linear functional, and ϕ is either an isomorphism or an
antiisomorphism. In 1976 Watkins [172] proved that this is true in the case when
A0 = A = Mn(F ), n ≥ 4. Moreover, he constructed a counterexample for n = 2.
On the other hand, it has turned out that the n = 3 case is not exceptional [10,
151]. Somewhat later, in the 80’s, this result was extended to infinite dimensional
algebras: [83] considers the algebra of all bounded linear operators on a Hilbert
space, [150] considers the algebra of all bounded linear operators on a Banach
space, and [149] considers von Neumann factors. All these algebras are centrally
closed prime algebras over C (or R). In [49] we proved the following theorem
which generalizes and unifies the results of these papers.

Theorem 5.5. Let A0 and A be centrally closed prime algebras over a
field F with char(F ) 6= 2, 3, and suppose that none of them satisfies St4. Let
θ : A0 → A be a bijective linear map satisfying [θ(x2), θ(x)] = 0 for all x ∈ A0.
Then θ(x) = λϕ(x) + µ(x)1 where λ ∈ F , λ 6= 0, µ is a linear functional, and ϕ
is either an isomorphism or an antiisomorphism from A0 onto A.
So, in particular the assumption that commutativity is preserved can be weakened

by assuming only that θ(x2) always commutes with θ(x). The idea of the proof is the
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same as in the Lie isomorphism case: we can interpret the condition [θ(x2), θ(x)] =
0 as

[q(x), x] = 0 for all x ∈ A, where q : x 7→ θ(θ−1(x)2).

For various extensions of Theorem 5.5, which are based on the commuting map
approach, we refer to [5, 9, 15, 16, 18, 24, 64, 123].
Linear maps preserving the commutativity of symmetric matrices (and operators)

have also been studied [75, 83, 156]. A ring-theoretic generalization [18] of these
results is based on the identity

[q(s), s] = 0 for all s ∈ S, where q : s 7→ θ(θ−1(s)2);

here, S is the set of symmetric elements in a ring with involution, and so Theorem
4.3 can be applied.
The last topic we are going to consider concerns normal-preservers. Linear maps

preserving the set of normal matrices and operators were treated in [83, 105, 152]
where methods completely different from those presented in this paper were used,
and also in [66] where it was noted for the first time that commuting maps can be
used in this problem. The recent paper [18] contains ring-theoretic generalizations
of these results. We recall that an element x in a ring with involution ∗ is said to
be normal if x commutes with x∗. We now state the simpler one among two results
from [18] on normal-preservers.

Theorem 5.6. Let A0 and A be centrally closed prime algebras over a
field F with involutions of the second kind. Suppose that char(F ) 6= 2, 3, and
suppose that none of A0 and A satisfies St4. Let θ : A0 → A be a bijective linear
map with the property that θ(x) is normal whenever x ∈ A0 is normal. Then
θ(x) = λϕ(x) + µ(x)1 where λ ∈ F , λ 6= 0, µ is a linear functional, and ϕ is
either a ∗-isomorphism or a ∗-antiisomorphism from A0 onto A.
Theorem 5.6 is actually a corollary to Theorem 5.5 – the main goal of its proof

is to show that θ satisfies the condition [θ(x2), θ(x)] = 0 for all x ∈ A0. Another
result in [18] treats the case when the involution is of the first kind. This case is
much more involved. One of the identities that one has to face here is

[q(k), k] = 0 for all k ∈ K, where q : k 7→ θ(θ−1(k)2);

here K is the set of skew elements (see [18] for details).
We have thereby examined the main areas of applications. Hopefully, more

possible areas exist, but they still have to be discovered.
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13. K. I. Beidar, M. Brešar, Extended Jacobson density theorem for rings with derivations
and automorphisms, Israel J. Math. 122 (2001), 317-346.
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16. K. I. Beidar, M. Brešar, M. A. Chebotar, Functional identities revised: the fractional
and the strong degree, Comm. Algebra 30 (2002), 935-969.
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47. M. Brešar, On a generalization of the notion of centralizing mappings, Proc. Amer.
Math. Soc. 114 (1992), 641-649.
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54. M. Brešar, Applying the theorem on functional identities, Nova J. Math. Game Th.
Algebra 4 (1995), 43-54.
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57. M. Brešar, The range and kernel inclusion of algebraic derivations and commuting
maps, Quart. J. Math. Oxford, to appear.
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111. P.-H. Lee, T.-K. Lee, Derivations centralizing symmetric or skew elements, Bull.
Inst. Math. Acad. Sinica 14 (1986), 249-256.

112. P.-H. Lee, T.-K. Lee, Derivations with Engel conditions on multilinear polynomials,
Proc. Amer. Math. Soc. 124 (1996), 2625-2629.

113. P.-H. Lee, T.-K. Lee, Linear identities and commuting maps in rings with involution,
Comm. Algebra 25 (1997), 2881-2895.

114. P.-H. Lee, J.-S. Lin, R.-J. Wang, T.-L. Wong, Commuting traces of multiadditive
mappings, J. Algebra 193 (1997), 709-723.

115. P.-H. Lee, T.-L. Wong, Central ∗-differential identities in prime rings, Canad. Math.
Bull. 39 (1996), 211-215.

116. T.-C. Lee, Derivations and centralizing maps on skew elements, Soochow J. Math.
24 (1998), 273-290.

117. T.-K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull. 38
(1995), 445-449.

118. T.-K. Lee, Derivations and centralizing mappings in prime rings, Taiwanese J. Math.
1 (1997), 333-342.

119. T.-K. Lee, σ-commuting mappings in semiprime rings, Comm. Algebra 29 (2001),
2945-2951.

120. T.-K. Lee, T.-C. Lee, Commuting additive mappings in semiprime rings, Bull. Inst.
Math. Acad. Sinica 24 (1996), 259-268.

121. T.-K. Lee, T.-L. Wong, On certain subgroups of prime rings with automorphisms,
Comm. Algebra 30 (2002), 4997-5009.

122. C.-K. Li, N.-K. Tsing, Linear preserver problems: A brief introduction and some
special techniques, Linear Algebra Appl. 162-164 (1992), 217-235.

123. Y.-F. Lin, Commutativity-preserving maps on Lie ideals of prime algebras, Linear
Algebra Appl., 371 (2003), 361-368.

124. J. Luh, A note on commuting automorphisms of rings, Amer. Math. Monthly 77
(1970), 61-62.

125. M. Marcus, Linear operations on matrices, Amer. Math. Monthly 69 (1962), 837-847.

126. W. S. Martindale 3rd, Lie isomorphisms of primitive rings, Proc. Amer. Math. Soc.
14 (1963), 909-916.

127. W. S. Martindale 3rd, Lie derivations of primitive rings, Michigan J. Math. 11
(1964), 183-187.

128. W.S. Martindale 3rd, Lie isomorphisms of simple rings, J. London Math. Soc. 44
(1969), 213-221.

129. W. S. Martindale 3rd, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc.
142 (1969), 437-455.



Commuting Maps: A Survey 395

130. W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J.
Algebra 12 (1969), 576-584.

131. W. S. Martindale 3rd, A note on Lie isomorphisms, Canad. Math. Bull. 17 (1974),
243-245.

132. W. S. Martindale 3rd, Lie isomorphisms of the skew elements of a simple ring with
involution, J. Algebra 36 (1975), 408-415.

133. W. S. Martindale 3rd, Lie isomorphisms of the skew elements of a prime ring with
involution, Comm. Algebra 4 (1976), 927-977.

134. W. S. Martindale 3rd, Lie and Jordan mappings in associative rings, Proc. Ohio
Univ. Conf. on Ring Theory, 1976, Marcel Dekker.

135. M. Mathieu, Where to find the image of a derivation, Banach Center Publ. 30
(1994), 237-249.

136. M. Mathieu, On the range of centralizing derivation, Contemp. Math. 184 (1995),
291-297.

137. M. Mathieu, G. J. Murphy, Derivations mapping into the radical, Arch. Math. 57
(1991), 469-474.

138. M. Mathieu, V Runde, Derivations mapping into the radical, II, Bull. London Math.
Soc. 24 (1992), 485-487.

139. J. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19
(1976), 113-115.

140. J. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984),
122-126.

141. J. Mayne, Centralizing automorphisms of Lie ideals in prime rings, Canad. Math.
Bull. 35 (1992), 510-514.

142. C. R. Miers, Lie isomorphisms of factors, Trans Amer. Math. Soc. 147 (1970),
55-63.

143. C. R. Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971),
717-735.

144. C. R. Miers, Derived ring isomorphisms of von Neumann algebras, Canad. J. Math.
25 (1973), 1254-1268.

145. C. R. Miers, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973),
403-409.

146. C. R. Miers, Lie ∗−triple homomorphisms into von Neumann algebras, Proc. Amer.
Math. Soc. 58 (1976), 169-172.

147. C. R. Miers, Lie triple derivations of von Neumann algebras, Proc. Amer. Math.
Soc. 71 (1978), 57-61.

148. C. R. Miers, Centralizing mappings of operator algebras, J. Algebra 59 (1979), 56-64.



396 Matej Brešar

149. C. R. Miers, Commutativity preserving maps of factors, Canad. J. Math. 40 (1988),
248-256.
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