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Commuting polynomials and self-similarity

Karl Zimmermann

Abstract. Let F be an algebraically closed field of characteristic 0 and f(x)
a polynomial of degree strictly greater than one in F [x]. We show that the
number of degree k polynomials with coefficients in F that commute with f
(under composition) is either zero or equal to the number of degree one poly-
nomials with coefficients in F that commute with f . As a corollary, we obtain
a theorem of E. A. Bertram characterizing those polynomials commuting with
a Chebyshev polynomial.
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1. Introduction and summary of results

In the early 1920s, G. Julia [5] and J. F. Ritt [6] used topological and algebraic
methods to study complex rational functions in one variable and in particular,
those that commute under composition of functions. Even though their results are
difficult to prove, the theorem classifying those polynomials that commute under
composition is relatively easy to state and understand. We begin with a review
of the ideas necessary to state the classification theorem. The review will provide
context for our main results, most of which are related to the Julia–Ritt theorem but
are obtained here using elementary techniques. Even though some of the results and
definitions to follow make sense in a more general setting, for clarity of exposition,
we make the assumption throughout the paper, that F is an algebraically closed
field of characteristic 0, for example, the field of complex numbers.

Recall that the Chebyshev polynomials of the first kind, Tn(x) where n ≥ 1, are
defined via

Tn(x) = cosn(cos−1(x)).

In particular,
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T1(x) = x

T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x

...
Tn(x) = 2xTn−1(x) − Tn−2(x).

Using the defining equation above, it is easy to verify that Tn ◦ Tm = Tm ◦ Tn

for all m, n ≥ 1. Note also that the recursion formula shows that Tn has degree n,
leading coefficient 2n−1 (for n ≥ 1), and that Tn is a sum of odd (respectively, even)
powers of x when n is odd (respectively, even). This last clause can be restated: as
a function on [−1, 1], Tn is an odd function when n is odd, an even function when
n is even.

Conjugation by a degree one polynomial will prove to be a useful tool in studying
commuting polynomials. Note that it is precisely the polynomials λ(x) = ax + b ∈
F [x], a �= 0 that are invertible in F [x] under composition.

Definition 1.1. Let P (x), Q(x) ∈ F [x]. Then P is similar to Q if and only if there
exists λ(x) = ax + b ∈ F [x], a �= 0 so that Q(x) = λ−1(P (λ(x))). If f(x) ∈ F [X ] is
similar to itself via λ(x) ∈ F [x] then λ is said to be a self-similarity of f . We let
Sf denote the set of self-similarities of f .

Some easy consequences of the definition of similarity are:
(1) Similarity is an equivalence relation
(2) If P is similar to Q then deg(P ) = deg(Q)
(3) If f commutes with P , then λ−1(f(λ(x))) commutes with λ−1(P (λ(x)))
(4) Sf is a group under the operation of composition.
Like the set of Chebyshev polynomials, the set {Pn(x) = xn}n≥1 of monic

mononomials, consists of pairwise commuting polynomials. These two sets play
a major role in the classification theorem of Ritt and Julia.

Theorem 1.2 (Ritt–Julia). Let P (x) and Q(x) be nonlinear, nonconstant polyno-
mials with coefficients in the complex numbers that commute under composition.
Then one of the following holds:

(1) P and Q are similar, via the same map λ, to Chebyshev polynomials.
(2) P and Q are similar, via the same map λ, to monomials.
(3) There exists a polynomial G(x) = xR(xr) where R(x) is a polynomial, such

that P and Q are similar, via the same λ, to ε1G
a(x) and ε2G

b(x) where ε1
and ε2 are rth roots of unity and Ga = G ◦ G ◦ · · · ◦ G, the a-fold iterate of
G under composition.

Julia replaces (3) above with:
(3′) There exist positive integers ν and μ such that P ν = Qμ.

For more about the statement of the above theorem and the relationship of
commuting polynomials to Julia sets, please see [1].

A set of pairwise commuting polynomials containing one polynomial of each
positive degree is called a chain. It is a consequence of Theorem 1.2 that up to
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similarity, there are exactly two chains, namely the Chebyshev polynomials and
the monic monomials. Since the proof of the Ritt–Julia theorem is rather difficult,
it is worth noting that in 1951, H. D. Block and H. P. Thielman [3] gave an ele-
mentary proof of this result for chains defined over an integral domain containing
the integers. In 1955, E. J. Jacobsthal [4] also gave an elementary proof.

Given a polynomial, it is natural to ask about the set of polynomials with which
it commutes. To be more precise, we make the following definition.

Definition 1.3. Let k ≥ 1. For f(x) ∈ F [x], we let Ck(f) denote the set of degree
k polynomials in F [x] that commute with f .

Our main result describes a relationship between Ck(f), k ≥ 1 and C1(f) = Sf ,
the group of self-similarities of f .

Theorem 2.9. Let f(x) be a polynomial of degree strictly greater than one in F [x]
and suppose that Ck(f) is nonempty for some k ≥ 1. Then the number of elements
in Ck(f) is the order of the group Sf .

Theorem 2.9 follows from a more general theorem relating commuting polyno-
mials and self-similarities.

Theorem 2.7. Let f(x) be a polynomial in F [x] of degree n > 1 and assume
P, Q ∈ Ck(f) for some k ≥ 1. Then Q = λf ◦ P where λf ∈ Sf .

Using Theorem 2.9, we also obtain an easy proof of the known result that a
polynomial of degree n > 1 with coefficients in F can commute with at most
n− 1 polynomials of fixed degree k ≥ 1 with coefficients in F (Corollary 2.10). To
illustrate Corollary 2.10 and motivate our final result, note that the monomial Pn(x)
commutes with Rk,j(x) = ρjxk, j = 1, . . . , n−1, where ρ is a primitive (n−1)st root
of unity. By Corollary 2.10, there can be no other degree k polynomials commuting
with Pn. For the Chebyshev polynomials, it is clear that Tn(x) commutes with
±Tk(x) if n is odd, and Tk(x) if n is even, but it is not immediately obvious
whether or not there are other polynomials of degree k with which Tn commutes.
It turns out that there are no others, and Bertram [2] gives an elementary proof
of this fact using a differential equation satisfied by the Chebyshev polynomials.
Below, we give a different proof of Bertram’s theorem (our Theorem 2.15), which
follows as a corollary to Theorem 2.9 and Corollary 2.14.

Corollary 2.14. Let f(x) be a polynomial in F [x] of degree strictly greater than
one and let m > 1 be an integer. Then Sf has m elements if and only if f is
similar to a polynomial of the form xg(xm) with g(x) ∈ F [x] but not similar to any
polynomial of the form xh(xr) where h(x) ∈ F [x] and r > m.

2. Commuting polynomials

We begin with the observation that if f is similar to g via the similarity λ, then
for k ≥ 1, there is a mapping, Φk : Ck(f) → Ck(g) defined by Φk(P ) = λ−1 ◦P ◦λ,
where P ∈ Ck(f). For each k ≥ 1, Φk is easily seen to be a bijection. Moreover,
Φ1 : C1(f) → C1(g) is an isomorphism of groups; in other words, the self-similarity
groups Sf and Sg are isomorphic.

This observation will be particularly useful when used in conjunction with the
following definition and proposition.
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Definition 2.1. The polynomial f(x) =
∑n

k=0 akxk is centered if an �= 0 and
an−1 = 0.

In the proof below, we use the notation O(xk) to denote any polynomial with
degree less than or equal to k.

Proposition 2.2. Let f(x) be a polynomial in F [x] of degree n > 1. Then f is
similar to a monic, centered polynomial.

Proof. Let f(x) =
n∑

j=0

ajx
j and let g be similar to f via λ(x) = ax + b. A compu-

tation shows

g(x) = an−1anxn + an−2(nanb + an−1)xn−1 + O(xn−2).

For g to be monic, let a be an (n − 1)st root of a−1
n . For g to be centered, let

b = −an−1

nan
. �

The following proposition and corollary focus on polynomials that commute with
a centered polynomial.

Proposition 2.3. Let f(x) be a polynomial in F [x] of degree n > 1 and P an
element of Ck(f) for some k ≥ 1. Assume f is monic and centered and P (x) =∑k

i=0 bix
i. Then:

(1) For some j = 1, 2, . . . , n− 1, bk = ρj where ρ is a primitive (n− 1)st root of
unity.

(2) bk−1 = 0.

Proof. The first result follows easily by comparing the degree kn coefficients in
f ◦P = P ◦ f . Using this result and comparing the degree kn− 1 coefficients yields
the second. �
Corollary 2.4. Let f(x) be a polynomial in F [x] of degree n > 1 and P (x) �= x an
element of Ck(f) for some k ≥ 1. Then f is centered if and only if P is centered.

Proof. Assume f is centered. By the proof of Proposition 2.2, f is similar to a
monic polynomial via λ(x) = ax. Such a similarity does not affect centering, so
without loss of generality, we may assume f is centered and monic. Then P is
centered by part (2) of Proposition 2.3.

A similar argument proves the converse unless deg(P ) = 1, that is, unless P (x) =
bx, where b �= 0, 1. However, if f(x) = anxn + an−1x

n−1 + O(xn−2), and an �= 0
and an−1 �= 0 then f(bx) = bf(x) yields bn = b = bn−1 which implies b = 0, 1.
Thus, f must be centered. �
Corollary 2.5. Let f(x) be a monic, centered polynomial in F [x] of degree n > 1.
Then any self-similarity λ of f , is of the form λ(x) = ρjx where ρ is a primitive
(n − 1)st root of unity.

Proof. Since f commutes with λ, this follows immediately from Proposition 2.3.
�

Corollary 2.6. Let f(x) be a polynomial in F [x] of degree n > 1. Then the order
of Sf is less than or equal to n − 1.
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Proof. By Proposition 2.2, f is similar to a monic, centered polynomial g. The
result follows since the order of Sf equals the order of Sg which is less than or equal
to n − 1 by Corollary 2.5. �

This sets the stage for the main results of the paper.

Theorem 2.7. Let f(x) be a polynomial in F [x] of degree n > 1 and assume
P, Q ∈ Ck(f) for some k ≥ 1. Then Q = λf ◦ P where λf ∈ Sf .

Proof. By Proposition 2.2, f is similar to a monic, centered polynomial g via a
similarity λ(x) ∈ F [x]. If g(x) = xn +

∑n−2
m=0 amxm and P̂ = λ−1Pλ and Q̂ =

λ−1Qλ, then, using Proposition 2.3, we see that

P̂ (x) = ρixk +
k−2∑
m=0

bmxm and

Q̂(x) = ρjxk +
k−2∑
m=0

cmxm,

where all coefficients of the polynomials are in F and ρ is a primitive (n− 1)st root
of unity. Let α = j − i; we will show that Q̂ = ραP̂ and that λg(x) = ραx is a
self-similarity of g.

To that end, let r(x) = ραP̂ (x) − Q̂(x), and note that deg(r(x)) = t < k or
r(x) = 0. Then, setting an = 1 and an−1 = 0, we have

r(g(x)) = ραP̂ (g(x)) − Q̂(g(x)) = ραg(P̂ (x)) − g(Q̂(x))

= ρα
n∑

m=0

am(P̂ (x))m −
n∑

m=0

am(Q̂(x))m

= an(ρα(P̂ (x))n − (Q̂(x))n) + O(xk(n−2))

= (ραP̂ (x) − Q̂(x))

(
n−1∑
s=0

(ραP̂ (x))n−1−s(Q̂(x))s

)
+ O(xk(n−2)).

Note that

deg

[
n−1∑
s=0

(ραP̂ (x))n−1−s(Q̂(x))s

]
= k(n − 1),

since the leading coefficient, that is, the degree k(n − 1) coefficient, is
n−1∑
s=0

(ρα)n−1−s(ρi)n−1−s(ρj)s =
n−1∑
s=0

(ρj)n−1−s(ρj)s =
n−1∑
s=0

1 = n.

Comparing degrees in the two sides of the equation for r(g(x)), we see that tn =
deg(r(g(x))) = t + k(n− 1), which implies that t = k. This is a contradiction since
t < k, and therefore r(x) = 0 and Q̂ = ραP̂ .

To see that λg(x) = ραx is a self-similarity of g, observe that g(Q̂(x)) = Q̂(g(x))
implies

g(ραP̂ (x)) = ραP̂ (g(x)) = ραg(P̂ (x)).
Letting P̂ (x) = u, we have g(ραu) = ραg(u) as desired.

We define λf = λ ◦ λg ◦ λ−1 = Φ−1
1 (λg) where λ is the similarity chosen at the

beginning of the proof and Φ1 : Sf → Sg is the isomorphism described at the
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beginning of this section. Thus, λf ∈ Sf and λg = Φ1(λf ) = λ−1 ◦λf ◦λ. It follows
that

Q̂ = λg ◦ P̂

λ ◦ Q̂ ◦ λ−1 = λ ◦ λg ◦ P̂ ◦ λ−1

λ ◦ λ−1 ◦ Q ◦ λ ◦ λ−1 = λ ◦ λ−1 ◦ λf ◦ λ ◦ λ−1 ◦ P ◦ λ ◦ λ−1

Q = λf ◦ P

which completes the proof. �
The idea of the proof above is similar to that used by Rivlin [7, Theorem 4.2,

page 194] to prove that a degree 2 polynomial with coefficients in the real numbers
can commute with at most one polynomial of a given degree. The generalization of
this result to polynomials of arbitrary degree greater than one follows as an easy
corollary to Theorem 2.9 below.

Lemma 2.8. Let f(x) and λ(x) be polynomials in F [x] with deg(f) > 1 and
deg(λ) = 1. Assume P ∈ Ck(f) for some k ≥ 1. Then λ ◦P ∈ Ck(f) if and only if
λ ∈ Sf .

Proof. Assume λ ◦ P ∈ Ck(f), that is, λ ◦ P ◦ f = f ◦ λ ◦ P . Composition with
λ−1 yields P ◦ f = λ−1 ◦ f ◦ λ ◦ P and so

f ◦ P = P ◦ f = λ−1 ◦ f ◦ λ ◦ P.

Thus, f = λ−1 ◦ f ◦ λ, and λ ∈ Sf .
Conversely, assume λ ∈ Sf . Then

f ◦ λ ◦ P = λ ◦ λ−1 ◦ f ◦ λ ◦ P

= λ ◦ f ◦ P

= λ ◦ P ◦ f

as desired. �
Theorem 2.9. Let f(x) be a polynomial of degree strictly greater than one in F [x]
and suppose that Ck(f) is nonempty for some k ≥ 1. Then the number of elements
in Ck(f) is the order of the group Sf .

Proof. Let P ∈ Ck(f) and define Ψ : Sf → Ck(f) by Ψ(λ) = λ◦P . By Lemma 2.8,
Ψ(λ) ∈ Ck(f), and since P is nonconstant, it follows easily that Ψ is injective. That
Ψ is a surjection, follows immediately from Theorem 2.7. �

Theorem 2.9 and Corollary 2.6 now give the following:

Corollary 2.10. Fix an integer k ≥ 1 and let f(x) be a polynomial in F [x] of
degree n > 1. Then there are at most n − 1 polynomials of degree k that commute
with f .

It is natural to ask exactly which polynomials f ∈ F [x] admit a nontrivial
self-similarity group Sf . The answer is based on an obvious generalization of odd
polynomials. Recall that a polynomial f ∈ F [x] is odd if and only if f(−x) = −f(x);
that is, if and only if λ(x) = −x is a self-similarity of f .

Definition 2.11. Let f(x) ∈ F [x] and m > 1 an integer. Then f is m-odd if
f(ωx) = ωf(x) where ω is a primitive mth root of unity.
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Said another way, f is m-odd if and only if λ(x) = ωx is a self-similarity of f .
Recall that f is an odd polynomial if and only if f(x) = xg(x2) where g(x) ∈

F [x]. Similarly, it is easy to show that f is m-odd if and only if f(x) = xh(xm)
where h(x) ∈ F [x]. Thus, a polynomial is odd if and only if it is 2-odd. Moreover,
any mk-odd polynomial is also m-odd.

Lemma 2.12. Let r > 1 and m > 1 be integers with least common multiple t.
Assume f ∈ F [x]. Then f is r-odd and m-odd if and only if f is t-odd.

Proof. Assume f is both r-odd and m-odd. Then

f(x)
x

= g(xm) = h(xr).

Thus, nonzero coefficients of f(x)/x may occur only in terms of degree a nonnegative
multiple of both m and r, that is, in terms of degree a multiple of t. Therefore,

f(x)
x

= p(xt).

The converse follows immediately. �

In order to characterize those polynomials with nontrivial self-similarity group,
we first note that by the proof of Proposition 2.2, it follows that a similarity between
centered polynomials must be of the form λ(x) = ax where a is a nonzero element
of F . Thus, if f and g are similar centered polynomials, the nonzero coefficients
of f correspond precisely to the nonzero coefficients of g. But m-odd polynomials
are centered. Therefore, a given centered polynomial h is similar to an m-odd
polynomial if and only if h is m-odd.

Theorem 2.13. Let f(x) be a polynomial in F [x] of degree strictly greater than
one and let m > 1 be an integer. Then f is similar to an m-odd polynomial but not
an mk-odd polynomial for any k > 1 if and only if Sf has m elements.

Proof. By the remarks preceding the theorem, we may assume that f is monic,
centered and m-odd (but not mk-odd). Therefore, f(ωx) = ωf(x) where ω is a
primitive mth root of unity, which implies

Sf ⊇ {λj(x) = ωjx | j = 1, 2, . . . , m}.
Now let λ(x) = ρx ∈ Sf where ρ is an rth root of unity. Then f is m-odd and r-odd
and so by Lemma 2.12 it is t-odd, where t is the least common multiple of r and
m. By assumption, we must have t = m whence r divides m and ρ = ωj for some
j = 1, 2, . . . , m. Thus, Sf has m elements.

To prove the converse, let Sf have m elements and let g be a monic, centered
polynomial similar to f . Then g has exactly m self-similarities, and all must be
of the form λ(x) = ρx where ρ is a root of unity. Since the order of the group Sg

equals the order of Sf which is m, we must have ρm = 1 for all elements of Sg.
Thus g is m-odd. If g were mk-odd, where k > 1, then Sg and Sf would have more
than m elements, a contradiction. �

This result can be written in a slightly different form.

Corollary 2.14. Let f(x) be a polynomial in F [x] of degree strictly greater than
one and let m > 1 be an integer. Then Sf has m elements if and only if f is
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similar to a polynomial of the form xg(xm) with g(x) ∈ F [x] but not similar to any
polynomial of the form xh(xr) where h(x) ∈ F [x] and r > m.

The question of which f have nontrivial self-similarity groups Sf becomes more
interesting when f is a rational function and Sf is a subgroup of PGL2(F ) =
Aut(P1). In this situation, the groups that appear are the classical symmetry
groups of the regular solids (see [8]).

We now apply the above results to the Chebyshev polynomials.

Theorem 2.15 (Bertram). Let {Tn}n>1 be the sequence of nonlinear Chebyshev
polynomials, and let P (x) ∈ F [x] with deg(P ) = k > 1. If P commutes with at
least one Tn, then P = Tk if n is even, and P = ±Tk if n is odd.

Proof. Each polynomial in the sequence {Tn}n>1 is centered. Observe that if n is
even, then Tn is not m-odd for any m and by the remarks preceding Theorem 2.13,
not similar to an m-odd polynomial for any m. Thus Tn admits no nontrivial self-
similarities and P = Tk. If n is odd, Tn is 2-odd and again, by the remarks above,
not similar to an m-odd polynomial for any m > 2. Thus STn = {x,−x} which
implies P = ±Tk. �
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