COMMUTING MAPS ON LIE IDEALS

Matej Brešar and C.R. Miers

DMS-674-IR

August 1994 [Revised June 1995]

COMMUTING MAPS ON LIE IDEALS

Matej Brešar

University of Maribor PF Y-62000 Maribor Slovenia

and

C. Robert Miers

University of Victoria
Victoria, British Columbia V8W 3P4
Canada

Abstract. Let R be a ring and let A be a subset of R. A map $f:A\to R$ is commuting on A if [f(x),x]=0 for all $x\in A$ where [x,y]=xy-yx. Suppose that R is a prime ring of characteristic $\neq 2$ with extended centroid C. If L is a noncommutative Lie ideal of R and $f:L\to R$ an additive commuting map, then there is $\lambda\in C$ and an additive map $\xi:L\to C$ such that $f(v)=\lambda v+\xi(v)$ for all $v\in L$.

1. Introduction

Let R be a ring with centre Z and let A be a subset of R. A map $f:A\to R$ is centralizing on A if $[f(x),x]\in Z$ for all $x\in A$. (Here

[x,y] = xy - yx is the Lie bracket.) In the special case where [f(x),x] = 0 for all $x \in A$ we say that f is commuting on A. The study of commuting maps was initiated by Posner $[\underline{9}]$ who proved that the existence of a nonzero commuting derivation on a prime ring R implies that R is commutative. Other authors have extended this theorem to various maps f and subsets A. (See $[\underline{1}]$.)

In this paper we characterize additive commuting maps $f:L\to R$ where R is a prime ring of characteristic $\neq 2$, and L is a noncommutative Lie ideal. Recall that a *Lie ideal* is an additive subgroup, L, of R such that if $v\in L$ and $x\in R$ then $[v,x]\in L$. Our main result is as follows:

Let R be a prime ring of characteristic $\neq 2$ with extended centroid C. If L is a noncommutative Lie ideal of R and $f: L \to R$ is an additive commuting map, then there is $\lambda \in C$ and an additive map $\xi: L \to C$ such that $f(v) = \lambda v + \xi(v)$ for all $v \in L$.

This result extends the result of [1] from prime rings to Lie ideals of prime rings. The methods used here are quite different.

Our approach to this problem is to deal separately with the case when R satisfies a generalized polynomial identity (we say R is GPI) and when it does not. In the case that R is not GPI we prove:

Let R be a prime ring of characteristic $\neq 2$. If $f: R \to R$ is additive and $d \neq 0$ an inner derivation such that [f(x), d(x)] = 0 for all $x \in R$ then there is $\lambda \in C$ and an additive map $\xi: R \to C$ such that $f(x) = \lambda d(x) + \xi(x)$ for all $x \in R$.

The non-GPI result for commuting maps on Lie ideals follows quickly from this theorem. It is a curiosity that we have not been able to prove this result in the GPI case even when $R = M_n(F)$, the $n \times n$ matrices over a field.

In the GPI case we can assume that R is a primitive algebra over a field

with non-zero socle. We then use a well-known approach of Jacobson to such rings to prove the result for commuting maps on Lie ideals.

2. Preliminaries

In all that follows R will be a prime ring. By $Q_{\ell}(R)$ we denote the left Martindale ring of quotients of R. $Q_{\ell}(R)$ can be characterized by the following four properties [8]:

- (i) $R \subseteq Q_{\ell}(R)$,
- (ii) for $q \in Q_{\ell}(R)$ there exists a nonzero ideal I of R such that $Iq \subseteq R$,
- (iii) if $q \in Q_{\ell}(R)$ and Iq = 0 for some nonzero ideal I of R then q = 0,
- (iv) if I is a nonzero ideal of R and $\phi: I \to R$ is a left R-module map, then there is $q \in Q_{\ell}(R)$ such that $\phi(x) = xq$ for all $x \in I$.

One can, of course, characterize $Q_r(R)$, the right Martindale ring of quotients of R in a similar manner. The ring

$$Q_s(R) = \{q \in Q_\ell(R) \mid qI \subseteq R \text{ for some nonzero ideal } I \text{ of } R\}$$

 $\simeq \{q \in Q_r(R) \mid Iq \subseteq R \text{ for some nonzero ideal } I \text{ of } R\}$

is called the symmetric Martindale ring of quotients of R. The centre C of $Q_s(R)$ is a field and it is the centre of both $Q_\ell(R)$ and $Q_r(R)$. It is called the extended centroid of R. The ring $R_C = RC + C$ is called the central closure of R. Note that $R \subseteq R_C \subseteq Q_s(R)$. It is easy to see that $q_1Rq_2 = 0$ where $q_1, q_2 \in Q_\ell(R)$ or $q_1, q_2 \in Q_r(R)$, implies that $q_1 = 0$ or $q_2 = 0$. In particular this shows that all of R_C , $Q_s(R)$, $Q_\ell(R)$, and $Q_r(R)$ are prime rings so that one can construct the (left, right, symmetric) Martindale ring of quotients and the central closure of each of these rings. It is well-known that R_C is equal to its central closure. In general a prime ring is closed over a field F if F is both the centroid and extended centroid of R, or equivalently, R is an

algebra over F where F is the extended centroid. In particular the central closure of R is closed over C.

Let $R_C *_C C\{X\}$ be the free product over C of R_C and the free algebra over C on an infinite set, X, of indeterminates. A typical element in $R_C *_C C\{X\}$ is a sum of monomials of the form $\lambda a_{i_0} x_{j_1} a_{i_1} x_{j_2} \cdots x_{j_n} a_{i_n}$ where $\lambda \in C$, $a_{i_k} \in R_C$ and $x_{j_k} \in X$. R is said to satisfy a generalized polynomial identity over C (or R is GPI) if there exists a nonzero polynomial $p(x_1, x_2, \dots, x_n) \in R_C *_C C\{X\}$ such that $p(r_1, r_2, \dots, r_n) = 0$ for all $r_1, r_2, \dots, r_n \in R$. A well-known theorem of Martindale [7, Th. 3] states that

A prime ring R satisfies a GPI if and only if R_C is a primitive ring with nonzero socle and eR_Ce is a finite dimensional division algebra over C for each primitive idempotent e in R_C .

Given a prime ring R, it is frequently useful to construct the ring $\tilde{R} = R_C \otimes_C F$ where F is an algebraic closure of C. In this case it is known that \tilde{R} is a closed prime algebra over F [3]. Moreover, if R is GPI, so is \tilde{R} and $e\tilde{R}e \simeq F$.

Finally we have need of the following result:

Theorem 2.1 [2, Main Theorem]. Let R be a prime ring and let n, m, k, ℓ be positive integers. Suppose that

$$\sum_{i=1}^{n} F_i(y)xa_i + \sum_{i=1}^{m} G_i(x)yb_i + \sum_{i=1}^{k} c_i yH_i(x) + \sum_{i=1}^{\ell} d_i xK_i(y) = 0$$

for all $x, y \in R$, where $F_i, G_i, H_i, K_i : R \to R_C$ are additive maps and $\{a_1, \dots, a_n\}, \{b_1, \dots, b_m\}, \{c_1, \dots, c_k\}, \{d_1, \dots, d_\ell\}$ are C-independent subsets of R. Then one of the following two possibilities holds:

(i) R_C is a primitive ring with nonzero socle and eR_Ce is a finite dimensional division algebra over C for each primitive idempotent e in R_C (that is, R is a GPI ring),

(ii) there exist elements $q_{ij} \in Q_s(R_C)$, $i = 1, \dots, \ell, j = 1, \dots, m, p_{ij} \in \mathcal{C}$ $Q_s(R_C), \ i=1,\cdots,k, \ \ j=1,\cdots,n, \ \ and \ \ additive \ \ maps \ \lambda_{ij}:R
ightarrow C, \ i=1,\cdots,n,$ $1,\cdots,\ell,\ j=1,\cdots,n,\ \mu_{ij}:R o C,\ i=1,\cdots,m,\ j=1,\cdots,k,\ such\ that$

$$F_i(y) = \sum_{j=1}^k c_j y p_{ji} + \sum_{j=1}^\ell \lambda_{ji}(y) d_j \text{ for all } y \in R, \quad i = 1, \dots, n,$$

$$G_i(x) = \sum_{j=1}^{\ell} d_j x q_{ji} - \sum_{j=1}^{k} \mu_{ij}(x) c_j \text{ for all } x \in R, \quad i = 1, \dots, m,$$

$$H_i(x) = -\sum_{j=1}^n p_{ij} x a_j + \sum_{j=1}^m \mu_{ji}(x) b_j \text{ for all } x \in R, \quad i = 1, \dots, k,$$

$$K_i(y) = -\sum_{j=1}^m q_{ij}yb_j - \sum_{j=1}^n \lambda_{ij}(y)a_j \text{ for all } y \in R, \quad i = 1, \dots, \ell.$$

In all that follows R will be a prime ring of characteristic $\neq 2$.

3. Maps Commuting with Derivations – The Non-GPI Case

Lemma 3.1. Suppose R is not GPI. Let $p_i, q_i \in Q_s(R_C)$, $i = 1, \dots, n$, and let $f(x) = \sum_{i=1}^{n} p_i x q_i$. The following conditions are equivalent:

- (i) There is a finite dimensional subspace V of R_C such that $f(x) \in V$ for every $x \in R$.
- (ii) There is an ideal $J \neq \{0\}$ of R_C such that f(x) = 0 for all $x \in J$.
- (iii) $\sum_{i=1}^{n} p_i \otimes q_i = 0$ as an element of $Q_s(R_C) \otimes_C Q_s(R_C)$. (iv) f(x) = 0 as an element of $Q_s(R_C) *_C C[x]$.

Proof. [6, Lemma 1] tells us that (ii), (iii), and (iv) are equivalent whether or not R is GPI. Of course (iv) implies (i). Thus we need show only that (i) implies (ii).

Assuming (i), we clearly have $f(x) \in V$ for every $x \in R_C$ as well. Pick an ideal $J_0 \neq \{0\}$ of R_C such that $p_i J_0, J_0 q_i \subseteq R_C$ and let $J = J_0 R_C J_0$.

Then J is a nonzero ideal of R_C . Fix $u, v \in J_0$. For each $r \in R_C$ we have $\sum_{i=1}^{n} (p_i u) r(vq_i) = f(urv) \in V$. If $\{p_i u \mid i = 1, \dots, n\} \neq \{0\}$ choose a maximal independent subset which, by renumbering, we assume is $\{p_i u \mid i = 1, \dots, m\}$. We then rewrite

$$f(urv) = \sum_{i=1}^{m} (p_i u) r(vq_i').$$

If $vq_i' \neq 0$ for some i, then R is GPI by [7, Th. 2]. Hence f(urv) = 0 and it follows that f(J) = 0.

Theorem 3.2. Suppose that R is not GPI and char $R \neq 2$. Let $f: R \to R$ be an additive map and $d \neq 0$ an inner derivation of R. If [f(x), d(x)] = 0 for all $x \in R$, then there is $\lambda \in C$ and an additive map $\xi: R \to C$ such that $f(x) = \lambda d(x) + \xi(x)$ for $x \in R$.

Proof. Suppose d(x) = [a, x], $a \notin Z$. We have f(x)[a, x] = [a, x]f(x) for all x. Replacing x by x + y we see that

$$f(x)[a, y] + f(y)[a, x] = [a, x]f(y) + [a, y]f(x).$$

That is,

$$(-f(y)xa + f(y)ax) + (-f(x)ya + f(x)ay) + (-ay f(x) + ya f(x))$$
$$+ (-ax f(y) + xa f(y)) = 0 \quad \text{for all} \quad x, y \in R.$$

Now Theorem 2.1 can be applied with $F_1(y) = -f(y)$, $a_1 = a$, $F_2(y) = f(y)a$, $a_2 = 1$, $G_1(x) = -f(x)$, $b_1 = a$, $G_2(x) = f(x)a$, $b_2 = 1$, $H_1(x) = -f(x)$, $c_1 = a$, $H_2(x) = af(x)$, $c_2 = 1$, $K_1(y) = -f(y)$, $d_1 = a$, $K_2(y) = af(y)$, $d_2 = 1$. It is clear from the proof of Theorem 2.1 that a_2 , b_2 , c_2 and d_2 may be taken formally to be 1 even if R does not possess a unit. Since R is not GPI we have $F_1(y) = -f(y) = ayp_{11} + yp_{21} + \lambda_{11}(y)a + \lambda_{21}(y)$ for all $y \in R$, and $H_1(x) = -f(x) = -p_{11}xa - p_{12}x + \mu_{11}(x)a + \mu_{21}(x)$

for all $x \in R$ where $p_{ij} \in Q_s(R_C)$, $\lambda_{ij}, \mu_{ij} : R \to C$. Comparing we get $p_{11}xa + axp_{11} + p_{12}x + xp_{21} = (\mu_{11} - \lambda_{11})(x)a + (\mu_{21} - \lambda_{21})(x)$ for all $x \in R$. That is, the map $x \mapsto p_{11}xa + axp_{11} + p_{12}x + xp_{21}$ maps R into the linear span of 1 and a. By Lemma 3.1 it follows that $p_{11} \otimes a + a \otimes p_{11} + p_{12} \otimes 1 + 1 \otimes p_{21} = 0$. Straightforward, but tedious, tensor product computations show that there exist $\lambda, \mu \in C$ such that $p_{11} = \lambda, p_{12} = -\lambda a + \mu, p_{21} = -\lambda a - \mu$. Thus

$$f(x) = p_{11}xa + p_{12}x - \mu_{11}(x)a - \mu_{21}(x)$$
$$= \lambda xa + (-\lambda a + \mu)x - \mu_{11}(x)a - \mu_{21}(x)$$
$$= -\lambda [a, x] - \mu_{21}(x) + \mu x - \mu_{11}(x)a.$$

Our goal is to show that $\mu x - \mu_{11}(x)a = 0$. We know that

$$[\mu x - \mu_{11}(x)a, d(x)] = [f(x) + \lambda[a, x] + \mu_{21}(x), d(x)] = 0.$$

If $\mu = 0$, then $\mu_{11}(x)[a, d(x)] = \mu_{11}(x)d^2(x) = 0$. Since a group cannot be the union of two proper subgroups, either $\mu_{11}(x) = 0$ for all x, or $d^2(x) = 0$ for all x. In the latter case d(x) = 0 by [9], Theorem 1]. Now assume $\mu \neq 0$, so that there is no loss of generality in assuming $\mu = 1$. We have (setting $\alpha(x) = \mu_{11}(x)$)

$$[x,d(x)] = \alpha(x)[a,d(x)] = \alpha(x)d^2(x). \tag{1}$$

This implies

$$[x, d(y)] + [y, d(x)] = \alpha(x)d^{2}(y) + \alpha(y)d^{2}(x).$$
 (2)

Replacing y by yx we see

$$[x, d(y)x + yd(x)] + [yx, d(x)] = \alpha(x)d^{2}(y)x + 2\alpha(x)d(y)d(x) + \alpha(x)yd^{2}(x) + \alpha(yx)d^{2}(x).$$

That is,

$$[x, d(y)]x + [x, y]d(x) + 2y[x, d(x)] + [y, d(x)]x$$

$$= \alpha(x)d^{2}(y)x + 2\alpha(x)d(y)d(x) + \alpha(x)yd^{2}(x) + \alpha(yx)d^{2}(x).$$
(3)

Using (2) we see that (3) can be written as

$$\alpha(y)d^{2}(x)x + [x,y]d(x) + 2y[x,d(x)]$$

$$= 2\alpha(x)d(y)d(x) + \alpha(x)yd^{2}(x) + \alpha(yx)d^{2}(x).$$
(4)

Now replace y by xy in (4) to get

$$\alpha(xy)d^{2}(x)x + x[x,y]d(x) + 2xy[x,d(x)]$$

$$= 2\alpha(x)d(x)yd(x) + 2\alpha(x)xd(y)d(x) + \alpha(x)xyd^{2}(x)$$

$$+ \alpha(xyx)d^{2}(x).$$

Using (4), this can be written as

$$\alpha(yx)xd^{2}(x) - \alpha(y)xd^{2}(x)x + \alpha(xy)d^{2}(x)x - \alpha(xyx)d^{2}(x)$$
$$= 2\alpha(x)d(x)yd(x).$$

Fixing $x \in R$, we see that the map $y \mapsto (\alpha(x)d(x))yd(x)$ has its range in the finite dimensional subspace of R_C spanned by

$${xd^2(x), xd^2(x)x, d^2(x)x, d^2(x)}.$$

It follows from Lemma 3.1 that $\alpha(x)d(x)=0$ for each x. Thus for each $x \in R$, either $\alpha(x)=0$ or d(x)=0. As before, either $\alpha(x)=0$ for all x or d(x)=0 for all x. Since $d \neq 0$ we have $\alpha(x)=0$ for all x contradicting [9, Th. 2] in view of (1). Thus we have contradicted the assumption that $\mu \neq 0$ and the theorem is proved.

4. Commuting Additive Maps on Lie Ideals

Henceforth, L will be a noncommutative Lie ideal of a prime ring R of characteristic $\neq 2$, and $f: L \to R$ will be an additive commuting mapping. It

is our intention to show that $f(v) = \lambda v + \xi(v)$ for some $\lambda \in C$ and $\xi : L \to C$ an additive map. We first dispose of the non-GPI case.

Lemma 4.1. If R is not GPI then $f(v) = \lambda v + \xi(v)$ for some $\lambda \in C$ and an additive map $\xi : L \to C$.

Proof. Pick $u \in L$ such that $u \notin Z$. We have [f([u,x]),[u,x]] = 0 for all $x \in R$. Thus the maps $x \mapsto f([u,x]), x \mapsto [u,x]$ satisfy the requirements of Theorem 3.2. Hence there is $\lambda \in C$ such that $f([u,x]) - \lambda[u,x] \in C$ for each $x \in R$. Since [f(v),v] = 0 for each $v \in L$ we have [f(v),w] = [v,f(w)] for $v,w \in L$. With $w = [u,x], u \in L, x \in R$ we have, for $v \in L$,

$$\big[f(v),[u,x]\big] = \big[v,f([u,x])\big] = \lambda\big[v,[u,x]\big].$$

That is, $[f(v) - \lambda v, [u, x]] = 0$ for $v \in L$, $x \in R$. Since $u \notin Z$, it follows from $[\underline{9}, \text{ Th. 1}]$, that $f(v) - \lambda v \in C$ for $v \in L$. This proves the lemma.

Before we turn to the GPI case we prove two preliminary lemmas. By L_C we will denote the Lie ideal CL of R_C .

Lemma 4.2. There is a bilinear map $B: L_C \times L_C \to R_C$ satisfying:

- (i) $y \mapsto B(x,y)$ is an inner derivation for each $x \in L_C$,
- (ii) B(x,x) = 0 for all $x \in L_C$,
- (iii) B(u,v) = [f(u),v] for all $u,v \in L$.

Proof. Define

$$B\left(\sum_{i=1}^{n} \lambda_i x_i, y\right) = \sum_{i=1}^{n} \lambda_i [f(x_i), y]$$

for $\lambda_i \in C$, $x_i \in L$, $y \in L_C$. Suppose $\sum_{i=1}^n \lambda_i x_i = 0$. We may assume $\lambda_1 \neq 0$ so that $x_1 = \mu_2 x_2 + \dots + \mu_n x_n$ where $\mu_i = -\lambda_1^{-1} \lambda_i$. For any $u \in L$ we have

$$[f(x_1), u] = [x_1, f(u)] = \left[\sum_{i=2}^n \mu_i x_i, f(u)\right]$$

$$= \sum_{i=2}^{n} \mu_i[x_i, f(u)] = \sum_{i=2}^{n} \mu_i[f(x_i), u].$$

Hence $[f(x_1) - \sum_{i=2}^n \mu_i f(x_i), u] = 0$ for all $u \in L$. This implies

$$\left[\sum_{i=1}^{n} \lambda_i f(x_i), u\right] = 0$$

for all $u \in L$ which, in turn, implies

$$\left[\sum_{i=1}^{n} \lambda_i f(x_i), y\right] = 0$$

for all $y \in L_C$. Hence B is well defined. It is clear that B is bilinear. Also (i) and (iii) are obvious from the definition. As for (ii),

$$B\left(\sum_{i=1}^{n} \lambda_{i} x_{i}, \sum_{i=1}^{n} \lambda_{i} x_{i}\right) = \sum_{i=1}^{n} \lambda_{i} \left[f(x_{i}), \sum_{j=1}^{n} \lambda_{j} x_{j}\right]$$
$$= \sum_{i,j=1}^{n} \lambda_{i} \lambda_{j} [f(x_{i}), x_{j}]$$
$$= 0$$

since [f(x), x] = 0 and [f(x), y] + [f(y), x] = 0 for $x, y \in L$.

Remark 4.3. We deal with bilinear maps because f does not seem to have a natural linear extension to L_C .

Now let F be an algebraic closure of C and set $\tilde{R} = R_C \otimes_C F$, $\tilde{L} = L_C \otimes_C F$. Then \tilde{L} is a noncommutative Lie ideal of \tilde{R} .

Lemma 4.4. There is an F-bilinear map $\tilde{B}: \tilde{L} \times \tilde{L} \to \tilde{R}$ satisfying:

- (i) $y \mapsto \tilde{B}(x,y)$ is an inner derivation for each $x \in \tilde{L}$,
- (ii) $\tilde{B}(x,x) = 0$ for each $x \in \tilde{L}$,
- (iii) $\tilde{B}(u \otimes 1, v \otimes 1) = [f(u), v] \otimes 1 \text{ for all } u, v \in L.$

Proof. Define \tilde{B} by

$$\tilde{B}\left(\sum x_i \otimes \lambda_i, \sum y_j \otimes \mu_j\right) = \sum_{i,j} B(x_i, y_j) \otimes \lambda_i \mu_j.$$

Using Lemma 4.2 it is easy to verify that \tilde{B} has the desired properties.

We assume henceforth that R is GPI. Now R_C is a closed prime algebra over C and \tilde{R} a closed prime algebra over F. Moreover, since R is GPI, so is \tilde{R} so that \tilde{R} is primitive and has nonzero socle. We recall [5] that in this case there are dual vector spaces V and W such that $\mathcal{F}_W(V) \subseteq \tilde{R} \subseteq \mathcal{L}_W(V)$ where $\mathcal{F}_W(V) \neq \{0\}$ is the socle of \tilde{R} , *i.e.*, the algebra of operators in \tilde{R} of finite rank. Every element in $\mathcal{F}_W(V)$ can be written as

$$\sum_{i=1}^n v_i \otimes w_i$$

where $v_i \in V, w_i \in W$ and for $x, v \in V, w \in W, x(v \otimes w) = (x, w)v$. $\mathcal{L}_W(V)$ is the algebra of all F-linear operators on V having an adjoint, $i.e., T \in \mathcal{L}_W(V)$ if there exists $T^*: W \to W$ such that $(vT, w) = (v, T^*w)$. We have for $a \in \tilde{R}$ that $(v\rho_a, w) = (v, \rho_a^*w)$ where $\rho_a^*w = aw$. By abuse of the notation we will write a instead of ρ_a and a^* instead of ρ_a^* . Thus $(va, w) = (v, a^*w)$.

We further note that, since F is a field, we can consider W as a left vector space isomorphic to W. The resulting algebra of operators, $\{\rho_a \mid a \in \tilde{R}\}$, will be isomorphic to \tilde{R} as a vector space over F, but anti-isomorphic as an algebra. We will adopt these conventions and write both operators and scalars on the left. The reader will find that the anti-isomorphism causes no difficulty in the sequel.

We now return to consideration of \tilde{L} . Since \tilde{L} is a Lie ideal of \tilde{R} , there is a nonzero ideal U of \tilde{R} such that $[U,U]\subseteq \tilde{L}$ [4]. Since $\mathcal{F}=\mathcal{F}_W(V)$ is contained in any nonzero ideal of \tilde{R} we have $[\mathcal{F},\mathcal{F}]\subseteq \tilde{L}$.

Let $v_0 \in V$, $w_0 \in W$ be fixed nonzero vectors such that $(v_0, w_0) = 0$ and set $n = v_0 \otimes w_0$.

Lemma 4.5. $n \in \tilde{L}$ and if an = na for some $a \in \tilde{R}$ then $an = na = \mu n$ for some $\mu \in F$.

Proof. Choose $x \in V$ such that $(x, w_0) = 1$ and note that

$$n = v_0 \otimes w_0 = (v_0 \otimes w_0)(x \otimes w_0) - (x \otimes w_0)(v_0 \otimes w_0) \in [\mathcal{F}, \mathcal{F}].$$

For the other part, if $x \in V$,

$$(an)(x) = a(v_0 \otimes w_0)(x) = a(x, w_0)v_0 = (x, w_0)av_0.$$

Also

$$(na)x = (v_0 \otimes w_0)ax = (ax, w_0)v_0.$$

Again choose x such that $(x, w_0) = 1$. Then $av_0 = \mu v_0$ and the result follows.

Now let $S = \{a \in \tilde{L} \mid a^*w_0 = 0\}, T = \{a \in \tilde{L} \mid av_0 = 0\}.$ Of course, $Tn = nS = \{0\}.$

Recall that from Lemma 4.4(i) for every $x \in \tilde{L}$ there is $\tilde{x} \in \tilde{R}$ such that $\tilde{B}(x,y) = [\tilde{x},y]$ for all $y \in \tilde{L}$.

Remark 4.6. It is easy to prove that $a\tilde{L}b = \{0\}$, $a, b \in \tilde{R}$, implies a = 0 or b = 0.

Lemma 4.7. There is $\mu \in F$ such that $T(\tilde{n} - \mu) = (\tilde{n} - \mu)S = \{0\}.$

Proof. By Lemma 4.4(ii) we have $\tilde{B}(n,n)=0$ so that $[\tilde{n},n]=0$. By Lemma 4.5, $\tilde{n}n=n\tilde{n}=\mu n$ for some $\mu\in F$. For any $u\in \tilde{L}$ we have $[\tilde{n},u]=\tilde{B}(n,u)=-\tilde{B}(u,n)=-[\tilde{u},n]$. Since $Tn=nS=\{0\}$ it follows that $T[\tilde{n},u]S=0$, i.e., $t\tilde{n}us=tu\tilde{n}s$ for all $s\in S,\,t\in T,\,u\in \tilde{L}$. Taking s=n we see that $t\tilde{n}un=tu\tilde{n}n=\mu tun$. Hence $t(\tilde{n}-\mu)un=0$ for all $t\in T,\,u\in \tilde{L}$, i.e., $T(n-\mu)\tilde{L}n=\{0\}$. Since $n\neq 0$ this forces $T(\tilde{n}-\mu)=\{0\}$. Similarly $(\tilde{n}-\mu)S=\{0\}$.

Lemma 4.8. There is $\lambda \in F$ such that $\tilde{n} - \mu = \lambda n$.

Proof. Let $n' = \tilde{n} - \mu$. From Lemma 4.7 we have $Tn' = n'S = \{0\}$. Suppose there is v_1 in the range of n' such that v_0 and v_1 are independent.

Choose $x \in W$ such that $(v_0, x) = 0$ and $(v_1, x) \neq 0$ and set $t = v_0 \otimes x$. Note that $t \in T$ so tn' = 0. In particular, $0 = tv_1 = (x, v_1)v_0$ which is a contradiction. It follows that $n' = v_0 \otimes z$ for some $z \in W$. Suppose z and w_0 are independent. Then there is $y \in V$ such that $(y, w_0) = 0$, $(y, z) \neq 0$. Let $s = y \otimes w_0 \in S$ and note that n's = 0, a contradiction as before. Thus $z = \lambda w_0$, proving the lemma.

Now let $N = \{v \otimes w \mid (v, w) = 0\}$. We know that for any $n \in N$ there is $\lambda_n \in F$ such that $\tilde{B}(n, u) = [\tilde{n}, u] = \lambda_n[n, u]$ for every $u \in \tilde{L}$.

Lemma 4.9. There is $\lambda \in F$ such that $\tilde{B}(n,u) = \lambda[n,u]$ for all $n \in N$, $u \in \tilde{L}$. (That is, λ does not depend upon n.)

Proof. Take $n_1, n_2 \in N$, write $\lambda_i = \lambda_{n_i}$, and set $n_i = v_i \otimes w_i$ for i = 1, 2. We have $\lambda_1[n_1, n_2] = \tilde{B}(n_1, n_2) = -\tilde{B}(n_2, n_1) = -\lambda_2[n_2, n_1]$. Thus $\lambda_1 = \lambda_2$ unless $n_1 n_2 = n_2 n_1$, i.e., $(v_2, w_1)(v_1 \otimes w_2) = (v_1, w_2)(v_2 \otimes w_1)$. Suppose $(v_2, w_1) \neq 0$. Then v_1 and v_2 , as well as w_1 and w_2 , are independent. Hence, $v_1 \otimes w_1$ and $v_2 \otimes w_2$ are independent, contradicting the relation resulting if n_1 and n_2 commute.

Thus we need only consider the case when $(v_1, w_2) = (v_2, w_1) = 0$ (we may assume $v_1, v_2, w_1, w_2 \neq 0$). Choose $v_3 \in V$ such that $(v_3, w_2) \neq 0$. As $(v_1, w_2) = 0$ we have v_1 and v_3 are independent. Therefore, there is $w_3 \in W$ such that $(v_1, w_3) \neq 0$ and $(v_3, w_3) = 0$. Then $v_3 \otimes w_3 \in N$. Since $(v_1, w_3) \neq 0$ we have $\lambda_1 = \lambda_3$. Similarly since $(v_3, w_2) \neq 0$ we have $\lambda_2 = \lambda_3$. Hence $\lambda_1 = \lambda_2$.

Lemma 4.10. If $a \in \tilde{R}$ is such that [a, N] = 0, then $a \in F$. (Here F is identified with $F \cdot 1$.)

Proof. Pick $0 \neq v \in V$. We can find $w \in W$ such that (v, w) = 0 and $w \neq 0$. We have $a(v \otimes w) = (v \otimes w)a$ which implies av and v are dependent. Since $v \in V$ is arbitrary it follows that $av = \alpha v$ for some $\alpha \in F$ and all

 $v \in V$.

Lemma 4.11. $\tilde{B}(x,y) = \lambda[x,y]$ for all $x,y \in \tilde{L}$.

Proof. By Lemmas 4.4 and 4.5 we have $\tilde{B}(n,x) + \tilde{B}(x,n) = 0$ for all $n \in \mathbb{N}, x \in \tilde{L}$. By Lemma 4.9, $\tilde{B}(n,x) = \lambda[n,x]$ so we have

$$0 = \tilde{B}(n,x) + \tilde{B}(x,n) = \lambda[n,x] + [\tilde{x},n] = [\tilde{x} - \lambda x, n].$$

By Lemma 4.10 this implies $\tilde{x} - \lambda x \in F$. Hence $\tilde{B}(x,y) = [\tilde{x},y] = \lambda[x,y]$ for all $x,y \in \tilde{L}$.

Lemma 4.12. There is $\lambda \in C$ and an additive map $\xi : L \to C$ such that $f(u) = \lambda u + \xi(u)$ for all $u \in L$.

Proof. Since $\tilde{B}(x,y) = \lambda[x,y]$ for some $\lambda \in F$ and all $x,y \in \tilde{L}$, we have $[f(u),v] \otimes 1 = \tilde{B}(u \otimes 1, v \otimes 1) = \lambda([u,v] \otimes 1) = [u,v] \otimes \lambda$ for all $u,v \in L$. But then $\lambda \in C$ and $[f(u),v] = \lambda[u,v]$ which yields $[f(u) - \lambda u, L] = 0$ for all $u \in L$. Hence $f(u) - \lambda u \in C$ for all $u \in L$.

Theorem 4.13. Let R be a prime ring of characteristic $\neq 2$. If L is a noncommutative Lie ideal of R and if $f: L \to R$ is an additive commuting map, then there is $\lambda \in C$ and an additive map $\xi: L \to C$ such that $f(v) = \lambda v + \xi(v)$ for each $v \in L$.

Proof. Lemmas 4.1 and 4.12.

ACKNOWLEDGMENTS

This work was supported in part by grants from the Ministry of Science and Technology of the Republic of Slovenia and from NSERC of Canada.

REFERENCES

- [1] Brešar, Matej, Centralizing mappings and derivations in prime rings, *Journal* of Algebra, **156**(1993), 385-394.
- [2] Matej Brešar, Functional identities of degree two, Journal of Algebra, to appear.
- [3] T. Erickson, W.S. Martindale, and J. Osborn, Prime nonassociative algebras, Pacific Journal of Mathematics 60(1975), 49-63.
- [4] I.N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago (1969).
- [5] I.N. Herstein, Rings with Involution, University of Chicago Press, Chicago (1976).
- [6] C. Lanski, Differential identities in prime rings with involution, Transactions of the AMS 291(1985), 765-787.
- [7] W.S. Martindale, Prime rings satisfying a generalized polynomial identity, Journal of Algebra 12(1969), 576-584.
- [8] D. Passman, Infinite Crossed Products, Academic Press, San Diego (1989).
- [9] E.C. Posner, Derivations in prime rings, *Proceedings of the AMS* 8(1957), 1093-1100.