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COMMUTING TRACES OF BIADDITIVE MAPPINGS,
COMMUTATIVITY-PRESERVING MAPPINGS

AND LIE MAPPINGS

MATEJ BRESAR

Abstract. Biadditive mappings B: R x R —> R where R is a prime ring
with certain additional properties, satisfying B(x, x)x = xB(x, x) for all
x £ R, are characterized. As an application we determine the structures of
commutativity-preserving mappings, Lie isomorphisms, and Lie derivations of
certain prime rings.

Introduction, notation, and statements of the results

Throughout, F and F' will represent associative rings. The center of F
and F' will be denoted by Z and Z', respectively. We first recall a few facts
concerning prime rings. Let F be a prime ring (i.e., aRb = 0 implies a — 0
or b = 0). We will sketch the construction of Martindale's extended centroid
of F (see [23] and [17] for details). Define an equivalence relation on the set
of all pairs (U, f), where U is a nonzero ideal of F and /: U —► F is a right
F-module mapping of U into F, by (U, f) ~ (V, g) if f = g on some
nonzero ideal W C U n V . The set Q of all equivalence classes forms a ring
under the operations induced by addition and composition of representatives
of the equivalence classes. F embeds in Q as left multiplication on F. The
center C of Q is a field containing the centroid of F. C is called the extended
centroid of F . The C-algebra RC + C is called the central closure of F . A
prime algebra A over a field F is said to be a centrally closed prime algebra
over F if the center of A is F1 , where 1 is the unit element of A , and A is
its own central closure, i.e., the extended centroid of A is just Fl. The central
closure of any prime ring is a centrally closed prime algebra over the extended
centroid.

Throughout, by C and C we denote the extended centroid of a prime ring
F and R', respectively.

A mapping f of R into itself is called commuting if [f(x), x] = 0 for all
x e R, where [u, v] denotes the commutator uv-vu. In [34] Posner initiated
the study of commuting and related mappings. He proved that if a prime ring
F admits a nonzero derivation d satisfying d[(x), x] e Z for all x e R (such
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mappings are called centralizing), then F is commutative. Over the last twenty
years a lot of work has been done on some additive commuting and centralizing
mappings, especially derivations and endomorphisms; we refer the reader to
some recent papers [2, 3, 5, 6, 7, 9, 10, 20, 36] where further references can be
found. In our forthcoming paper [6] the description of all additive commuting
mappings of a prime ring F is given. It is shown that every such mapping f
is of the form f(x) = Xx + Ç(x) where X is an element in C and Ç is an
additive mapping from F into C. The analogous result was obtained for von
Neumann algebras [5].

It seems that the first result on commuting mappings which are not additive
was given by Vukman [36]. He proved that if d is a derivation of a prime
ring F of characteristic not 2, such that the mapping q(x) = [d(x), x] is
commuting, then q = 0 (that is, d is commuting). In [7] we generalized this
result by showing that the same conclusion holds for any additive mapping. In
this paper we will, using methods similar to those in [7], describe all commuting
traces of biadditive mappings on certain prime rings. By a trace of a biadditive
mapping on a ring F we mean a mapping q: R -> F such that q(x) = B(x, x),
x e R, for some biadditive mapping B: R x R —> F. We will prove

Theorem 1. Let R be a prime ring of characteristic not 2, and let q: R —> F be
a trace of a biadditive mapping. Suppose that q is commuting. If R does not
satisfy 54 then q is of the form

q(x) = Xx2 + p(x)x+ v(x)   forallxeR,

where X is an element in C, p is an additive mapping of R into C, and v is
a mapping of R into C.

Of course, Theorem 1 is a continuation of some our results mentioned above
[6, 7]. However, our main motivations for the study of commuting traces of
biadditive mappings were the problems concerning commutativity-preserving
mappings, Lie isomorphisms, and Lie derivations.

By a commutativity-preserving mapping we mean a mapping 6: R —> F'
satisfying [x, y] = 0 implies [6(x), 9(y)] — 0. The obvious examples are
mappings of the form

(1) 6(x) = ctp(x) + f(x),       xeR,

where c e Z', tp is an isomorphism or an anti-isomorphism of F into F',
and / is a mapping from F into Z'. The goal is to show that in certain
cases these are in fact the only examples. It seems that the first result in this
direction was given by Watkins [37] for the case where R = R' is the algebra
of « x « matrices, n > 4, over a field, and 6 is a bijective linear operator.
Also, a simple counterexample was constructed for n = 2. Subsequently, in
the series of papers [1, 11, 12, 33, 35] on commutativity-preserving mappings
of matrices, the authors have refined Watkins's result in several ways; in par-
ticular, it has turned out that the result is also true for n = 3, and that the
similar conclusion holds for linear operators which preserve commuting pairs
of symmetric matrices. The paper [12] of Choi, Jafarian, and Radjavi also con-
tains some extensions of these results to the algebra of bounded linear operators
on an infinite-dimensional Hubert space. Further, Omladic [32] proved that if
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L(X) is the algebra of all bounded linear operators on a nontrivial complex Ba-
nach space X, then every bijective linear operator 0 : L(X) —► L(X) preserving
commutativity in both directions (i.e., x and y commute if and only if 6(x)
and 6(y) commute) is of the form (1). In [31] Miers obtained the analogous
result for bijective, Minear operators of von Neumann factors (i.e., prime von
Neumann algebras).

We will study commutativity-preserving mappings in rather general algebras.
In fact, we will consider the mappings 0 satisfying the weaker assumption
that for every element x the elements 6(x) and 6(x2) commute. There is a
simple connection between such mappings and commuting traces of biadditive
mappings. Indeed, let 6: R —> F' be a bijective additive mapping satisfying
[6(x2), 0(x)] = 0 for all x e R; that is, [0(0-'(0(x))2), 6(x)] = 0, and
therefore,

(2) [0(0~'(y)2),y] = O   for all y e R'.

That is, the mapping y h-> 0(0_1(y)2), which is a trace of the biadditive map-
ping (y, z) i-> 6(6~x(y)d~x(z)), is commuting.

Applying Theorem 1 we will be able to prove

Theorem 2. Let A and A' be centrally closed prime algebras over a field F.
Suppose that the characteristic of A1 is different from 2, and suppose that F ^
GF(3). Let 0 : A —> A' be a bijective linear mapping satisfying [6(x2), 6(x)] =
0 for all x e A . If neither A nor A' satisfies S4 then

6(x) = c<p(x) + f(x)   for allxe A,
where c e F, c ^ 0, tp is an isomorphism or an anti-isomorphism of A onto
A', and f is a linear mapping from A into the center of A'.

Mathieu [27] introduced the notion of an ultraprime normed algebra: a com-
plex normed algebra A is called ultraprime if there exists a constant a > 0 such
that for any a, b e A , the norm of the operator x 1-+ axb is at least a\\a\\ \\b\\.
Every ultraprime algebra is, of course, prime, while the converse is not true.
However, there are many important examples of ultraprime normed algebras,
e.g., finite-dimensional prime normed algebras, prime C*-algebras, and subal-
gebras of L(X) that contain all finite rank operators. Every ultraprime algebra
with unit element is centrally closed over the complex numbers. Thus Theorem
2 generalizes Miers' result [31] from prime von Neumann algebras to general
prime C*-algebras. Also, Theorem 2 implies that Omladic's result [32] holds
for all subalgebras of L(X) which contain the identity and all finite rank op-
erators. Besides, in both cases the assumption that the mapping 0 preserves
the commutativity in both directions can be replaced by the weaker assumption
that 8(x) and 6(x2) commute for every x.

A Lie isomorphism of a ring F onto a ring F' is a bijective additive mapping
0: R ^ R' which preserves commutators, i.e.,

e([x,y]) = [6(x),9(y)]   fora\\x,yeR.
In [18] Hua showed that every Lie automorphisms of the ring F of all n x n
matrices over a division ring, n > 3, is of the form tp + x, where (p is either
an automorphism or a negative of an antiautomorphism of F and t is an
additive mapping of F into Z sending commutators to zero. Somewhat later,
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in the series of papers [21, 24, 25] Martindale has extended Hua's theorem to
more general rings. The deepest result in this series [25, Theorem 11] states
that if F is a prime ring with unit element 1, of characteristic different from
2 and 3 and containing two nonzero idempotents whose sum is 1, then every
Lie isomorphism of F onto a prime ring F' with unit element is of the form
tp + x , where tp is a homomorphism or a negative of an antihomomorphism
of F into the central closure of F' and t is an additive map of F into C
sending commutators to zero. The analogous result for von Neumann factors
was obtained by Miers [28].

Obviously, every Lie isomorphism preserves commutativity. Thus Theorem
2 could be applied. However, it turns out that in the case of Lie isomorphisms
some assumptions in Theorem 2 can be removed. Using the same basic ideas
as in the proof of Theorem 2 we will obtain

Theorem 3. Let R and R' be prime rings such that the characteristic of R' is
not 2. Let 6: R -* R' be a Lie isomorphism. If neither R nor R' satisfies 54
then 0 is of the form tp + x, where tp is a homomorphism or a negative of an
antihomomorphism of R into the central closure of R', <p is one-to-one, and x
is an additive mapping of R into C sending commutators to zero.

An example given in [21] shows that the image of tp need not be contained
in F'.

Martindale [25] posed the question whether the assumption of idempotents,
which is required in all his theorems on Lie isomorphisms is necessary or not
(see also the discussion on Lie and Jordan mappings in [26]). Thus Theo-
rem 3 gives a partial answer to this question. We remark that in the study of
commutativity-preserving mappings the arguments employed by some authors
(e.g., in [12, 31, 32]) also rest heavily on the presence of idempotents.

Suppose that a centrally closed prime algebra A over a field F satisfies 54 .
Then, for any a e A , we have a2 = aia+a2l for some ai, a2 e F (cf. Lemma
1 below). Therefore, every linear mapping 0 of A that preserves the center of
A satisfies [0(x2), 6(x)\ = 0 for all x e A . Thus Theorem 2 is definitive of
its kind. On the contrary, it seems that Theorem 3 still needs some refinement.
We leave as an open question whether or not in Theorem 3, as well as in some
other results in this paper, the assumption that the rings do not satisfy 5* can
be removed.

A bijective additive mapping 0 : F —> R' is called a Lie triple isomorphism
if it satisfies

0([[x, y], z]) = [[6(x), 0(y)], 6(z)]   for all x, y, z e R.

The notion of a Lie triple isomorphism can be viewed as a common generaliza-
tion of both the notion of a Lie isomorphism and a Jordan triple isomorphism
(i.e., bijective mapping 6: R —> R' satisfying 6(xyx) = 6(x)8(y)8(x) (cf. [4
and 15])). In [19 and 29] the authors have showed that in certain rings every
Lie triple homomorphism is either a Lie homomorphism or a Lie antihomo-
morphism. The methods in this paper enable a more direct approach. As a
consequence of Theorem 2 and some of our results in [7] we will obtain

Corollary 1. Let A and A' be centrally closed prime algebras over a field F.
Suppose that the characteristic of A' is different from 2 and 3. Let 6: A —> A'
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be a linear Lie triple isomorphism. If neither A nor A' satisfies 54 then 0 is
of the form

6(x) = ±(p(x) + f(x)   for all xe A,
where <p is an isomorphism or an anti-isomorphism of A onto A', and f is a
linear mapping of A into the center of A'.

Finally, there is the closely connected question of Lie derivations, that is,
additive mappings, d, of F into itself satisfying

d([x, y]) = [d(x) ,y] + [x, d(y)]   for all x, y e R.
It is easy to verify that d satisfies

(3) [d(x2) - d(x)x - xd(x) ,x] = 0   for all x e R.
In view of this observation we will study additive mappings satisfying (3). The
relation (2) can be written in the form [8(6~x(y2)) - y2, y] = 0, and one
observes the analogy with relation (3); using a similar approach as in the proof
of Theorem 2 we will prove

Theorem 4. Let R be a prime ring of characteristic different from 2 and 3.
Suppose that an additive mapping d: R —> F satisfies (3). If R does not satisfy
54 then d is of the form

d(x) = yx + ô(x) + Ç(x)   forallxeR,
where y is an element in C, ô is a derivation of R into its central closure, and
C is an additive mapping of R into C.

A Lie triple derivation is an additive mapping, d, of F into itself satisfying

d([[x, y], z]) = [[d(x),y],z] + [[x, d(y)], z] + [[x, y], d(z)]
for all x, y, z e R.

Clearly, Lie derivations and Jordan triple derivations (cf. [4]) are the special
cases of Lie triple derivations.

In [30] Miers studied Lie triple derivations of von Neumann algebras. There
does not seem to be a ring theoretic analogue of Miers's result. As an application
of Theorem 4 we will, however, obtain one such result.

Corollary 2. Let R be a prime ring of characteristic different from 2 and 3. Let
d be a Lie triple derivation of R. If R does not satisfy 54 then d is of the
form ô + C, where â is a derivation of R into its central closure and Ç is an
additive mapping of R into C.

Adapting the proof of Theorem 3 we will show that the assumption that the
characteristic of F is not 3 can be removed in the case of Lie derivations.

Theorem 5. Let R be a prime ring of characteristic not 2. Let d be a Lie
derivation of R. If R does not satisfy 54 then d is of the form S + x, where
S is a derivation of R into its central closure and x is an additive mapping of
R into C sending commutators to zero.

Theorem 5 can be compared with a result of Martindale [22]. He obtained
the analogous conclusion under the assumption that F is primitive containing
a nontrivial idempotent.
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We close this section by listing a few more or less well-known results which
will be needed in the sequel. First, by standard F7 theory, prime rings satisfying
54 can be characterized in several ways:

Lemma 1. Let R be a prime ring. Then the following statements are equivalent :
(i)   F satisfies 54.

(ii)   F is commutative or R embeds in M2(F) for F afield.
(iii)   F ¿j algebraic of bounded degree 2 over C (i.e., for any a e R there

exists a polynomial x2 + aix + a2 e C[x] satisfied by a).
(iv)   F satisfies [[x2, y], [x, y]].

We will make crucial use of the following lemma.

Lemma 2 [23, Theorem 1]. Suppose that elements a, b in a prime ring R satisfy
axb = bxa for all x e R. If a ^ 0 then b = Xa for some XeC.

The next lemma is a very special case of Posner's theorem on centralizing
derivations (on the other hand, a direct proof can be easily done).

Lemma 3. If a derivation Sofa noncommutative prime ring R maps R into
its center, then S = 0.

Finally, we state another well-known theorem of Posner.

Lemma 4 [34, Theorem 1]. Let R be a prime ring of characteristic not 2. If d
and g are derivations of R such that the composition dg is also a derivation,
then either d = 0 or g = 0.

Proofs

Proof of Theorem 1. There exists a biadditive mapping B: R x R —► F such
that q(x) = B(x, x). Since the characteristic of F is not 2, C contains the
element \ (i.e, the element 1 + 1 is invertible). Therefore we may assume that
B is symmetric (i.e., B(x, y) — B(y, x) for all x, y e R)—otherwise replace
B by the mapping (x, y) h-> B(x , y) + B(y, x).

Replacing x by x + y in [B(x, x), x] = 0 we get
[B(x ,x),y) + 2[B(x ,y),x] + 2[B(x ,y),y] + [B(y ,y),x] = 0

U for all x, y e R.
Take -y for y in (1) and compare the relation, so obtained, with (1). Since
the characteristic of F is not 2 it follows that
(2) [B(x,x),y] + 2[B{x,y),x] = 0   for all x, y e F.
A linearization of (2) gives

[B(x,z),y] + [B(x,y),z] + [B(y,z),x] = 0
U for all x, y, z e R.
Replacing z by zw in (3) we get [B(x, zw), y]+[B(x, y), z]w+z[B(x, y), w]
+ [B(y , zw), x] = 0 . According to (3) this relation can be written in the form

[B(x, zw),y] + [B(y, zw),x]
(4) = [B(x, z), y]w + [B(y, z), x]w + z[B(x, w), y]

+ z[B(y, w), x]   for all x, y, z, w e R.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMMUTING TRACES OF BIADDITIVE MAPPINGS 531

Now fix z, w e R and introduce the mapping M: Rx R —► F by

(5) M(x, y) = [B(x, zw), y] + z[y, B(x, w)] + [y, B(x, z)]w .

On the other hand, from (4) we see that

(6) M(x, y) = [x, B(y, zw)] + z[B(y ,w),x] + [B(y, z), x]w .

By (5) we see that the mapping y i-> M(x, y) is equal to the sum of composi-
tions of inner derivations and one-sided multiplications. Analogously, (6) tells
us that the same is true for the mapping x t-> M(x, y). These two observations
are the concept behind the proof of the theorem.

Comparing (5) and (6) we obtain

(7) M(x,x) = 0   for all JteF.

Consider M(y, xw) where x and y are arbitrary elements in F and w is
the fixed element. Using (5) we obtain

M(y, xw) - [B(y, zw), xw] + z[xw, B(y, w)] + [xw , B(y, z)]w
= [B(y, zw), x]w + x[B(y, zw), w] + zx[w, B(y, w)]

+ z[x, B(y, w)]w + x[w , B(y, z)]w + [x, B(y, z)]w2
= {[B(y, zw), x] + z[x, B(y, w)] + [x, B(y, z)]w}w

+ x{[B(y, zw), w] + z[w , B(y, w)] + [w , B(y, z)]w}
+ [z,x][w, B(y, w)].

Thus
M(y, xw) = M(y, x)w + xM(y ,w) + [z, x][w , B(y, w)]

for all x, y e R.

In particular,

M(xy, xw) = M(xy, x)w + xM(xy, w) + [z, x][w, B(xy, w)]
' for all x, y e R.

In view of (9) we now consider the expression M(xy, u). From (6) it follows
that

M(xy, u) = [xy, B(u, zw)] + z[B(u, w), xy] + [B(u, z), xy]w
= x[y, B(u, zw)] + [x, B(u, zw)]y + zx[B(u, w), y]

+ z[B(u ,w), x]y + [B(u, z), x]yw + x[B(u, z), y]w,

and note that this relation can be written as

(10)     M(xy> u) = xM(y> u) + [z,x][B(u,w),y]
+ M(x, u)y + [B(u, z), x][y, w]   for all x, y, u e R.

In particular,

M(xy, w) = xM(y, w) + [z, x][B(w , w), y]
+ M(x, w)y + [B(w , z), x][y, w].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



532 MATEJ BRESAR

According to (10) and (7) we have M(xy, x) = xM(y, x) + [z, x][B(x, w), y]
+ [B(x, z), x][y, w]. Applying the last two relations in (9) one obtains

M(xy, xw) — xM(y, x)w + [z, x][B(x, w), y]w
+ [B(x, z), x][y, w]w + x2M(y, w)

(11) +x[z, x][B(w , w), y] + xM(x, w)y
+ x[B(w , z), x][y, w] + [z, x][w , B(xy, w)]

for all x, y e R.

With this, the expression M(xy, xw) has been computed in the first way.
We begin the computation in the second way by making use of (10):

M(xy, xw) = xM(y, xw) + [z, x][B(xw , w), y]
(12) +M(x, xw)y + [B(xw, z), x][y, w]

for all x, y e R.

By (7) and (8) we have M(x, xw) = xM(x ,w) + [z, x][w , B(x, w)]. Apply-
ing (8) and the last relation in (12) one obtains

M (xy, xw) = xM(y, x)w + x2M(y, w) + x[z, x][w , B(y, w)]
+ [z,x][B(xw, w),y] + xM(x, w)y
+ [z, x][w , B(x, w)]y + [B(xw , z), x][y, w]

for all x, y e R.

Comparing (11) and (13) we arrive at

[z, x][B(x ,w), y]w + [B(x, z), x][y, w]w + x[z, x][B(w , w), y]
+ x[B(w, z), x][y, w] + [z, x][w , B(xy, w)]

(14) = x[z, x][w , B(y, w)] + [z, x][B(xw , w), y]
+ [z, x][w , B(x, w)]y + [B(xw, z), x][y, w]

for all x, y, z, w e R.

By (2) the following identities hold:

2[B(x, z), x][y, w;]iij = - [B(x, x), z][y, w]w,
2[z, x][w , B(xy ,w)]= - [z, x][xy, B(w , w)],
2x[z, x][w, B(y ,w)]= - x[z, x][y, B(w , w)].

Multiply (14) by 2 and apply the above identities. The relation which we obtain
can be written in the form

2[z, x]B(x, w)yw - 2[z, x]yB(x, w)w - [B(x, x), z]yw2
+ [B(x, x), z]wyw + 2x[z, x]B(w , w)y - 2x[z, x]yB(w , w)
+ 2x[B(w , z), x]yw - 2x[B(w, z), x]wy - [z, x]xyB(w, w)
+ [z, x]B(w , w)xy

= -x[z, x]yB(w , w) + x[z, x]B(w , w)y + 2[z, x]B(xw, w)y
- 2[z, x]yB(xw, w) + 2[z, x][w , B(x, w)]y
+ 2[B(xw , z), x]yw - 2[B(xw , z), x]wy.
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That is,

[z,x]yf(x,w) + [x2, z]yq(w) + [z,B(x,x)]yw2
+ f2(x, z, w)yw + f(x, z, w)y = 0   for all x, y, z, w e R,

where

fi(x, w) = 2B(xw , w) - 2B(x, w)w,
f2(x, z, w) — 2[z, x]B(x, w) + [B(x, x), z]w

+ 2x[B(w , z), x] - 2[B(xw , z), x],
fi(x, z,w) = x[z, x]B(w, w) - 2x[B(w , z), x]w

+ [z, x]B(w , w)x - 2[z, x]B(xw, w)
- 2[z, x][w , B(x, w)] + 2[B(xw , z), x]w .

Replacing y by y[z, x]u in (15) we obtain

- [z, x]y[z, x]uf(x, w)
= [x2, z]y[z, x]uq(w) + [z, B(x, x)]y[z, x]uw2

+ f2(x, z, w)y[z, x]uw + f(x, z, w)y[z, x]u.

On the other hand, again using (15), we get

- [z, x]y[z, x]uf (x,w) = [z, x]y(-[z, x]uf (x, w))
= [z, x]y[x2, z]uq(w) + [z, x]y[z, B(x, x)]uw2

+ [z, x]yf2(x, z, w)uw + [z, x]yf(x, z, w)u.

Comparing the last two relations we arrive at

,,,,        ([x2, z]y[z, x] - [z, x]y[x2, z])uq(w)
= gi(x,y, z)uw¿ + g2(x, y, z, w)uw + g3(x, y, z, w)u,

where

g\(x,y,z) = [z, x]y[z, B(x, x)] - [z, B(x, x)]y[z, x],
g2(x,y, z,w) = [z,x]yf2(x, z, w) - f2(x, z, w)y[z, x],
gj(x ,y,z,w) = [z, x]yf(x, z, w) - f(x, z, w)y[z, x].

From Lemmas 1 and 2 it follows that we may pick x, y, z e R such
that the element a = [x2, z]y[x, z] - [x, z]y[x2, z] is not zero. We intro-
duce the element b and the mappings F and of F by b = gi(x, y, z),
F(w) = g2(x, y, z, w), G(w) = g^(x, y, z, w). Observe that F is an addi-
tive mapping. By (16) we have

(17) auq(w) = buw2 + F(w)uw+ G(w)u   for all u, w e R.

Replacing u by zau in (17) we get azauq(w) = bzauw2 + F(w)zauw +
G(w)zau. On the other hand (17) yields

azauq(w) — az(auq(w)) = azbuw2 + azF(w)uw + azG(w)u.

Comparing the last two relations one obtains

(bza - azb)uw2 + (F(w)za - azF(w))uw
(18) + (G(w)za - azG(w))u = 0   for all z, w , u e R.
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Replace u by ux in (18) and compare this relation by the relation which we
obtain by multiplying (18) from the right by x . Then we get

(bza - azb)u[w2, x] + (F(w)za - azF(w))u[w , x] - 0
for all x, z, w , u e R.

Substituting u[w , x]y for u in (19) we obtain

(bza - azb)u[w, x]y[w2, x]
+ (F(w)za - azF(w))u[w , x]y[w , x] = 0.

By (19), the second term in this relation is also equal to

-(bza - azb)u[w2, x]y[w , x].

Hence
(2Q) (bza - azb)R([w , x]y[w2, x] - [w2, x]y[w, x]) = 0

for all z, w , x, y e R.
As we have pointed out above, there exist w , x, y e R such that

[w , x]y[w2, x] ^ [w, x]y[w2, x].

Therefore (20) implies that bza = azb for all z e R. Since a ^ 0 Lemma 2
tells us that b = Xa for some X e C.

Now, (19) reduces to
(F(w)za - azF(w))R[w , x] = 0   for all w , x, z e R.

Hence, for any w e R we have either w e Z or F(w)za = azF(w) for
all z e R. The mapping F is additive and so the set of all elements w
satisfying the last relation is an additive subgroup of F. But a group cannot
be the union of two proper subgroups. By assumption, F is noncommutative
hence F(w)za — azF(w) for all w, z e R. Lemma 2 implies that for any
w e F there exists p(w) e C such that F(w) = p(w)a. Since F is additive
it follows that (p(w + u) - p(w) - p(u))a = 0 for all w , u e R; consequently
p is additive.

We have showed that the first two terms in ( 18) are equal to zero, so it follows
that G(w)za = azG(w) for all w, z e R. Hence, for every w e R we have
G(w) = v(w)a for some v(w) in C.

Applying the last statements in (17) we obtain

au(q(w) - Xw2 - p(w)w - v(w)) = 0   for all u, w , e R.

Since a ^ 0 we are forced to conclude that q(w) - Xw2 + p(w)w + v(w) holds
for all w e R. The proof of the theorem is complete.

Proof of Theorem 2. Taking 6~x(y), y e A', for x in [0(x), 6(x2)] = 0, it
follows that
(1) [y, 0(0-'(y)2)] = O   for all y € ,4'.
That is, the mapping q(y) = 0(0~'(y)2) is commuting. Since q is a trace of
a biadditive mapping B: A' x A' -► A', B(y, z) = d(6-x(y)6-x(z)), all the
requirements of Theorem 1 are fulfilled. By assumption, the extended centroid
of A' is equal to FT where 1' is the unit element of A'. Hence
(2) e(e-x(y)2) = Xy2 + pi(y)y + vl(y)    for all y g A',

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMMUTING TRACES OF BIADDITIVE MAPPINGS 535

where A e Fl', pi is an additive mapping from A' to Fl', and vi is a
mapping from A' to Fl'.

Since the mapping 0 is linear, B is in fact a bilinear mapping. If one glances
through the proof of Theorem 1 one notices that this implies that pi is linear.

We set p = pi8, v = vxQ. Thus p and v are mappings of A into Fl'
and p is linear. Note that the relation (2) can be written in the form
(3) 0(x2) = X6(x)2 + p(x)6(x) + u(x)   for all xeA.

In order to show that X ̂  0 we first prove that 0 maps Fl onto Fl'. Since
0 is linear it suffices to show that the element 0(1) lies in Fl'. Replacing x
by x + 1 in [8(x2), 6(x)] = 0 we obtain

[0(x2) + 26(x) + 0(1), 6(x) + 0(1)] = 0.
Since [0(x2), 0(x)] = 0 this relation reduces to [0(x2 + x), 0(1)] = 0 where
x is an arbitrary element in A. Taking x + 1 for x in this relation we arrive
at 2[9(x), 0(1)] = 0. Since 0 is onto and since the characteristic of A1 is not
2, this means that 0(1) lies in the center Fl' of A'.

Suppose that X = 0. By (3) we then have 0(x2) -p(x)9(x) e FV for every
x e A . Since p maps into Fl' we may write p(x) = g(x)V where g(x) e F ;
consequently 9(x2 - g(x)x) e FV. But then x2 - g(x)x e Fl, as we have
showed. This contradicts the assumption that A does not satisfy 54 (Lemma
1). Thus X^O.

Define the mapping tp : A —> A' by
(4) tp(x) = X9(x) + {p(x).
Of course, tp is a linear mapping. Our goal is to show that tp is a Jordan
homomorphism (i.e., <p(x2) = (p(x)2 for all x e A). According to (3) and (4)
we have

(p(x2) = X6(x2) + \p(x2)
= X26(x)2 + Xp(x)6(x) + Xv(x) + {p(x2),

while
tp(x)2 = (X6(x) + \p(x))2 = X2d(x)2 + Xp(x)6(x) + \p(x)2.

Comparing these two relations we get
(5) tp(x2) - tp(x)2 eFV   for all xeA.
Define the mapping e : A x A -* A' by
(6) e(x, y) = (p(xy + yx) - (p(x)tp(y) - <p(y)<p(x).
Clearly e is a symmetric bilinear mapping. Linearizing (5) we see that e in
fact maps into Fl'. Of course, tp is a Jordan homomorphism if and only if
e(x, y) = 0 for all x, y e A .

Pick x, y e A and consider W = tp(x(xy + yx) + (xy + yx)x). By (6) we
have

W = tp(x)tp(xy + yx) + tp(xy + yx)tp(x) + e(x, xy + yx)
= <p{x){(p(x)(p(y) + (p(y)f(x) + e(x, y)}

+ W(x)<p(y) + <p(y)<P(x) + e(x, y)}(p(x) + e(x, xy + yx)
= <p(x)2<p(y) + 2<p(x)(p(y)q>(x) + <p(y)tp(x)2

+ 2e(x, y)<p(x) + e(x , xy + yx).
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On the other hand,

W = 2tp(xyx) + tp(x2y + yx2)
= 2<p(xyx) + <p(x2)tp(y) + <p(y)<p(x2) + e(x2, y)

= 2tp(xyx) + {(p(x)2 + \e(x, x)}tp(y)
+ <p(y){(p(x)2 + \e(x, x)} + e(x2, y)

= 2tp(xyx) + <p(x)2cp(y) + (p(y)tp(x)2
+ e(x, x)<p(y) + e(x2, y).

Comparing the two expressions so obtained for W, we get

cp(xyx) = tp(x)<p(y)tp(x) + e(x, y)(p(x) - {e(x, x)tp(y)

+ ^e(x, xy + yx) - \&(x2, y).

A linearization of (7) gives

<p(xyz + zyx) = <p(x)<p(y)tp(z) + tp(z)tp(y)tp(x)
+ e(x, y)tp(z) + e(z, y)tp(x)
- e(x, z)tp(y) + ±e(x, zy + yz)

+ \z(z, xy + yx) - \z(xz + zx, y).

Consider U = <p(xyx2 + x2yx). Using (8) we obtain

U = (p(x)(p(y)tp(x2) + (p(x2)(p(y)tp(x) + e(x, y)<p(x2)

+ e(x2, y)<p(x) - e(x, x2)tp(y) + \e(x, x2y + yx2)
+ je(x2 , xy + yx) - e(x3, y).

Since <p(x2) = cp(x)2 + he(x, x) it follows that

U = <p(x)<p(y)<p(x)2 + (p(x)2(p(y)(p(x) + ±e(x, x)tp(x)tp(y)

+ \e(x , x)tp(y)tp(x) + e(x, y)q>(x)2 + e(x2, y)<p(x)
- e(x, x2)tp(y) + \e(x , y)e(x, x) + ^e(x, x2y + yx2
+ js(x2, xy + yx) - e(x3, y).

On the other hand, applying (6) and (7) we obtain

U = tp((xyx)x + x(xyx))
= (p(xyx)tp(x) + (p(x)tp(xyx) + e(xyx, x)
= <p(x)(p(y)(p(x)2 + <p(x)2(p(y)(p(x) + 2e(x, y)<p(x)2

- \e(x, x)(p(y)(p(x) - \e(x , x)tp(x)<p(y)
+ e(x, xy + yx)tp(x) - t(x2, y)<p(x) + e(xyx, x).

Comparing the two expressions so obtained for U, we see that

e(x, x)(p(x)tp(y) + e(x, x)tp(y)tp(x) - e(x, y)(p(x)2
(9) - e(x, x2)<p(y) + (2e(x2, y) - e(x, xy + yx))tp(x) eFV

for all x
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In particular, if x = y , then we have

(10) e(x, x)<p(x)2 -e(x, x2)<p(x) e FV   foralljee^.
Consequently

(11) e(x, x)[[tp(x)2, u], [<p(x), «]] = 0   for all xe A, u e A'.
Suppose that xeA does not satisfy the condition

(12) [[(p(x)2, u], [tp(x), w]] = 0   for all we ,4'.
By (11) we see that in this case e(x, x) = 0. But then also e(x, x2) = 0—
otherwise tp(x) e FV by (10) and so x certainly satisfies (12). Therefore (9)
yields

-e(x, y)(p(x)2 + (2e(x2, y) -e(x, xy + yx))tp(x) e FV   for all y e A.
Since x does not satisfy (12), the above relation implies that e(x, y) = 0 for
all y e A.

Thus we have proved that given xeA, either e(x, y) = 0 for all y e A or x
satisfies (12). Suppose that tp is not a Jordan homomorphism, i.e., e(x, y) ^ 0
for some x, y e A . Suppose further that there is z e A which does not satisfy
(12). We have showed that in this case e(z, y) = 0. Since e(x, y) ^ 0 we
then also have e(x + az, y) / 0 for every a e F . Hence the elements x + az
satisfy (12). By assumption we may choose u e A such that

t = [[tp(z)2,u],[tp(z),u]]¿0.

Since the elements x and x + az , a e F , satisfy (12) it follows that ar +
a2s + ait = 0 for all a e F, where

r = [[q>(x)2, u], [tp(z), u]]
+ [[(p(x)tp(z) + <p(z)tp(x), u], [tp(x), u]],

and

5 = [[<p(x)tp(z) + (p(z)tp(x) , U] , [tp(z) , U]]

+ [[<p(z)2, u], [(p(x), u]].

Replacing a by -a it follows at once that ar + a3/ = 0, a e F ; that is,
r = -a2t for any nonzero a e F. Since F ^ GF(3) this clearly contradicts
the assumption that t ^ 0.

Thus either tp is a Jordan homomorphism or (12) holds for all xeA.
Using (4) and the fact that X / 0, we see that (12) can be rewritten in the form
[[0(x)2, u], [6(x), u]] = 0 for all u e A'. Since 0 is onto it follows from
Lemma 1 that this relation cannot be fulfilled for all x in A. Hence <p is a
Jordan homomorphism.

Assume that <p(x) = 0 for some nonzero xeA. By (4) we see that in this
case 9(x) e FV . At the beginning of the proof we have shown that this yields
x e FI . But then, since tp is linear, we must have tp(l) = 0. Since tp is a
Jordan homomorphism this relation implies that

2<p(y) = tp(ly + yl) = <p(l)<p(y) + (p(y)(p(l) = 0
for all y e A. Thus tp — 0. From (4) it follows that 0 maps A into FV.
However, 0 is onto, so we may conclude that tp is one-to-one.
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Let us write X~x as cV where c e F. From (4) it follows that 6(x) =
ctp(x) + f(x) where f(x) — -\cp(x). Also, f(x) can be written in the form
h(x)V , h(x) e F . We have proved that 0 maps Fl into Fl'. In particular,
(p(\) — aV for some nonzero a e F . Hence the relation 6(x) = ap(x) + h(x)V
can be written as 6(x) — <p(cx + h(x)a~x 1). Consequently tp is onto. A well-
known Herstein's theorem then tells us that tp is either a homomorphism or an
antihomomorphism [13]. The proof of the theorem is thereby completed.

Proof of Theorem 3. Of course, a Lie isomorphism 0 satisfies [6(x2), 6(x)] = 0
for all x e R. First we argue as in the proof of Theorem 2. Observing that
[y, 6(6~x(y)2)] = 0 for all y e R' and then applying Theorem 1, one shows
that
(1) 0(x2) = X6(x)2 + p(x)d(x) + v(x)   forallxeF,

where X is an element in the extended centroid C of F', p and v are
mappings of F into C, and p is additive.

Suppose that X = 0. By (1) we then have 0(x2) - p(x)6(x) e C, and
therefore

e([[x2,y],[x, y]]) = [[6(x2), 6(y)], [d(x), 0(y)]]
= //(x)[[0(x),0(y)],[0(x),0(y)]]
= 0

for all x, y e R. Consequently [[x2, y], [x, y]] = 0 for all x, y e R, which
contradicts Lemma 1. This means that X ̂  0.

Define the mapping tp of F into the central closure of F' by

(2) tp(x) = X6(x) + \p(x),       xeR,
and, as in the proof of Theorem 2, note that

(3) tp(x2) - <p(x)2 e C   for all x e R.

Linearizing (3) we obtain

(4) tp(xy + yx) - tp(x)tp(y) - (p(y)tp(x) e C   for all x, y e F.
By (2) we have

tp([x, y]) = X9([x, y]) + \p([x, y])
= X[d(x),e(y)] + \p([x,y])
= A-1 [A0(x) + \p(x), Xd(y) + \p(y)] + \p([x, y])
= X-x[tp(x),tp(y)] + ±p([x,y]).

Thus

(5) <P([x,y])-X-xW(x),tp(y)]eC   for all x, y e R.

Note that (4) and (5) yield
2<p(xy) - (I + X~x)tp(x)(p(y) - (I -X~x)(p(y)tp(x) e C   for all x, y e R.

That is, the mapping

n(x,y) = tp(xy) - i(l + X-X)tp(x)<p(y) - \(l - X-X)(p(y)<p(x)
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maps from Rx R into C . Denote \(l + X~x) by a. Thus we have

(6) tp(xy) = atp(x)(p(y) + (1 - a)tp(y)<p(x) + n(x, y).

We want to show that n(x, y) = 0 for all x, y e R, and that either a = 0 or
a= 1.

According to (6) we have

<p(xyz) = <p(x(yz))
= atp(x)tp(yz) + (1 - a)tp(yz)tp(x) + n(x, yz)
= aq>(x){a(p(y)<p(z) + (1 - a)tp(z)tp(y) + n(y, z)}

+ (1 - a){atp(y)tp(z) + (1 - a)ç>(z)?»00 + ?7(y, z)}tp(x)
+ n(x,yz)

= a2tp(x)(p(y)(p(z) + a(l - a)tp(x)tp(z)tp(y)
+ a(l- a)(p(y)tp(z)(p(x) + (1 - a)2ç»(z)<?(y)çj(x)
+ rç(y, z)iï>(x) + /7(.x,yz)-

On the other hand,

(p(xyz) = (p((xy)z)
= atp(xy)tp(z) + (1 - a)tp(z)tp(xy) + r\(xy, z)
= a2<p(x)tp(y)(p(z) + a(l - a)<p(y)<p(x)tp(z)

+ a(l- a)(p(z)(p(x)tp(y) + (1 - a)2ç)(z)ç)(y)çj(x)
+ ?/(x,y)^(z)-f>7(xy, z).

Comparing the two expressions thus obtained for tp(xyz), we then get

a(l -a)[ç>(y), [q>(z), q>(x)]]
+ n(y, z)tp(x) - n(x, y)tp(z) eC   for all x, y, z, e R.

Substituting x2 for z in (7) and using (3) we obtain n(y, x2)q>(x)-n(x, y)tp(x)2
e C for all x, y e R. By (2) this relation can be written in the form

-X2n(x, y)d(x)2 + (Xn(y, x2) - Xp(x)n(x, y))6(x) e C
for all x, y 6 F.

Since 0 is onto there exists a e R such that 6(a) is not an algebraic element of
degree at most 2 over C (Lemma 1). We have proved that X ̂  0. Therefore,
taking a for x in (8), we see that n(a, y) = 0 for all y e R. Thus (7) gives

(9) a(l-a)[<p(y),[<p(z),tp(a)]] + n(y,z)<p(a)eC   for all y, z e R.

Our immediate goal is to prove that a - 0 or a = 1 . Suppose this is not true.
Then a(l -a) / 0, so it follows from (9) that [<p(a), [(p(y), [(p(z), <p(a)]]] - 0
for all y, z e R. By (2) this relation can be written as

A4[0(a),[0(y),[0(z),0(ö)]]] = O

for all y, z e R. Since X ± 0 and 0 is a Lie isomorphism, it follows that
[a,[y,[z, a]]] = 0 for all y, z e R. This relation can be written in the form

(10) [[a,y],[z,a]] = [[a,[z,a]],y]   for ally, zgF.
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The element a does not lie in the center Z of F—otherwise 0(a) would lie
in the center of F', contrary to the assumption. In other words, the mapping
i(y) = [a > y] is a nonzero derivation of F. By Lemma 3 there is z e F such
that [z, a] <£. Z . Thus the mapping d(y) = [y ,[z, a]] is a nonzero derivation
of R. But from (10) we see that the composition dg is also a derivation,
which is impossible by Lemma 4. This contradiction tells us that either a - 0
or a = 1.

In any case, q(1 - a) = 0. Hence (9) yields n(y, z)tp(a) e C for all
y, z e R; that is, Xn(y, z)d(a) e C, and, therefore, Xn(y, z)[6(a), u] = 0
for all y, z e R, u e R'. Since X ^ 0 and 0(a) i Z' it follows that
n(y, z) = 0 for all y, z e R.

Suppose that a = 0. Then it follows by (6) that tp is an antihomomorphism.
Recall that a = ±(l + X~x) ; thus X = -1. Set t(x) = \p(x). From (2) we
see that 0(x) = -tp(x) + x(x). Clearly, this relation implies t([x, y]) = 0 for
all x, y e R. Analogously we see that if a = 1 then tp is a homomorphism,
X = 1, and 0(x) = tp(x) + x(x) where t(x) = -\p(x) ; of course, x sends
commutators to zero.

Finally, let us show that tp is one-to-one. If tp(a) = 0 for some a e R, then
0(a) lies in C and so a e Z. Of course, the kernel of tp is an ideal of F.
However, it is easy to see that a noncommutative prime ring does not contain
any nonzero central ideal. The proof of the theorem is thus completed.

Proof of Corollary 1. Given x, z e A , we have

[[0(x2),0(x)],0(z)] = 0([[x2,x],z]) = O.

Since 0 is onto this means that for any x in A the element [0(x2), 0(x)] lies
in the center of Z' of A'. That is, [d(d~x(y)2), y] e Z' for all y e A'. In
other words, the mapping q(y) = 0(0~'(y)2) is centralizing. Of course, q is
a trace of a biadditive mapping. But in [7] we proved that in certain rings, in
particular, prime rings of characteristic different from 2 and 3, every centralizing
trace of a biadditive mapping is commuting. Thus [6(6~x(y)2), y] = 0 for all
yeÄ, i.e., [0(x2), 0(x)] = 0 for all xeA. By Theorem 2, 0 is of the form
0(x) = ctp(x) + f(x), x e A . Thus Corollary 1 will be proved by showing that
c = 1 or c = — 1.

On the one hand we have

0([[x, y], z]) = [[0(x), 0(y)], 0(z)] = c3[[tp(x), tp(y)], tp(z)].

On the other hand,

Ö([[x, y], z]) = ctp([[x, y], z]) + f([[x, y], z])
= c[[tp(x),<p(y)],tp(z)] + f([[x,y],z]).

Comparing the last two relations we obtain

(1) (c3 - c)[[tp(x),<p(y)], <p(z)] = f([[x, y], z]) e Z'.

Take x' e A' such that x' ^ Z'. By Lemma 3 there is y' G A' such that
[x', y'] ^ Z'. Hence, again according to Lemma 3, there is z' g A' satisfying
[[x', y'], z'] ^ Z'. But then, since tp is onto, it follows from (1) that c3 = c.
Theorem 2 asserts that c ^ 0 ; thus c — 1 or c — -1. The proof is complete.
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Proof of Theorem 4. By assumption, the mapping x h-> d(x2) - d(x)x - xd(x)
is commuting. Obviously, this mapping is a trace of a biadditive mapping.
Therefore it follows from Theorem 1 that

(1) d(x2) - d(x)x - xd(x) = Xx2 + p(x)x + v(x),        xeR,
where XeC, p, v are mappings from F into C, and p is additive.

We define ô by
(2) S(x) = i/(x) + Xx + {p(x),       xeR.

Our intention is to show that ô is a Jordan derivation (i.e., ô(x2) = ô(x)x +
xô(x), xeR). By (2) and (1) we have

S(x2) = d(x2) + Xx2 + ±p(x2)

= d(x)x + xd(x) + 2Xx2 + p(x)x + v(x) + \p(x2),

whereas ô(x)x + xô(x) = d(x)x + xd(x) + 2Xx2 + p(x)x. Hence

(3) S(x2) - ô(x)x - xô(x) eC   for all x G F.
Linearizing (3) we see that

(4) 6(xy + yx) = ô(x)y + ô(y)x + xô(y) + yô(x) + p(x, y)
for all x, y G F,

where p is a symmetric biadditive mapping of F x F to C.
Consider A = S(x(xy + yx) + (xy + yx)x). By (4) we have

A = (5(x)(xy -(- yx) + ô(xy + yx)x
+ xS(xy + yx) + (xy + yx)S(x) + p(x, xy + yx)

= 2<5(x)yx + 2xf5(y)x + 2xy«5(x) + ô(x)xy + S(y)x2
+ yô(x)x + Xf5(x)y + x2S(y) + yxô(x)
+ 2p(x, y)x + p(x, xy + yx).

On the other hand,
A = 2ô(xyx) + ô(x2y + yx2)

= 2ô(xyx) + ô(x2)y + ô(y)x2
+ x2ô(y) + yâ(x2) + p(x2, y)

= 2¿(xyx) + ¿(x)xy + Xr5(x)y + ô(y)x2 + x2ô(y)
+ yô(x)x + yxô(x) + p(x, x)y + p(x2, y).

Comparing the two expressions so obtained for A , we get
f5(xyx) = ô(x)yx + xô(y)x + xyô(x) + p(x, y)x

- \p(x, x)y + {p(x, xy + yx) - {p(x2, y).

A linearization of (5) gives
f5(xyz + zyx) = <5(x)yz + xô(y)z + xyô(z) + í5(z)yx

+ Zf5(y)x + zyô(x) + p(x, y)z + p(z, y)x
(o) i

- p(x, z)y + \p(x, zy + yz)

+ jp(z, xy + yx) - \p(xz + zx, y).
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Let B — ö(xyx2 + x2yx). Applying (6) we obtain

B = ô(x)yx2 + xô(y)x2 + xyô(x2) + ô(x2)yx + x2ô(y)x

+ x2yô(x) + p(x, y)x2 + p(x2, y)x - p(x, x2)y

+ jp(x, x2y + yx2) + \p(x2, xy + yx) - p(x3, y)

= ô(x)yx2 + xr5(y)x2 + xyö(x)x + xyxô(x) + \p(x, x)xy

+ S(x)xyx + Xr5(x)yx + \p(x, x)yx + x2ô(y)x + x2yô(x)
+ p(x, y)x2 + p(x2, y)x - p(x, x2)y + \p(x, x2y + yx2)

+ \p(x2, xy + yx) - p(x3, y).

On the other hand, using (4) and (5) we see that

B = f5((xyx)x + x(xyx))
= ô(xyx)x + f5(x)xyx + xyxô(x) + xâ(xyx) + p(xyx, x)
- r5(x)yx2 + Xf5(y)x2 + xyô(x)x + 2p(x, y)x2 - ^p(x, x)yx

+ (p(x, xy + yx) - p(x2, y))x + ô(x)xyx + xyxô(x)
+ Xf5(x)yx + x2f5(y)x + x2yf5(x) - \p(x, x)xy + p(xyx, x).

Comparing the last two relations we obtain

p(x, x)xy + p(x, x)yx - p(x, y)x2 - p(x, x2)y
+ (2p(x2, y) - p(x, xy + yx))x e C   for all x, y G F.

In particular, if x = y, then (7) gives

(8) p(x, x)x2 - p(x, x2)x G C   for all x G F.

The relations (7) and (8) are similar to relations (9) and (10) in the proof of
Theorem 2. We now argue as in the proof of Theorem 2. First, note that any
xeR satisfies one of the following two conditions: either p(x, y) = 0 for all
y G F or [[x2, u], [x, u]] = 0 for ail u e R. Using the assumption that F
is of characteristic different from 2 and 3, one shows (considering the elements
x -I- z , x - z, and x + 2z) that one of these two conditions is satisfied by all x
in F ; according to Lemma 1 we are then forced to conclude that p(x, y) — 0
for all x, y G F. Hence ô is a Jordan derivation.

However, we must show that ô is a derivation. In [ 14] Herstein proved that
if F is a prime ring of characteristic not 2 then every Jordan derivation of F
into itself is a derivation. Unfortunately, we cannot directly apply this result
since ô maps F into its central closure. Anyway, using the same approach as
in [8], where a brief proof of Herstein's result is presented, we show that in this
more general case we may also conclude that ô is a derivation. We sketch the
proof of this assertion. Theorem 3 in [9] states that every Jordan derivation,
ó, of a 2-torsion free ring F satisfies
(9) abr[a, b] + [a, b]rab = 0   for all a, b, r e R,

where ab — ô(ab) - ô(a)b - aô(b). From the proof of this result we see that
(9) also holds for Jordan derivations which map F into a ring containing F .
Now, let F be prime and let ô map F into its central closure. Replacing r
by r[a, b]s in (9) we get abr[a, b]s[a, b] + [a, b]r[a, b]sab = 0.  But from
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(9) we see that this relation can be written as -2[a, b]rabs[a, b] = 0 (cf. [16,
Lemma 3.10]). Since F is prime of characteristic not 2, it follows that for any
a, b e R we have either ab = 0 or [a, b] = 0. Using the fact that a group
cannot be the union of two proper subgroups it follows easily that either ab = 0
for all a, b e R, i.e., ô is a derivation, or F is commutative. However, by
the definition of Jordan derivations we see that in the commutative case S is
trivially a derivation.

Finally, by (2) we have d(x) = yx + a(x) + Ç(x) where y = -X and Ç(x) =
-\p(x). The proof of the theorem is complete.

Proof of Corollary 2. For any x, z G F we have

0 = ¿([[x2, x], z]) = [[d(x2),x],z] + [[x2, d(x)], z].

Since [x2, d(x)] = -[d(x)x + xd(x), x] we thus have

[[d(x2) - d(x)x - xd(x), x], z] = 0   for all x, z G F.

By a result in [7] quoted earlier (see the proof of Corollary 1) it follows that
[d(x2) - d(x)x - xd(x), x] = 0 for all x G F. Therefore Theorem 4 can
be applied. Thus d(x) — yx + ô(x) + Ç(x). The corollary will be proved by
showing that y = 0. Since both d and ô are Lie triple derivations it follows
from the above relation that 2y[[x, y], z] = Ç([[x,y],z])eC. If y ^ 0,
then 2y is invertible and so the last relation implies that [[x, y], z]e Z for
all x, y, z G F. Using Lemma 3 twice we see that this is impossible. Thus
y = 0 and the corollary is proved.

Proof of Theorem 5. We have 0 = d([x2, x]) = [d(x2), x] + [x2, d(x)], and
note that this relation can be written in the form

(1) [d(x2)-d(x)x-xd(x),x] = 0   for all x g F.

As in the proof of Theorem 4 we see that ( 1 ) implies that there exist X e C, an
additive mapping p: R —> C, and a mapping v: R —► C such that

(2) d(x2) - d(x)x - xd(x) = Xx2 + p(x)x+ v(x)    forallxGF.

Define the mapping S of F into the central closure of F by

(3) ö(x) = d(x) + \p(x),        xeR.
We want to show that S is a derivation. (In the proof of Theorem 4 we defined
the derivation ô by ô(x) = d(x) + Xx + \p(x)—the reason for this distinction
is that the element X is in fact equal to zero, as we shall see.)

By (2) and (3) it follows that

<5(x2) = ¿(x2) + \p(x2)

= d(x)x + xd(x) + Xx2 + p(x)x + u(x) + jp(x2)

— ô(x)x + xô(x) + Xx2 + v(x) + \p(x2).

Thus <5(x2) - 6(x)x - xô(x) - Xx2 e C for every x in F . Linearizing this
relation we obtain

S(xy + yx) - S(x)y - S(y)x - xS(y) - yS(x)
- X(xy + yx) e C   for all x, y G F.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



544 MATEJ BRESAR

Next we have

¿([x, y]) = d([x, y]) + \p([x, y])
= [d(x), y] + [x, d(y)] + \p([x, y])
= [ô(x),y] + [x,â(y)] + ±p([x,y]).

Thus

(5) S([x,y])-[S(x),y]-[x,ô(y)]eC   for all x, y G F.

Comparing (4) and (5) one obtains

2S(xy) - 23(x)y - 2x3(y) - X(xy + yx) e C   for all x, y G F,

and therefore

(6) S(xy) = ô(x)y + xô(y) + ß(xy + yx) + œ(x, y),

where ß = \X and œ is a biadditive mapping from F x F to C. In order to
prove that ô is a derivation we will show that ß = 0 and <y = 0.

We will compute <5(xyz) in two ways. On the one hand, using (6) we see
that

ô(xyz) = ô(x(yz))
= ô(x)yz + xô(yz) + ß(x(yz) + (yz)x) + œ(x, yz)
= ô(x)yz + xô(y)z + xyô(z) + ßx(yz + zy)

+ œ(y, z)x + ß(xyz + yzx) + co(x, yz).

On the other hand,

fi(xyz) = ô((xy)z)
= ô(xy)z + xyô(z) + ß((xy)z + z(xy)) + œ(xy , z)
= ô(x)yz + xô(y)z + ß(xy + yx)z + co(x, y)z

+ xyô(z) + ß(xyz + zxy) + œ(xy, z).

Comparing we get

(1)        ß[y ; [z, x]] + œ(y, z)x - co(x, y)z e C   for ail x, y, z g F.

This relation is analogous to the relation (7) in the proof of Theorem 3. Hence-
forth we argue as in the proof of Theorem 3, therefore we only sketch the rest of
the proof. Taking x2 for z in (7) we find there exists a e R, not algebraic over
C of degree at most 2, such that co(a, y) = 0 for all y G F. Substituting a for
x in (7) and applying Lemma 4, then one shows that ß = 0. Hence it follows
easily that co(y, z) — 0 for all y, z G F. Consequently 6 is a derivation.

Finally, define x by x(x) — -\p(x). Thus d — 6 + x by (3). It is obvious
that this relation implies that x sends commutators into zero. The proof of the
theorem is thereby completed.
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