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Abstract. Let R be a ring and let A be a subset of R. A map
f: A — Ris commuting on A if [f(z),z] = 0 for all z € A where
[z,y] = zy — yz. Suppose that R is a prime ring of characteristic
# 2 with extended centroid C. If L is a noncommutative Lie ideal
of R and f : L — R an additive commuting map, then there is
A € C and an additive map £ : L — C such that f(v) = Av + £(v)
for all v € L.

1. Introduction

Let R be a ring with centre Z and let A be a subset of R. A map
f+ A — Ris centralizing on A if [f(z),z] € Z for all z € A. (Here



[z,y] = zy — yz is the Lie bracket.) In the special case where [f(z),z] = 0
for all z € A we say that f is commuting on A. The study of commuting
maps was initiated by Posner [9] who proved that the existence of a nonzero
commuting derivation on a prime ring R implies that R is commutative.
Other authors have extended this theorem to various maps f and subsets A.
(See [1])

In this paper we characterize additive commuting maps f : L — R
where R is a prime ring of characteristic # 2, and L is a noncommutative
Lie ideal. Recall that a Lie ideal is an additive subgroup, L, of R such that
if ve L and z € R then [v,z] € L. Our main result is as follows:

Let R be a prime ring of characteristic # 2 with extended centroid
C. If L 1s a noncommutative Lie ideal of R and f : L — R i3 an
additive commuting map, then there is A € C and an additive map

§:L — C such that f(v) = v+ £(v) for allv € L.

This result extends the result of [1] from prime rings to Lie ideals of prime
rings. The methods used here are quite different.

Our approach to this problem is to deal separately with the case when
R satisfies a generalized polynomial identity (we say R is GPI) and when it
does not. In the case that R is not GPI we prove:

Let R be a prime Ting of characteristic # 2. If f : R — R 13
additive and d # 0 an inner derivation such that [f(z),d(z)] = 0
for all z € R then there is A € C and an additive map ¢ : R — C

such that f(z) = Ad(z) + £(z) for allz € R.

The non-GPI result for commuting maps on Lie ideals follows quickly
from this theorem. It is a curiosity that we have not been able to prove this
result in the GPI case even when R = M,(F), the n X n matrices over a

field.

In the GPI case we can assume that R is a primitive algebra over a field



with non-zero socle. We then use a well-known approach of Jacobson to such

rings to prove the result for commuting maps on Lie ideals.

2. Preliminaries

In all that follows R will be a prime ring. By Q/(R) we denote the
left Martindale ring of quotients of R. Q¢(R) can be characterized by the

following four properties [8]:

(i) RCQuR),

(ii) for ¢ € Q4(R) there exists a nonzero ideal I of R such that Iq C R,

(ii1) if ¢ € Q¢(R) and Iq = 0 for some nonzero ideal I of R then ¢ =0,

(iv) if I is a nonzero ideal of R and ¢ : I — R is a left R-module map, then
there is ¢ € Q4(R) such that ¢(z) = zq for all z € I.

One can, of course, characterize Q,(R), the right Martindale ring of

quotients of R in a similar manner. The ring

Qs(R) = {q € Q¢(R) | ¢I C R for some nonzero ideal I of R}

~ {q¢ € Q+(R) | Iq C R for some nonzero ideal I of R}

is called the symmetric Martindale ring of quotients of R. The centre C of
Qs(R) is a field and it is the centre of both Q¢(R) and Q.(R). It is called the
extended centroid of R. The ring Rc = RC + C is called the central closure
of R. Note that R C R¢ € Q,(R). It is easy to see that ¢; Rgy = 0 where
71,92 € Qe(R) or ¢1,q92 € Q-(R), implies that g1 = 0 or ¢2 = 0. In particular
this shows that all of R¢e, Q(R), Q(R), and @ (R) are prime rings so that
one can construct the (left, right, symmetric) Martindale ring of quotients
and the central closure of each of these rings. It is well-known that R¢ is
equal to its central closure. In general a prime ring is closed over a field F if

F' is both the centroid and extended centroid of R, or equivalently, R is an



algebra over F' where F' is the extended centroid. In particular the central
closure of R is closed over C.

Let R¢ *¢c C{X} be the free product over C of R¢ and the free alge-
bra over C on an infinite set, X, of indeterminates. A typical element in
R¢ *¢ C{X} is a sum of monomials of the form Xa;, z;, ai, z;, -+ -z, a;,
where A € C, a;, € Rc and z;, € X. R is said to satisfy a generalized
polynomial identity over C' (or R is GPI) if there exists a nonzero polyno-
mial p(z1,z2, -,%,) € Ro *¢c C{X} such that p(ry,re, --,7,) = 0 for all
71,72, **,Tn € R. A well-known theorem of Martindale [7, Th. 3] states
that

A prime ming R satisfies a GPI if and only if Rc is a primitive
ring with nonzero socle and eRge 13 a finite dimensional division

algebra over C for each primitive idempotent e in Re.

Given a prime ring R, it is frequently useful to construct the ring R=
Re ®c F where F' is an algebraic closure of C. In this case it is known that
R is a closed prime algebra over F' [3]. Moreover, if R is GPI, so is R and
eRe ~ F.

Finally we have need of the following result:

Theorem 2.1 [2, Main Theorem|. Let R be a prime ring and let

n,m,k,f be positive integers. Suppose that

n m k £
Z Fi(y)mai + Z G’,'(:c)ybi + Z Cini(:L') + Z d,-:cK,-(y) =0
i=1 1=1 i=1 =1

for all z,y € R, where F;,G;,H;,K; : R — R¢ are additive maps and
{a1, - -yan}, {b1, <, bm}, {c1, - e}, {d1, - ,de} are C-independent sub-
sets of R. Then one of the following two possibilities holds:

(1) Rc is a primitive ring with nonzero socle and eRce 18 a fintte dimen-

sional division algebra over C for each primitive idempotent e in Ro (that

i3, R is a GPI ring),



(ii) there exist elements gij € Q.(R¢c), i =1,---,£, j =1,---,m, pij €
Qs(Rg), 1 = 1,---,k, j =1,---,n, and additive maps X\;j; : R — C, i =
')E; j:]-)"'7ny /‘Lij:R_)C;izl,"‘,m, jzl,"',k, such that

k L
Fi(y) = chypji + Z)\ﬁ(y)dj forallyeR, i=1,---,n,

Jj=1 J=1

£ k
Gi(z) = Zdjmqji - Z,u,-j(x)c,- forallze R, i=1,---,m,

j=1 7j=1

Hi(z) = — Zpijimj + Z,uﬁ(z)bj forallze R, i=1,---k,
=1 j==—1

Ki(y) = Zqub z)\”(y)a] forallye R, i=1,--- L

j=1

In all that follows R will be a prime ring of characteristic # 2.

3. Maps Commuting with Derivations — The Non-GPI Case

Lemma 3.1. Suppose R is not GPL Let pi,q; € Qs(Re), i =1,---,n
and let f(z) = 3 pigs. The following conditions are equivalent:
(i) There is a,z]g'rlz,z'te dimensional subspace V' of Rc such that f(z) € V for
every ¢ € R.
(i1) There is an ideal J # {0} of Rc such that f(z) =0 for all z € J.
(i) > 2 Pi ®¢i =0 as an element of Qy(Ro) ®c Qs(Eo)-
(iv) f(a:) =0 as an element of Qs(R¢) *¢ Clz].

Proof. [6, Lemma 1] tells us that (ii), (iii), and (iv) are equivalent
whether or not R is GPI. Of course (iv) implies (i). Thus we need show only
that (i) implies (ii).

Assuming (i), we clearly have f(z) € V for every z € R¢ as well. Pick
an ideal Jy # {0} of R¢ such that p;Jy, Jogi € Re and let J = JyRcJo.



Then J is a nonzero ideal of R¢. Fix u,v € Jy. For each r € Rg we

have > (piu)r(vg;) = f(urv) € V. If {p;u |1 =1,---,n} # {0} choose a
=1

maximal independent subset which, by renumbering, we assume is {p;u |1 =

1,---,m}. We then rewrite

m

Flurv) = (piu) r(vg}).

=1

If vg} # 0 for some i, then R is GPI by [7, Th. 2]. Hence f(urv) = 0 and it
follows that f(J) = 0.

Theorem 3.2. Suppose that R is not GPI and char R+# 2. Let f: R —
R be an additive map and d # 0 an inner derivation of R. If [f(z),d(z)] =0
for all z € R, then there 13 A € C and an additive map £ : R — C such that
f(z) = Ad(z) + &(z) for z € R.

Proof. Suppose d(z) = [a,z], a ¢ Z. We have f(z)[a,z] = [a,z]f(z)
for all z. Replacing z by = + y we see that

f(@)la, yl + f(y)la, ] = [a, 2] (y) + [a, y] f(=).
That is,
(=f(W)za+ f(y)az) + (= f(z) ya + f(z) ay) + (~ay f(z) + ya f(z))

+ (__aq; fly) + :z:af(y)) =0 forall =z,y € R.

Now Theorem 2.1 can be applied with Fi(y) = —f(y), a1 = a, Fa(y) =
f(y)a, az =1, Gi(z) = —f(z), b1 = @, Go(z) = f(z)a, by = 1, Hi(z) =
—f(z), c1 = a, Hy(z) = af(z), ¢a = 1, K1(y) = —f(y), d1 = a, Ka(y) =
af(y), do = 1. It is clear from the proof of Theorem 2.1 that aq, bs, ¢z and
dy may be taken formally to be 1 even if R does not possess a unit. Since
R is not GPI we have Fi(y) = —f(y) = aypu + ypar + Ana(y)a + Az (y)
for all y € R, and Hi(z) = —f(z) = —puza — paz + p11(z)a +pa1(z)



for all z € R where p;; € Qs(Rc¢), Aij,pij : R — C. Comparing we get
pr1za+azpiy +prat +2pay = (11 — M1 )(z)a+ (pa1 — A1 )(z) for all z € R.
That is, the map z +— pj1za+azpi; +p1oz+2pe; maps R into the linear span
of 1 and a. By Lemma 3.1 it follows that p11 ®a+a®p11+p12®1+1®p2; = 0.
Straightforward, but tedious, tensor product computations show that there

exist A, u € C such that p;; = X, p1a = —da + 4, pp; = —Aa — p. Thus
f(z) = priza + proz — pa1(z)a — po1(z)

= Aza + (—Aa+ p)z — pa(z)a — paa ()

= —Aa, z] — p21(z) + pz — p11(z)a.

Our goal is to show that pz — p11(z)a = 0. We know that
[kz — p11(z)a, d(z)] = [f(z) + Aa, 2] + p(z),d(z)] = 0.

If 4 =0, then p11(z)[a,d(z)] = p11(z)d*(z) = 0. Since a group cannot
be the union of two proper subgroups, either p11(z) = 0 for all z, or d*(z) = 0
for all z. In the latter case d(z) = 0 by [9, Theorem 1]. Now assume p # 0,

so that there is no loss of generality in assuming g = 1. We have (setting
a(z) = p())
[z,d(z)] = a(z)[a, d(z)] = a(z)d*(z). (1)

This implies
[z, d(y)] + [y, d(2)] = a(z)d*(y) + a(y)d’ (z). (2)
Replacing y by yz we see

[z, d(y)e + yd(2)] + [yz, d(z)] = a(2)d*(y)z + 2a(z)d(y)d(z)

+ a(z)yd*(z) + a(yz)d* (z).
That is,

[z,d(y)]z + [z, yld(z) + 2y[z, d(z)] + [y, d(z)]=

= a(z)d?*(y)z + 20(z)d(y)d(z) + a(z)yd*(z) + a(yz)d*(z).



Using (2) we see that (3) can be written as
a(y)d*(z)z + [z,yld(z) + 2ylz, d(z)]
(4)
= 2a(z)d(y)d(z) + a(z)yd*(z) + a(yz)d*(z).
Now replace y by zy in (4) to get
a(zy)d?(z)z + 2]z, yld(z) + 2zy[z, d(z))]
= 20(2)d(2)yd(z) + 20(2)zd(y)d(z) + a(z)zyd*(z)
+ a(zyz)d?(z).
Using (4), this can be written as
a(yz)zd(z) — a(y)zd*(z)z + a(zy)d*(z) — a(zyz)d(z)
= 2a(z)d(z)yd(z).
Fixing ¢ € R, we see that the map y — (a(z)d(z))yd(z) has its range
in the finite dimensional subspace of R¢ spanned by

{zd*(z), zd*(z)z, d*(2)z, d*(z)}.

It follows from Lemma 3.1 that a(z)d(z) = 0 for each z. Thus for each
z € R, either a(z) = 0 or d(z) = 0. As before, either a(z) = 0 for all z or
d(z) = 0 for all z. Since d # 0 we have a(z) = 0 for all z contradicting [9,
Th. 2] in view of (1). Thus we have contradicted the assumption that p # 0

and the theorem is proved.

4. Commuting Additive Maps on Lie Ideals

Henceforth, L will be a noncommutative Lie ideal of a prime ring R of

characteristic # 2, and f : L — R will be an additive commuting mapping. It



is our intention to show that f(v) = Av+£(v) forsome A€ Cand¢: L — C
an additive map. We first dispose of the non-GPI case.

Lemma 4.1. If R is not GPI then f(v) = Av + £(v) for some A € C
and an additive map £ : L — C.

Proof. Pick u € L such that u ¢ Z. We have [f([u,z]), [u, z]] = 0 for
all z € R. Thus the maps z — f([u,z]), z — [u, z] satisfy the requirements
of Theorem 3.2. Hence there is A € C such that f([u,z]) — Alu,z] € C for
each z € R. Since [f(v),v] = 0 for each v € L we have [f(v),w] = [v, f(w)]
for v,w € L. With w = [u,z], u € L, z € R we have, for v € L,

[£(v), [, 2]] = [, f([w, 2])] = Alv, [u, z]].

That is, [f(v) — \v,[u,z]] =0forv € L, z € R. Since u ¢ Z, it follows from
[9, Th. 1], that f(v) — Av € C for v € L. This proves the lemma.

Before we turn to the GPI case we prove two preliminary lemmas. By

Lo we will denote the Lie ideal C'L of Rc.

Lemma 4.2. There is a bilinear map B : Lec X Lg — Re satisfying:
(i) y — B(z,y) 13 an inner derivation for each z € L¢,
(ii) B(z,z) =0 for all xz € Lc¢,
(iif) B(u,v) = [f(u),v] for all u,v € L.

Proof. Define
B (Z )\,-:v,-,y) = Z)‘i[f(mi)ay]
=1 ) i=1

n

for \; € C,z; € L,y € Lc. Suppose Y, A\jz; = 0. We may assume Ay # 0
=1

so that 1 = pozg + -+ + pnz, where y; = ——/\'"1)\-. For any u € L we have

[f(z1),u] = [&1, f(w)] = b}mdd

1=2

=l f@)) =3 milf(z:),u]



3

Hence [f(z1) — > pi f(2i),u] = 0 for all u € L. This implies

1=2

{i‘: A f(a:z),u} =0

for all v € L which, in turn, implies

l:z": }\if(l'i),y] =0

for all y € Lc. Hence B is well defined. It is clear that B is bilinear. Also
(i) and (iii) are obvious from the definition. As for (ii),

n

B (,En:)\ixi’ Z)\zx,\ - i,\l

1=1 =1 =1

f(2i), EAM}

= Z Aij[f(z:), =]
=0
since [f(z),z] = 0 and [f(z),y] + [f(y),z] =0 for z,y € L.

Remark 4.3. We deal with bilinear maps because f does not seem to

have a natural linear extension to L¢.

Now let F' be an algebraic closure of C' and set R = Rc Q¢ F, L =
Lo ®c F. Then L is a noncommutative Lie ideal of R.
Lemma 4.4. There is an F-bilinear map B : L x L — R satisfying:

(i) y — B(z,y) is an inner derivation for each z € L,
(ii) B(z,z) =0 for each z € L,
(i) Bu®1,v®1)=[f(u),v]®1 for all u,v € L.

Proof. Define B by

B (Zmz ® A, Zyj ®#j) = ZB(mi,yj) ® Aipij.

i3



Using Lemma 4.2 it is easy to verify that B has the desired properties.

We assume henceforth that R is GPI. Now R¢ is a closed prime algebra
over C' and R a closed prime algebra over F. Moreover, since R is GPI, so
is R so that R is primitive and has nonzero socle. We recall [5] that in this
case there are dual vector spaces V and W such that Fiy (V) C R C Lw(V)
where Fy(V) # {0} is the socle of R, i.¢., the algebra of operators in R of

finite rank. Every element in Fw (V') can be written as

n

sz‘@wi

=1

where v; € V,w; € W andforz,v € V,w € W, z(vQw) = (z,w)v. Lw(V)is
the algebra of all F-linear operators on V having an edjoint, i.e., T € Ly (V)
if there exists T* : W — W such that (vT,w) = (v, T*w). We have for a € R
that (vpe,w) = (v, piw) where piw = aw. By abuse of the notation we will
write a instead of p, and a* instead of p}. Thus (va,w) = (v,a*w).

We further note that, since F' is a field, we can consider W as a left vector
space isomorphic to W. The resulting algebra of operators, {p, | a € R},
will be isomorphic to R as a vector space over F', but anti-isomorphic as
an algebra. We will adopt these conventions and write both operators and
scalars on the left. The reader will find that the anti-isomorphism causes no
difficulty in the sequel.

We now return to consideration of L. Since L is a Lie ideal of R, there
is a nonzero ideal U of R such that [U,U] C L [4]. Since F = Fw (V) is
contained in any nonzero ideal of R we have [F,F] C L.

Let vg € V, wyp € W be fixed nonzero vectors such that (vg,wo) = 0 and

set n = vy @ wg.

Lemma 4.5. n € L and if an = na for some a € R then an = na = un

for some p € F.



Proof. Choose z € V such that (z,we) = 1 and note that

n=1uvy®ws = (vg @ wo)(z®wp)— (z®wo)(vo ®wp) € [F,F|.

For the other part,if z € V,

(an)(z) = a(ve @ wo)(z) = a(z,wq)ve = (z, wp)avy.

Also

(na)z = (vo ® we)az = (az, wo)vy.
Again choose z such that (z,wy) = 1. Then avy = pvo and the result follows.

Now let S = {a € L | a*wo =0}, T = {a € L | avy = 0}. Of course,
Tn =nS = {0}.

Recall that from Lemma 4.4(i) for every = € L there is # € R such that
B(z,y) = [&,y] for all y € L.

Remark 4.6. It is easy to prove that aLb = {0}, a,b € R, implies a = 0
or b=0.

Lemma 4.7. There is p € F such that T(7 — p) = (7 — p)S = {0}.

Proof. By Lemma 4.4(ii) we have B(n,n) = 0 so that [fi,n] = 0. By
Lemma 4.5, in = nfi = un for some pu € F. For any v € L we have
[2,u] = B(n,u) = —B(u,n) = —[@,n]. Since Tn = nS = {0} it follows that
T[#,u]S =0, i.e., thus = tufis forall s € S, t € T, u € L. Taking s = n we
see that tiun = tufin = ptun. Hence #(fi — p)un = 0 forallt € T, u € L,
i.e., T(n — p)Ln = {0}. Since n # 0 this forces T(7 — p) = {0}. Similarly
(5~ 1)S = {0}.

Lemma 4.8. There is A € F' such that 7 — p = An.

Proof. Let n' = A — p. From Lemma 4.7 we have Tn' = n'S = {0}.

Suppose there is v; in the range of n' such that vy and v; are independent.



Choose z € W such that (vg,z) = 0 and (vi,z) # 0 and set t = vy ® z.
Note that t € T so tn' = 0. In particular, 0 = tv; = (z,v;)vy which is a
contradiction. It follows that n'’ = vy ® z for some 2 € W. Suppose z and
wg are independent. Then there is y € V such that (y,wo) =0, (y,2) # 0.
Let s = y ® wg € S and note that n’s = 0, a contradiction as before. Thus

z = Awy, proving the lemma.

Now let N = {v ® w | (v,w) = 0}. We know that for any n € N there
is A\, € F such that B(n,u) = [#i,u] = An[n,u] for every u € L.

Lemma 4.9. There is A € F' such that B(n,u) = A[n,u] for alln € N,
w € L. (That is, A does not depend upon n.)

Proof. Taken;,n, € N, write \; = A,,,, and set n; = v;Qw; for i = 1, 2.
We have A[ny,nq)] = B(nl,nz) = w];’(nz,nl) = —Ag[ng,ny1]. Thus A1 = Ay
unless 7119 = nang, i.e., (vy,wy)(v1 @ wy) = (vy,w2)(vy ® wy). Suppose
(vg,w;) # 0. Then v; and vy, as well as w; and ws, are independent. Hence,
v1 ® wy and vy ® wy are independent, contradicting the relation resulting if
ni and n, commute.

Thus we need only consider the case when (vy,wy) = (vg,w;) = 0 (we
may assume vi, vz, wi, wy # 0). Choose vs € V such that (vs,ws) # 0.
As (vy1,wz) = 0 we have v; and v are independent. Therefore, there is
w3 € W such that (v, w3) # 0 and (vs, ws) = 0. Then v3 @ wy € N. Since
(v1,ws) # 0 we have A\; = A3. Similarly since (vs,wz) # 0 we have Ay = ;.

Hence A\ = \q.

Lemma 4.10. If a € R is such that [a,N] =0, then a € F. (Here F is
identified with F'-1.)

Proof. Pick 0 £ v € V. We can find w € W such that (v,w) =0 and
w # 0. We have a(v ® w) = (v @ w)a which implies av and v are dependent.

Since v € V is arbitrary it follows that av = av for some « € F and all



veV.
Lemma 4.11. B(m,y) = Az,y] for allz,y € L.
Proof. By Lemmas 4.4 and 4.5 we have B(n,z) 4+ B(z,n) = 0 for all
n € N, z € L. By Lemma 4.9, B(n,z) = A[n, z] so we have
0= B(n,z) + B(z,n) = An,z] + [,n] = [ — Az, n).
By Lemma 4.10 this implies # — Az € F. Hence B(z,y) = [%,y] = A[z, y] for
all z,y € L.

Lemma 4.12. There s A € C and an additive map ¢ : L — C such
that f(u) = Au + £(u) for all u € L.

Proof. Since B(z,y) = Az, y] for some A € F and all z,y € L, we have
[f(u),v]®1=Bu®1l,v®1) = A]u,v]®1) = [u,v] ® A for all u,v € L.
But then A € C and [f(u), v] = A[u,v] which yields [f(u) — Au, L] = 0 for all
u € L. Hence f(u)—Au € C for all u € L.

Theorem 4.13. Let R be a prime ring of characteristic # 2. If L is a
noncommutative Lie ideal of R and if f : L — R 1is an additive commuting
map, then there is A\ € C and an additive map £ : L — C such that f(v) =
Av + €(v) for each v € L.

Proof. Lemmas 4.1 and 4.12.
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