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COMMUTING MONOTONE MAPPINGS OF DENDROIDS 
WILLIAM J. GRAY AND JAMES NELSON, JR. 

In this paper a continuum will be a compact connected Hausdorff 
space. A continuum X is hereditarily unicoherent if any two sub
continua of X meet in a continuum. In what follows X will denote a 
dendroid, i.e., a hereditarily unicoherent, arcwise connected metric 
continuum. A point e of X is an endpoint if e is an endpoint of any arc 
in which it lies. 

In this paper we prove that if S is an abelian semigroup of con
tinuous monotone surjections of X onto itself which leaves an end-
point of X fixed, then S has another fixed point. For a history of this 
problem see [1], where Professor L. E. Ward, Jr. proves the above 
result when S has not more than two generators, and conjectures that 
the result must be true in general. 

If X is a dendroid and e is an endpoint of X we define a partial 
order ^ , called the arc order on X with least element ey as follows: 
if x, y are two points of X let A(x, y) = {x} if x = y; otherwise, there is 
a unique arc in X with x, y as endpoints, and this unique arc is de
noted by A(x, y). Define x ê y if x €E A (e, y). We define [x ,y] = 
{z: x ^ z^ y}. Then this order satisfies: 

(1.1) eis the least element of X. 
(1.2) If x GE X, then [e, x] = A(e, x) is a closed chain, and the order 

topology and subspace topology coincide on [e, x]. 
(1.3) Each non-empty subcontinuum of X has a least element, and 

each non-empty chain has a supremum. 
(1.4) If x, yGX\ {e}, there is a z G X\ {e} with zêx,zëy. 
(1.5) If C is a subcontinuum of X and x , y G C then A(x, y) C C. 
(1.6) I f / i s a continuous monotone surjection: X —> X which leaves 

e fixed, then/preserves â and in fact/(A(x, y)) — A(/(x),/(t/)), 
x, y £ X. 

For (1.1)-(1.5), see Ward [2] ; for (1.6), see [1]. 

THEOREM. Let X be a non-trivial dendroid and let S be a finitely 
generated abelian semigroup of continuous monotone surjections of X 
onto X. If S leaves an endpoint e of X fixed, then S has a fixed point 
other than e. 
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PROOF. Let ^ be the arc order on X with e as least element. For 
each t G S and each x G X, the set t~1(x) is a subcontinuum of X, 
hence has a least element, t*(x), under ^ . This defines a map t* : 
X - * X . We claim: 

(1) tt* = identity on X. 
(2) t* is order preserving. 
(3) If M GS, thens*** = t*s*. 
(4) If 5, t G S and x G X then t* s(x) g s t*(x). 
In fact, (1) is immediate. To prove (2), let x ^ y. Then if z G t~\y), 

we have t([e,z]) = [t(e), t(z)] = [e, y] ; since x G [e, y], there is a 
w G [e, z] such that t(w) = x. Then w G ^_1(x), so £*(*) ^ w^ z. 
Since z G £_1(t/) was arbitrary, we have t*(x) ^ t*(y). 

To prove (3), we need only show that s*t* = (ts)*. Let JC E X . 
Because we have (ts) s*t* (x) = x, it must be that (ts)* (x) ^ s* t*(x). 
On the other hand, if w G *-1(x), by (2) we have **(**(*)) ^ s* (x), 
and this implies that s*t* (x) S (ts)* (x). Finally, (4) follows from the 
fact that s t~ l(x) C t~ ls(x) for all x G X. 

Now let / be a finite set of generators for S. Choose a maximal ele
ment m of X. Since X is non-trivial we have m fi e and e ÇÊ. t~ l(m) 
for ail t G / . Let u = Sup{[e, m] fi [e, t*(m)] : £ G / } . Since / is 
finite, 1.4 implies that e < u. We have u^m and tu^t t*(m) = m, 
all £ G / , so by 1.2, w and t(u) are comparable, all t G / . Let J\ = 
{tGJiuê *(u)}and/2 = {*G/ : f(w) < u}. 

If £ G / 2 , then £([u, £*(ra)] ) = [f(w), m], hence there is a point 
p G [u, t*(m)] for which £(p) = u. Since M £É t~l(u), we can show 
that u < t*(u). We now consider cases. 

CASE I. Jifi 0 fi ]i- Let Cx be a subset of X which is maximal 
with respect to the properties: 

(5) u G Cv 

(6) Cx is a chain under ^ . 
(7) iff/ G Cl and £ G /1? then y ^ % ) . 
(8) if y G Ci and £ G / 2 , then y ^ t*(y). 
Let 9 = Sup Cp 
If y G d , then y g % ) § £(9) for all t G ^ . Thus for all * G/x, 

£(9) is an upper bound for C l5 so 
(9) 9 ^ f ( 9 ) f o r a l U G / 1 . 

Likewise 
(10) 9 g **(</) for all* G / 2 . 

Now if s, t G / 2 , from (10) we find 
(11) t*(q)^t*s*(q)=s*(t*(q)). 

If s G / i and £ G /2 , we use (9) and (4) to find 
(12) t*(q)^t*s(q)^s(t*(q)). 
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Then by (9), (10), (11), (12), and the maximality of Cl9 we obtain 
t*(q) G Ci, so 

(13) t*(q) = q, hence t(q) = q, for all t G / 2 , and q ^ s(q) for all 

To complete the proof, we choose a subset C2 of X which is maximal 
with respect to the properties. 

(14) q G Ca. 
(15) C2 is a chain. 
(16) If t G / and y G C2 then y g % ) . 

Let c = Sup C2. Arguing as before we find 
(17) c S * ( c ) f o r a l l * G / . 
(18) t(c) g to(c) = s(t(c)) for all 5, f G / . 
By (15), (16), and the maximality of C2, we must have t(c) G C2, 

and so £(c) = c for all ^ G / . Thus S leaves c fixed, and the proof is 
complete in this case. 

Case II ( / = Jx) and Case III ( / = / 2 ) are established by simplified 
versions of the argument of Case I, and are left to the reader. 

We remark that the theorem is true under more general conditions: 
one may drop the condition of metrizabihty and add T2. The arcwise 
connectedness requirement may be replaced by the condition that any 
two distinct points x, y G X lie in a subcontinuum of X which has x 
and y as its only non-cutpoints. The proof of the new theorem thus 
obtained is however essentially the same as the proof above. 
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