
COMMUTING PROJECTIONS WITH ASSIGNED RANGES
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1. Let § be a Hubert space. A projection is a bounded idempotent

linear operator. Orthogonal projections form a proper subclass of the

class of all projections. A problem is to get a condition for there to

exist commuting projections E\, • • • , En with the same ranges as

given orthogonal projections Pi, • • • , P„ respectively. This will be

settled in terms of properties of the sublattice, generated by Pi,

• • • , Pn in the lattice of all orthogonal projections. In case n = 2,

commuting projections with minimum norms are constructed. An-

other problem is to find commuting projections £1, •••,£„ in a

Hubert space Ä, containing § as a subspace, such that PjX=PEjX for

r£§, j = l, 2, • • • , n, where P is the orthogonal projection from $

onto ÍQ. This will be proved to be always possible.

2. Let P and Q be orthogonal projections with ranges SDÎ and 3Î

respectively. Then P/\Q and P\JQ will denote the orthogonal pro-

jections onto SDÍPiSÍ and the closure of S0Î+9Î respectively. UDÎOÎJÏ

will stand for the subspace fflfMfflr^yi)L and P0Ç? is the orthogonal

projection onto it.

If there exist commuting projections £ and F with ranges 5DÎ and

9t respectively, ST/í+íí becomes the range of the projection £ + F

—£F, therefore it is a closed subspace.

If, conversely, SDÍ+^l is closed, in view of the well-known theorem

of Kober (see [3]) the operators £' and F', which assign to each

sGSDÎ + SÎ the elements u-\-v and u+w respectively, are continuous,

where u, v and w are uniquely determined by the relation x = u+v+w

with MGSDînft, î>e$D?e9î and wGSiOfflî. Then the operators £
= £'(PV0 and F=F'(P\/Q) are commuting projections with ranges

SDÎ and 3Î respectively.
It was shown by Mackey [3, p. 166] that the closedness of STJÎ-f-^

is equivalent to the property that (PV0A(?' = (PA(?')V<2forevery

orthogonal projection Q' with QúQ'-

Suppose again that there exist commuting projections £ and F

with ranges 50? and SSI respectively. Since the commutativity implies

that EyiQWlC\R for any x, yG§, (PBQ)x and EQy are orthogonal,

therefore

||(Pe<2)*ll2 á \\(PBQ)x - EQy\\* á ||£||2-||(Pe Q)x - Qy\\\
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Since, for fixed x, the minimum of \\(PBQ)x — Qy\\*, y£§ is equal to

|| (Pe<?)*|| * -1| Q(PBQ)x\\2, it follows that

\\Q(POQ)x\\*< {1 -||£|h}.||(PeeHI2.

consequently

||(eep)(pee)||2ái-||£||-2<i)

because

(QBP)(PBQ) = Q(PBQ).

Suppose, conversely, that \\(Q&P)(P&Q)\\ <1. Then both /
~(QBP)(PBQ) and I-(P0Q) (QOP) have bounded inverses and
the operators

£o = paQ + (peQ){i - (qep)(peQ)}-x-(/ -qbp)

and

Fo = PaQ + (Ö e P){/ - (P O Q)(Q 0 P) }-»■(/ -P6Ö)

are commuting projections with ranges 3D? and 91 respectively. This

can be seen by using the expansion

{i - (q e p)(p e 0}-1 = ¿[(66 PKP e e)]-.
n-=0

The definition shows that E0F0=PAQ and E0+F0-E0F0 = P\JQand
that Eo(I-Fo) and F0(I—Eq) have the same ranges as P0<2 and

Q0P respectively. Then it follows that

||z||2 - ||PoP,*||2 è ||(PVQ - PAQ)*||S

= \\E0(I-F0)x + F0(I-E0)x\\*

^ {i - IKe e p)(p e e)||2} -||Po(/ - Po)HI2,

therefore

\\x\\*^ {i-||(QeP)(pee)||2}||£o*|K

which, together with the inequality already obtained, implies that

II Poll = {l-lKeePXPee)!!*}-1'».
The norm of F0 is shown to have the same value.

It is desired to give an expression for the quantity || (QBP) (PBQ)\\

in terms of P\/Q and PAQ.

Lemma. ||(Q0P)(P0Q)|| =||PVÖ+PAÖ-P-Q||.
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Proof. Since

PVQ + PAQ - p - Q = (p e Q) v (Q e p) - (P e e) - «2 e p)

and   (POÖ)A(öeP)=0,  it suffices  to  prove   ||/-P-<2|| =||(?P||
under the assumption that PA<2 = 0 and P + Q = I.

Since it is known [l, p. 70] that

||/ - P - e|| = Max{||QP||, ||(/ - QKI - P)\\},

the assertion is true in case \\QP\\ = 1. If \\QP\\ < 1. in view of the fore-

going result there exist the unique commuting projections £ and F

with the same ranges as P and Q respectively and their norms are

equal to {1 — ||(2P||2}-1. On the other hand, £* and F* are the unique

commuting projections with the same ranges as I — Q and I—P re-

spectively. The same discussion is applied to get

||£|| =||£*|| = {1 - ||(7 -P)(/- Q)W'\

therefore

||(/-P)(/-Q)|| =||ÇF||.

Use, finally, the relation

||(/-P)(/-G)|| = ||(7-0(7-P)||.

In view of this lemma, the preceding results can be summarized in

the following theorem.

Theorem 1. For a pair of orthogonal projections P, Q the following

conditions are mutually equivalent:

(1) there exist commuting projections E and F with the same ranges

as P and Q respectively;

(2) (PVÇ)AÇ' = (P'A0')V Q for every orthogonal projection Q' with

(3) \\PVQ+PAQ-P-Q\\<1. When one (and all) of these conditions
is fulfilled, there exist such commuting projections £o and F0 with mini-

mum norm:

\\Eo\\ = ||P,|| = {1 - ||PV<2 + PAO - P - Oil2}"1'2-

A related problem is to ask when there exist doubly commuting

projections £ and F, i.e. EF—FE and E*F= FE*, with the same

ranges as P and Q respectively. The answer is, however, quite simple.

It is the case (when and) only when PQ = QP. In fact, since the range

of the projection I — E* is the orthogonal complement of the range of

£ and is invariant under F by the double commutativity, the range
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of E reduces F, i.e. FP=PF. A similar argument yields PQ = QP.

3. Let Pi, • • • , P„ be orthogonal projections with ranges SJii,

• • ■ , 5D?„ respectively. Consider the sublattice L(Pi, ■ ■ • , Pn),

generated by Pi, • • • , P„ in the lattice of all orthogonal projections,

and the sublattice L(9J?i, • • • , Ü02J, generated by $D?i, ■ • • , 3Din in the

lattice of all (not necessarily closed) subspaces. If the lattice

L(Wi, • • • , 9DÎ«) consists of closed subspaces only, it is isomorphic to

the lattice L(Pi, • • • , P„).

Theorem 2. For orthogonal projections Pi, ■ ■ • , Pn the following

conditions are equivalent:

(1) there exist commuting projections Pi, ■ ■ ■ , E„ with the same

ranges as Pi, • • • , P„ respectively;

(2) the sublattice L(PU • ■ ■ , P„), generated by Pi, • • • , P„ in the

lattice of all orthogonal projections, is distributive and possesses one (and

both) of the following equivalent properties:

(a) ||pve+PAe-p-ell<i/orP,ee£(Pi, ■ • -.p.),
(b) (PV<2)AÇ' = (PA<2')VO for P, QEL(Plt ■ ■ ■ , Pn) and for

every orthogonal projection Q' with Q ̂  Q'.

Proof. Suppose that the condition (1) is fulfilled, then the lattice

¿(SDîi, • • • , SDî„) is distributive, where 3J?y is the range of P„ j= 1, 2,

•••,«. In fact, for any three members %, yi2, % in it there exist

commuting projections  Fu  F2,  F3,  which are polynomials of £1,

••-,£„ and have ranges %, %, % respectively. Since (üfti+^OC^s

becomes the range of the projection Fi(I— F2)F3 + F2F3, it follows that

(9t! + m2) r\ 9c3 = (3îi r\ 9?3) + (yi2 r\ 3î3).

Further every member of L(2)îi, • • • , 9Jîn) is a closed subspace,

because it is a range of a projection. Then in view of Theorem 1 and

the comment preceding Theorem 2, the lattice L(Pi, • • • , P„), which

becomes isomorphic to the lattice L(3)Ji, • • • , Wn), is distributive

and possesses the properties (a) and (b).

Suppose, conversely, that the condition (2) is fulfilled. Then as in

the above discussion, the lattice L(3Di?i, • • • , $Jln) is distributive and

consists of closed subspaces only. Now let /¿(or Lk) denote generally

a set, consisting of k integers in {1, 2, • • • , n}. Put for k and Jk

m(jk) = n ms,    m«> = Jj m(jk)
j£Jk all Jt

and

Wk) = $Wk) e 9fl(*+1\     (9Jî(n+1) = {0}).
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Let us prove by induction that

2K/= ¿E9K/*),      /- 1,2, ••-,»•

This is trivial for w = l. Assuming that the assertion is generally

true for n — 1, consider the subspaces ÎD?* = 9Jîy09?î„, .7 = 1, 2, • • •,

n-í and define subspaces a»*(/*), 9W*(t) and 9l*(/t) (with /*

C{l, 2, ■ ■ ■ , n-l}) from SDii*, • • • , SD?*.! just as SW(/*), SR(Ö and
yi(Jk) were defined from UDÎi, • • • , 5DÎ„. Then the distributivity shows

that

an*»> = £ [9ttB n âne/»)] = ímB n sw(*+i>;

hence 9î*(Ji) = 9i(y*, «). Since the property, in question, of

£(90îi, • • • , SDU implies that the lattice L(W, • • • , 9W*_i) is dis-
tributive and consists of closed subspaces only, it follows from the

induction assumption that

m - ¿ s 9i*(/*),   y = i- 2, •■•,»-1.

But this can be written in the form

SRyna«,- ¿ £ gi(/*).

A similar argument proves that for any distinct i,j

a»yna»,= £ £ w*).
*-2 i,jejk

Since for any j the distributivity implies that

3Wi = SR(/) + 3fc n sw<2> = sßü) + £ (sw> n 2W<),

the above result yields the required expression for SDÎy.

Next let us prove linear independence of the family of all nontrivial

9J(Jt)'s. To this end. it suffices to prove that for any Jk

9i(/*)n { £ 5i(£t) + m<*+ii\ - {0},

because 9î(/,)ç:gji(*+1) whenever £ <i. The assertion results from the

following relations, based on the distributivity
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m(jk) n i E 5»(¿») + 2K(*+1,| ç ük(/*)

^ i E sw(£») + 5W(t+1)| = 2JKA) n anti+i>.
V L*Alk '

Now since 9î(/it)'s have the closed sum 3JÎ(1), in view of Kober's

theorem there exist mutually annihilating projections E(Jk) with

ranges ^Sl(Jk) respectively. Then the operators

Ef -   ¿ E P(/*),       / = 1, 2, • • • , «,

are commuting projections with ranges W.,-. This completes the proof.

Corollary. Let each of two families of orthogonal projections

{Pi, • • • , P„] and {Q\, ■ • • , Qm] satisfy the condition in Theorem 2.

If each P, commutes with all Qj, then the combined family {Pi, • • • , Pn,

(?i> ' * • 1 Qm} satisfies the same condition, too.

Proof. With the same notations as in the proof of Theorem 2, each

subspace in L(9Jîi, • • • , SDî„) is invariant under all Q¡ ,hence so is

each yi(Jk), which leads to the commutativity of each £, with all Q¡.

Similar argument shows that there exist commuting projections

Pi. • • • 1 Pm which have the same ranges as Qit • • ■ , Qm respectively

and commute with all £¡.

4. When § is imbedded in a larger Hubert space ®, a linear opera-

tor 5 in ® is called a dilation of a linear operator T in §, in case

Sx = PTx for #£§, where P is the orthogonal projection from $

onto §.

In a previous paper [2] we proved that if a pair of orthogonal

projections admits dilations which are commuting orthogonal projec-

tions, then they necessarily commute with each other. In this con-

nection the following theorem is of interest.

Theorem 3. Orthogonal projections P\, • • ■ , P„ admit dilations

Ei, • • ■ , En, which are commuting projections.

Proof. Consider the orthogonal sum

Ä = § © §1 © • • • © §„

where each §,- is a copy of §. Imbed § and JQ¡ canonically into $. The

isomorphism from § to §y will be denoted by If. Consider ra + 1 sub-

spaces defined by
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%■ = {(Py + /yPy)*; * G $},       j = 1, 2, ■ • • , n

and

31 {(*-¿Py-¿//P/)*;*e$j.

Then it is easy to see that these subspaces are linearly independent

with a closed sum; therefore in view of Kober's theorem there exist

mutually annihilating projections £i, • • • , £„ with ranges 9ti,

• ■ • , yin respectively. Since each *:£§ is written in the form

* = £ (Pi + ijPi)* + (i - £ Pi - £ //P/V>
3=1 \ 3=1 3-1 /

it follows that EjX = PjX+IjPjX, which means that E¡ is a dilation of

Pi-
The author wishes to express his gratitude to Professor T. Ando

for his valuable advice.
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