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Abstract

We investigate multiperiod portfolio selection problems in a Black & Scholes type
market where a basket of 1 riskfree and m risky securities are traded continuously. We
look for the optimal allocation of wealth within the class of ’constant mix’ portfolios.
First, we consider the portfolio selection problem of a decision maker who invests
money at predetermined points in time in order to obtain a target capital at the end
of the time period under consideration. A second problem concerns a decision maker
who invests some amount of money (the initial wealth or provision) in order to be able
to fullfil a series of future consumptions or payment obligations. Several optimality
criteria and their interpretation within Yaari’s dual theory of choice under risk are
presented. For both selection problems, we propose accurate approximations based
on the concept of comonotonicity, as studied in Dhaene, Denuit, Goovaerts, Kaas &
Vyncke (2002 a,b). Our analytical approach avoids simulation, and hence reduces the
computing effort drastically.

1 Introduction

Strategic portfolio selection is the process used to identify the best allocation of wealth
among a basket of securities for an investor with a given consumption/saving behavior over
a given investment horizon. The basket of available securities will typically be a selection of
risky assets such as stocks, bonds and real estate, and riskfree components such as cash and
money market instruments. The individual investor or the asset manager chooses an initial
asset mix and a particular tactical trading strategy within a given set of strategies, according
to which he will buy and sell risky and risk-free assets, during the whole time period under
consideration.
The simplest case is a static strategy called ’buy and hold’: the investments are performed

according to a given strategy and no rebalancing is performed during the investment period.
Single-index benchmarking, e.g. replicating a single stock market index, is a buy-and-hold
strategy in case the index weights are not changed over the investment period.
Other strategies are called dynamic in the sense that they imply a periodic rebalancing

process of the assets. A ’constant mix’ strategy implies keeping the initial proportions
constant, as opposed to a ’buy and hold’ strategy where the initial quantities are kept
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constant through time. As the prices of assets evolve randomly over time, a constant mix
strategy requires buying and/or selling at each time instant in order to keep the fractions at
the predetermined level. Such a strategy implies a ’buy low and sell high’ rule in the sense
that price and asset-purchase are counter-varying: if the price of a single asset goes up while
the prices of the other assets remain constant, then the quantity of the single asset should
be decreased and vice versa. Furthermore, if the stock market has decreased, one has to buy
stocks against the riskfree component, whereas if the stock market has increased one has
to sell stock and buy riskfree instruments. Multiple-index benchmarking, e.g. replicating
a benchmark which consists of the average of a stock benchmark and a bond benchmark,
implies a constant mix strategy in order to stick to the benchmark proportions.
In this paper we will investigate multi-period optimal portfolio selection problems in a

Black & Scholes (1973) lognormal setting. We will assume that the investor has to choose
the optimal investment strategy for a given consumption or savings pattern, within the class
of constant mix strategies. We will consider two general types of problems, which will be
referred to as the terminal wealth problem and the reserving problem respectively.
In the terminal wealth problem, the decision maker will invest a given series of positive

saving amounts α0, α1, . . . , αn−1 at predetermined times 0, 1, . . . , n − 1 such that his termi-
nal wealth at time n will reach or exceed some target capital K with a sufficiently large
probability.
As terminal wealth is a sum of dependent lognormal random variables, its distribution

function cannot be determined exactly and is too cumbersome to work with. Therefore,
we will present accurate approximations for the distribution function at hand. The first
approximation that we will consider for the distribution of terminal wealth will be called the
’comonotonic upper bound’ as it is an upper bound for the exact distribution in the convex
order sense. It is derived by keeping the marginal distributions exact but approximating the
copula that describes the dependency structure between the random accumulation factors
involved by the comonotonic copula.
Our second approximation for the exact distribution is based on the technique of con-

ditioning. In this approach, the marginal distributions are changed and the copula describ-
ing the dependency structure is replaced by the comonotonic copula. We will call this the
’comonotonic lower bound’ approach as it can be proven that it is a lower bound in the
sense of convex ordering. Especially this lower bound will perform very accurately as an
approximation to the exact distribution.
The approximations that we propose have several advantages. For any given investment

strategy they provide an accurate and easy to compute approximation for any risk measure
that is additive for comonotonic risks, such as distortion risk measures (VaR and TailVaR
for instance). The comonotonic approximations reduce the multivariate randomness of the
multiperiod problem to a univariate randomness.
The optimal investment mix could be defined as the one that requires the smallest con-

stant amount α that has to be invested from period to period in order to reach a final wealth
of at least K with a probability of at least 1 − �. Or, one could define the optimal mix as
the one that maximizes the probability of reaching terminal wealth of at least K for a given
investment of α per period.
The proposed methodology can be used to solve several personal finance problems. A

first problem is what one could call the ’saving for retirement problem’. In this case, one
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wants to retire in n years with a ’nest egg’ of K - in real terms, i.e. in today’s Euro’s. How
much does one have to save monthly - in real terms - in order to assure a (1− �) chance to
reach the retirement financial goal? Clearly the answer will depend on the investment mix.
The theory on comonotonicity gives a quick, elegant and accurate answer to this question.
A second personal finance problem where the methodology can be used is the situation

where an individual underwrites an n year loan of K at a yearly interest rate of i. The first
way to pay back the loan is by a classical annuity where the borrower pays at the end of
each of the coming n years a fixed amount of K

an|i
. From the viewpoint of the borrower, an

annuity loan is equivalent with a loan with yearly interest payments of Ki while a yearly
amount of K

an|i
−Ki is invested in an amortization fund with a fixed return of i. At the end

of the n year period the amortization fund will have grown to the required amount of K.
An alternative is to pay the yearly interest of Ki and in addition, invest a yearly amount α
in an amortization fund with future stochastic returns. The amount α is chosen such that
the probability that the value of the amortization fund at time n will exceed the amount K
will be sufficiently large.
In the reserving problem, which is in some sense dual to the final wealth problem, the

decision maker targets a given series of future consumptions α1, α1, . . . , αn at times 1, 2, . . . , n.
He sets up an initial reserve R0 and wants to invest this amount in such a way that the
possibility of reaching his targets is maximized.
For this type of investment problems, the optimal investment mix could be defined as

the one that leads to the largest survival probability, given the initial reserve. Or, one could
fix the required survival probability and determine the optimal investment strategy as the
one that minimizes the required initial reserve.
One possible application is the problem of the decision maker who is faced with a series

of deterministic obligations or liabilities due at predetermined fixed points in time. He wants
to determine the reserve (and/or total balance sheet capital requirement) and selects the
optimal investment portfolio such that the possibility of ruin is minimized.
An application in the area of personal finance is the annuitization problem where an

initial amount R0 is invested and used to enable a series of future periodic payments. A
somewhat related problem is the so-called ’after-retirement problem’. The difference with
our setting is that in the after-retirement problem the time-horizon is random and equal
to the remaining life time. This problem is considered in Milevsky, Ho & Robinson (1997)
and Milevsky & Robinson (2000). These authors take the investment strategy as given and
find the corresponding probability of lifetime ruin. Young (2004) on the other hand finds the
optimal dynamic investment strategy as the one that minimizes the probability of lifetime
ruin. A related concept is the probability of financial regret. It has been investigated in
Brockett, Cox & Witt (1984).
As the time period that we consider is long (typically 1 year), assuming a Gaussian

model seems to be appropriate, at least approximately, by the Central Limit Theorem.
In the insurance literature, the assumption of normal distributed investment returns can
be traced back to Boyle (1976). In order to verify whether this theoretical setup can be
approximately compared with the data generating mechanism of real situations, we refer to
Cesari & Cremonini (2003). They investigate four well-known stock market indices in US
dollars, fromMorgan Stanley: MSCI World, North America, Europe and Pacific, covering all
major stock markets in industrial as well as emerging countries. For the period 1997-1999,
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the authors conclude that weekly (and longer period) returns can be considered as normal
and independent. Daily returns on the other hand are both non-normal and autocorrelated.
Although our theoretical results find a natural application in the field of personal finance,

they can also be applied for solving many general corporate investment decision problems, in
particular in a (long term) insurance business context, see e.g. Dufresne (1990) or Goovaerts,
Dhaene & De Schepper (2001). In case of a sufficiently large portfolio of mutual indepen-
dent risks, one could approximate the average yearly claim amounts by their mean. The
investment risk is then investigated by considering the sum of the randomly discounted fu-
ture average claim amounts. More generally, one could model the stochastic behavior of the
yearly aggregate claims by a lognormal model. In this case the random variable of interest
is the scalar product of two random vectors, one being the claims vector and the other the
vector of discount factors. The latter approach is used for determining reserves for Incurred
But Not Reported claims (IBNR) for a non-life portfolio, see e.g. Goovaerts & Redant (1998)
or Hoedemakers, Beirlant, Goovaerts & Dhaene (2003).
This paper is organized as follows. In Sections 2 and 3 we present some results concerning

risk measures, comonotonicity, the Black & Scholes setting, constant mix portfolios and
mean-variance analysis that will be used throughout the paper. Next, the problem of finding
optimal investment strategies in a general multivariate final wealth model with savings at
discrete points in time is analyzed in Section 4. The dual problem of setting an initial
provision and optimizing investments in a general model with consumptions at discrete points
in time is considered in Section 5. Final conclusions and some possible generalizations are
discussed in Section 6.
To the best of our knowledge, determining optimal investment strategies for terminal

wealth and optimal provision problems by means of the comonotonic approach, as presented
in Sections 4 and 5, is new. The research was motivated by our practical experience con-
cerning optimal portfolio selection and setting provisions for some banking and insurance
institutions in Belgium.

2 Risk measures and comonotonicity

In this section, we will introduce some definitions and present some results related to risk
measures and comonotonicity that will be used throughout this paper. More details about
comonotonicity can be found in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b), more
details about the relation between risk measures and comonotonicity can be found in Dhaene,
Vanduffel, Tang, Goovaerts, Kaas & Vyncke (2004).

2.1 Risk measures

A risk measure summarizes the information contained in the distribution function of a ran-
dom variable in one single real number. For a random variableX, the p-quantile risk measure
is defined as

Qp [X] = F−1X (p) = inf {x ∈ R | FX(x) ≥ p} , p ∈ (0, 1) , (1)
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where FX(x) = Pr [X ≤ x] and by convention, inf {φ} = +∞. A related risk measure is
denoted by Q+

p [X] and is defined by

Q+
p [X] = sup {x ∈ R | FX(x) ≤ p} , p ∈ (0, 1) , (2)

where by convention sup {φ} = −∞. Note that only values of p corresponding to a hori-
zontal segment of FX lead to different values of Qp [X] and Q+

p [X]. Hence, if FX is strictly
increasing, both risk measures will coincide for all values of p. In this case, we can also define
the (1− p)-quantiles by

Q1−p [X] = sup
©
x ∈ R | FX(x) ≥ p

ª
, p ∈ (0, 1) , (3)

where FX(x) = 1− FX(x).
In the sequel, we will always consider random variables with finite mean. The Conditional

Tail Expectation (CTE) at level p will be denoted by CTEp [X]. It is defined by

CTEp [X] = E [X | X > Qp [X]] , p ∈ (0, 1) . (4)

The CTE measures the right tail of the distribution function. We will also need a risk
measure that measures the left tail of the distribution function. Therefore, we introduce the
Conditional Left Tail Expectation, which is defined by

CLTEp [X] = E
£
X | X < Q+

p [X]
¤
. (5)

One can prove that the following relation holds between CTE and CLTE:

CLTE1−p [X] = −CTEp [−X] , p ∈ (0, 1) . (6)

2.2 Comonotonic bounds for sums of dependent random variables

A random vector Y = (Y0, Y1, · · · , Yn) is said to be comonotonic if

(Y0, Y1, · · · , Yn) d
= (F−1Y0

(U), F−1Y1
(U), · · · , F−1Yn

(U)), (7)

where U is a random variable which is uniformly distributed on the unit interval and where
the notation d

= stands for ’equality in distribution’.
For any random vector X = (X0, X1, · · · ,Xn), we will call its comonotonic counterpart any
random vector with the same marginal distributions and with the comonotonic dependency
structure. The comonotonic counterpart of X = (X0,X1, · · · , Xn) will be denoted by Xc =
(Xc

0,X
c
1, · · · ,Xc

n). Hence for any random vector X = (X0,X1, · · · ,Xn), we have

(Xc
0,X

c
1, · · · , Xc

n)
d
= (F−1X0

(U), F−1X1
(U), · · · , F−1Xn

(U)). (8)

It can be proven that a random vector is comonotonic if and only if all its marginals are
non-decreasing functions (or all are non-increasing functions) of the same random variable.
The random variable X is said to precede the random variable Y in the stop-loss order

sense, notation X ≤sl Y , if X has lower stop-loss premiums than Y :

E[(X − d)+] ≤ E[(Y − d)+], −∞ < d < +∞. (9)
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On the other hand, X is said to precede Y in the convex order sense, notation X ≤cx Y ,
if X ≤sl Y and in addition E[X] = E[Y ]. An introduction to ordering of (distributions
of) random variables, with actuarial applications, can be found in Chapter 10 of Kaas,
Goovaerts, Dhaene & Denuit (2001), see also Brockett & Garven (1998).

Theorem 2.1 (Convex bounds for sums of random variables). For any random vector
(X0,X1, · · · , Xn) and any random variable Λ, we have that

nX
i=0

E [Xi | Λ] ≤cx

nX
i=0

Xi ≤cx

nX
i=0

F−1Xi
(U). (10)

The theorem above states that the least attractive random vector (X0,X1, · · · ,Xn) with
given marginals FXi, in the sense that the sum of its components is largest in the convex
order, has the comonotonic joint distribution, which means that it has the joint distribution
of
¡
F−1X0

(U), F−1X1
(U), · · · , F−1Xn

(U)
¢
. The components of this random vector are maximally

dependent, all components being non-decreasing functions of the same random variable.
The random variable Sc =

Pn
i=0 F

−1
Xi
(U) will be called the comonotonic upper bound of

S =
Pn

i=0Xi, whereas the random variable Sl =
Pn

i=0E [Xi | Λ] will be referred to as a
lower bound for S.
The random vector (E [X0 | Λ] , E [X1 | Λ] , · · · , E [Xn | Λ]) will in general not have the same
marginal distributions as (X0, X1, · · · ,Xn). If one can find a conditioning random variable Λ
with the property that all random variables E [Xi | Λ] are non-increasing functions of Λ (or
all are non-decreasing functions of Λ), then the lower bound Sl =

Pn
i=0E [Xi | Λ] is a sum

of n comonotonic random variables. In the sequel, we will often use a comonotonic approx-
imation for a sum of non-independent random variables. The advantage of the comonotonic
dependency structure is that any distortion risk measure of a sum of comonotonic random
variables equals the sum of the risk measures of the marginals involved. For the quantile
risk measures defined above, we find for all p ∈ (0, 1) :

Qp [S
c] =

nX
i=0

Qp [Xi] , (11)

Q+
p [S

c] =
nX
i=0

Q+
p [Xi] .

For the CTE and the CLTE a similar result can be proven, provided all marginal distributions
FXi are continuous:

CTEp [S
c] =

nX
i=0

CTEp [Xi] , provided all FXi are continuous, (12)

CLTEp [S
c] =

nX
i=0

CLTEp [Xi] , provided all FXi are continuous.

Applications of the concept of comonotonicity in the actuarial literature can be found in
Dhaene &Goovaerts (1996), Dhaene, Wang, Young &Goovaerts (1997), Goovaerts &Dhaene
(1998), Wang & Dhaene (1998), Wang, Young & Panjer (1997), Wang & Young (1998). An
overview of the theory on comonotonicity and its applications in insurance and finance is
given in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b).
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2.3 Sums of lognormal random variables

Consider the sum

S =
nX
i=0

αi e
Zi (13)

where the αi are non-negative constants and the Zi are linear combinations of the components
of the random vector (Y1, Y2, · · · , Yn) which is assumed to have a multivariate normal
distribution:

Zi =
nX

j=1

λij Yj. (14)

Let U be uniformly distributed on the unit interval. The comonotonic upper bound Sc =Pn
i=0 F

−1
αi eZi

(U) of S is given by

Sc =
nX
i=0

αi e
E[Zi]+σZi Φ−1(U). (15)

Taking into account the additivity property, the following expressions can be derived for the
risk measures associated with Sc:

Qp [S
c] = Q+

p [S
c] =

nX
i=0

αi e
E[Zi]+σZi Φ−1(p), (16)

CTEp [S
c] =

nX
i=0

αi e
E[Zi]+

1
2
σ2Zi

Φ (σZi − Φ−1(p))
1− p

,

CLTEp [S
c] =

nX
i=0

αi e
E[Zi]+

1
2
σ2Zi
1− Φ (σZi − Φ−1(p))

p
, p ∈ (0, 1) .

In order to define a comonotonic lower bound Sl for S, we choose a conditioning random
variable Λ which is a linear combination of the Yj:

Λ =
nX

j=1

βj Yj. (17)

After some computations, we find that the lower bound Sl =
Pn

i=0 αi E
£
eZi | Λ¤ is given by

Sl =
nX
i=0

αi e
E[Zi]+

1
2(1−r2i )σ2Zi+ri σZi Φ−1(U), (18)

where the uniformly distributed random variable U follows from Φ−1(U) ≡ Λ−E(Λ)
σΛ

, and ri is
the correlation between Zi and Λ.
If all ri are positive, then Sl is a comonotonic sum, which means that quantiles and

conditional tail expectations related to Sl can be computed by summing the associated risk
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measures for the marginals involved. Hence, assuming that all ri are positive, we find the
following expressions for the risk measures associated with Sl:

Qp

£
Sl
¤
= Q+

p

£
Sl
¤
=

nX
i=0

αi e
E[Zi]+

1
2(1−r2i )σ2Zi+ri σZi Φ−1(p), (19)

CTEp

£
Sl
¤
=

nX
i=0

αi e
E[Zi]+

1
2
σ2Zi

Φ (ri σZi − Φ−1(p))
1− p

,

CLTEp

£
Sl
¤
=

nX
i=0

αi e
E[Zi]+

1
2
σ2Zi
1− Φ (ri σZi − Φ−1(p))

p
, p ∈ (0, 1) .

The correlation coefficients ri follow from the correlations between the random variables
Yi. In the special case that all Yi are i.i.d., we find

ri =

Pn
j=1 λij βjqPn

j=1 λ
2
ij

qPn
j=1 β

2
j

, i = 1, 2, · · · , n. (20)

As we have that
Var [S] = Var

£
Sl
¤
+E [Var [S | Λ]] , (21)

it seems reasonable to choose the coefficients βj in (17) such that the variance of Sl is max-
imized. Determining these optimal coefficients βj would require time-consuming numerical
calculations. However, we can approximate the optimal coefficients by deriving an approx-
imate expression for Var

£
Sl
¤
. Following Vanduffel, Hoedemakers & Dhaene (2004), we find

that Var
£
Sl
¤
can be approximated by

Var
£
Sl
¤
=

nX
i=0

nX
j=0

αiαj e
E[Zi]+E[Zj ]+

1
2

³
σ2Zi

+σ2Zj

´
(erirjσZiσZj − 1) (22)

≈
nX
i=0

nX
j=0

αiαj e
E[Zi]+E[Zj ]+

1
2

³
σ2Zi

+σ2Zj

´
rirjσZiσZj

=

Ã
corr

"
nX
i=0

αi e
E[Zi]+

1
2
σ2ZiZi;Λ

#!2
Var

"
nX
i=0

αi e
E[Zi]+

1
2
σ2ZiZi

#
.

This approximation will perform well, provided rirjσZiσZj is sufficiently small. In the special
case that all Yi are i.i.d., this condition will be fulfilled if the variance of the Yi is small
enough.
The approximation for Var

£
Sl
¤
is maximized by choosing the correlation coefficient equal to

1. Hence, by choosing Λ equal to

Λ =
nX
i=0

αi e
E[Zi]+

1
2
σ2ZiZi, (23)

which means that the βj- coefficients are given by

βj =
nX
i=0

αi λij e
E[Zi]+

1
2
σ2Zi . (24)
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Notice that we assumed that all αi are non-negative. However, the expressions (18) and
(22) also holds when the αi have changing signs.

3 Stochastic return processes

3.1 The Black & Scholes setting

Throughout the paper, we will assume the classical continuous-time framework that was
pioneered by Merton (1971) and is nowadays mostly referred to as the Black & Scholes
(1973) setting. We suppose that there is a market in which (m + 1) securities (assets or
investment accounts) are traded continuously. One of the assets is the riskfree asset. Let
P 0(0) = P 0 > 0 be the current price, at time 0, of 1 unit of the riskfree asset, whereas P 0(t)
is its price at time t. This price is assumed to evolve according to the following ordinary
differential equation:

dP 0(t)

P 0(t)
= r dt, (25)

with r > 0. On the other hand, let P i(0) = P i > 0 be the current price, at time 0, of 1 unit of
risky asset i, whereas P i(t) is the price at time t (including reinvestment of dividend income)
of one unit of risky asset i. The price process P i(t) evolves according to a geometric Brownian
motion stochastic process, represented by the following stochastic differential equation:

dP i(t)

P i(t)
= µidt+

dX
j=1

σij dW
j(t), i = 1, · · · ,m, (26)

where
¡
W 1(τ), W 2(τ), · · · , W d(τ)

¢
is a d-dimensional standard Brownian motion process.

The W i(τ) are mutually independent standard Brownian motions.
The m-dimensional vector µT = (µ1 · · · µm) is called the drift vector of the risky assets.

We will assume that µ 6=r 1, with 1T = (1 1 . . . 1) .
The (m× d) matrix Σ defined by

Σ =


σ11 σ12 · · · σ1d
σ21 σ22 · · · σ2d
· · · · · · · · · · · ·
σm1 σm2 · · · σmd

 (27)

is called the diffusion matrix. Further, we define the (m×m) matrix Σ as

Σ =Σ ·ΣT
=


σ21 σ12 · · · σ1m
σ21 σ22 · · · σ2m
· · · · · · · · · · · ·
σm1 σm2 · · · σ2m

 , (28)

with coefficients σij and σ2i given by σij =
Pd

k=1 σik σjk and σ2i = σii. We have that σij =
σji. The matrixΣ is called the variance-covariance matrix. We will assume thatΣ is positive
definite. This means that for all non-zero vectors πT = (π1, π2, · · · , πm) we have that

πT ·Σ · π > 0. (29)
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In particular, this assumption implies that all σi are strictly positive. Hence, all m risky
assets are indeed risky. It also implies that Σ is non-singular, meaning that its determinant
is strictly positive, and hence Σ has a matrix inverse Σ−1. As we will see further on, the
elements of the matrix Σ describe the covariances between the yearly returns of the different
assets.
We define the process Bi(τ) by

Bi(τ) =
1

σi

dX
j=1

σijW
j(τ). (30)

It is straightforward to verify that all Bi(τ) are (correlated) standard Brownian motions,
with

Cov
¡
Bi(t), Bj(t+ s)

¢
=

σij
σi σj

t, t, s ≥ 0. (31)

Rewriting equation (26), we find

dP i(t)

P i(t)
= µidt+ σi dB

i(t), i = 1, · · · ,m. (32)

The solution to equation (32) is

P i(t) = P i exp

½µ
µi − 1

2
σ2i

¶
t+ σi B

i(t)

¾
, (33)

which means that P i(t)
P i is lognormally distributed with parameters

¡
µi − 1

2
σ2i
¢
t and σ2i t,

respectively. This implies that the expectation and standard deviation of the price of asset
i at time t are given by

E
£
P i(t)

¤
= P i eµit, (34)

σ
£
P i(t)

¤
= P i eµit

p
eσ

2
i t − 1.

Let k = 1, 2, . . . . Investing an amount of 1 at time k − 1 in asset i will grow to the random
amount eY

i
k at time k, where Y i

k denotes the yearly return in year k of account i. One finds
that

Y i
k =

µ
µi − 1

2
σ2i

¶
+ σi

¡
Bi(k)−Bi(k − 1)¢ . (35)

Hence, it follows that the random yearly returns Y i
k of asset i are independent and have

identical normal distributions with

E
£
Y i
k

¤
= µi − 1

2
σ2i , (36)

V ar
£
Y i
k

¤
= σ2i ,

Cov
£
Y i
k , Y

j
l

¤
=

½
0 k 6= l
σij k = l

.

As stated earlier, the matrix Σ is the variance-covariance matrix of the yearly return vector
(Y 1

k , Y
2
k , · · · , Y n

k ). More details on the translation between the two formalisms (26) and (32)
for describing the multivariate asset process can be found e.g. in Björk (1998).

10



3.2 Constant mix strategies

Assume one can invest wealth in one or more of them+1 assets as defined above. Let π(t)T =
(π1(t), π2(t), · · · , πm(t)) be the vector describing the portfolio process, i.e. πi(t) is the
fraction of the wealth that is invested in risky asset i at time t. The residual, i.e. 1−Pn

i=1 πi(t)
is invested in the riskfree asset, or, if negative, finances the risky asset purchases. A negative
proportion invested in the riskfree asset means borrowing (going short) on the riskfree asset.
We will restrict to constant portfolios π(t)T = πT = (π1, π2, · · · , πm), which means that

the fractions invested in the different assets remain constant over time. Investing according
to a constant portfolio process implies that one has to follow a dynamic trading strategy.
Indeed, as the risky asset returns evolve randomly, one has to trade at each instant in order
to keep the fractions invested in the different assets constant. Such investment strategies
are known as constant mix strategies, or also as constant proportional investment strategies.
Optimality of constant mix strategies in a utility theory setting is considered in Merton
(1971).
Let us now consider one unit of a security that is constructed according to the contin-

uously rebalanced investment strategy (π1, π2, · · · , πm) , and let P (t) be the price of that
unit at time t, with P (0) = P . One can prove that the price process P (t) evolves according
to the dynamics

dP (t)

P (t)
=

mX
i=1

πi
dP i(t)

P i(t)
+

Ã
1−

mX
i=1

πi

!
dP 0(t)

P 0(t)
(37)

=

Ã
mX
i=1

πi (µi − r) + r

!
dt+

mX
i=1

πi σidB
i(t).

For a non-zero vector π, define the process B(τ) by

B(τ) =
1√

πT ·Σ · π
mX
i=1

πi σi B
i(τ). (38)

One can verify that B(τ) is a standard Brownian motion. Equation (37) can then be rewrit-
ten as

dP (t)

P (t)
= µ (π) dt+ σ (π) dB(t) (39)

with
µ (π) = r + πT · (µ−r 1) and σ2 (π) = πT ·Σ · π, (40)

where 1 is the m - vector (1 1 · · · 1). Hence, we find that when the portfolio is rebalanced in
continuous time in order to keep the fractions constant, the portfolio return is also lognor-
mal distributed. Recall that we assumed that the variance-covariance matrix Σ is positive
definite. This means that any non-zero combination π of the risky assets is also risky in the
sense that σ2 (π) > 0. The solution to equation (39) is

P (t) = P exp

½µ
µ (π)− 1

2
σ2 (π)

¶
t+ σ (π) B(t)

¾
, (41)
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with expectation and standard deviation given by

E [P (t)] = P eµ(π)t, (42)

σ [P (t)] = P eµ(π)t
p
eσ2(π)t − 1.

The stochastic differential equation (39) was derived by Merton (1971, 1990), see also Rubin-
stein (1991). It can also be derived using elementary arguments by taking limits of lognormal
sums, see Milevsky & Posner (1998).
Let k be a strictly positive integer. Investing according to investment strategy π, an

amount of 1 at time k − 1 will grow to the random amount eYk(π) at time k, where Yk (π)
denotes the yearly return in year k of investment strategy π. One finds that

Yk (π) =

µ
µ (π)− 1

2
σ2 (π)

¶
+ σ (π) (B(k)−B(k − 1)) . (43)

Hence, the random yearly returns Yk (π) of the constantly rebalanced portfolio π are inde-
pendent and identically distributed normal random variables with

E [Yk (π)] = µ (π)− 1
2
σ2 (π) , (44)

V ar [Yk (π)] = σ2 (π) .

Note that this observation about the yearly returns also holds in case π equals the zero
vector. The price P (k) can be written in terms of the yearly returns as follows:

P (k) = P exp (Y1 (π) + Y2 (π) + · · ·+ Yk (π)) . (45)

3.3 Markowitz mean-variance analysis

In 1990, Harry M. Markowitz received the Nobel Prize in Economics (shared with William
F. Sharpe and Merton H. Miller) for his theory on portfolio selection under uncertainty. The
contribution for which he received the award was first published in Markowitz (1952) and
more extensively inMarkowitz (1959). As mentioned in the press release of the Royal Swedish
Academy of Sciences, Markowitz’s theory can be considered as the first approach to solving
the problem that each investor faces, namely how to find the optimal trade-off between
risk and return, i.e. how to find the optimal investment strategy under the two conflicting
objectives of high expected return versus low risk of the investment portfolio. Markowitz
proposed a way to reduce the complicated and multidimensional problem of finding the
optimal portfolio with respect to a large number of different assets to a conceptual simple
two-dimensional problem, known as mean-variance analysis. The Markowitz approach has
become very popular due to the fact that it combines algebraic simplicity and suitability
for practical applications. The mean-variance approach provides a fundamental basis for
portfolio selection in a single period. A selected overview of the tremendous amount of
research initiated by Markowitz’s seminal work can be found in Steinbach (2001).
Several variants of the classical single-period mean-variance problem exist. Here, we will

consider the formulation that we will need later on in the paper. Among all constant mix
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portfolios π with a given portfolio volatility σ (π) = σ ≥ 0, we look for the one with the
largest drift µ (π). Hence, for a given value of σ, we want to find the solution of the following
problem:

Maxπ µ (π) subject to σ (π) = σ. (46)

We will denote the portfolio that corresponds to the maximum in (46) by πσ.
The assumption that µ 6= r1, together with the assumptions that the variance-covariance
matrix is positive definite and that short-selling is allowed implies that there exists a unique
local global minimum for problem (46). A Lagrange optimization yields:

µ (πσ) = r + σ

q
(µ− r1)T ·Σ−1 · (µ− r1) , σ ≥ 0 (47)

and

πσ = σ
Σ−1 · (µ− r1)q

(µ− r1)T ·Σ−1 · (µ− r1)
. (48)

Note that µ (πσ) and πσ are well-defined, because the inverse of a positive definite matrix is
also positive definite.
The efficient frontier refers to the set of all solutions {(σ, µ (πσ)) | σ ≥ 0} for the optimization
problem (46). From (47) we see that the efficient frontier consists of a straight line in the
(σ, µ)-plane. The portfolios πσ belonging to the efficient frontier are called mean-variance
efficient portfolios. The efficient frontier is often referred to as the ’Capital Market Line’.
The ’Capital Market Line’ can also be characterized as the set {(σ (πµ) , µ) | µ ≥ r} where
πµ is the portfolio with the minimal variance, given that the drift equals µ. Hence, πµ is the
solution of:

Minπ σ (π) subject to µ (π) = µ, µ ≥ r. (49)

In the following, we will call portfolios π that fulfill the condition 1T×π = 1 risky-assets-only
portfolios because such portfolios consist only of risky assets. It can be proven that if we only
consider risky-assets-only portfolios, the efficient frontier corresponds to (the upper branch
of) a hyperbola in the volatility - drift space (provided there are at least two risky assets
with different drift). Now consider the risky-assets-only global minimal variance portfolio
π(m), i.e. the portfolio that is the solution of the following problem:

Minπ σ (π) subject to 1T · π = 1. (50)

This portfolio and its drift are given by

π(m) =
Σ−1 · 1

1T ·Σ−1 · 1 , (51)

µ
¡
π(m)

¢
=
1T ·Σ−1 · µ
1T ·Σ−1 · 1 .

One can prove that under the condition

r < µ
¡
π(m)

¢
, (52)

the Capital Market Line (47) is at a tangent to the upper branch of the hyperbola that corre-
sponds to the efficient frontier of risky-asset-only portfolios. The portfolio that corresponds
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to the point of intersection between the Capital Market Line (47) and the upper branch of
the hyperbola is called the ’tangency portfolio’, and is denoted by π(t). In the sequel, when
we use π(t), we will always assume that the condition (52) is fulfilled. One can easily verify
that π(t) is given by

π(t) =
Σ−1 · (µ− r1)

1T ·Σ−1 · (µ− r1)
. (53)

Note that (48) can be rewritten as

πσ =

µ
µ (πσ)− r

µ(πt)− r

¶
π(t). (54)

This means that every mean-variance efficient portfolio πσ consists of a fraction
µ

µ(πσ)−r
µ(π(t))−r

¶
invested in the risky-assets-only portfolio π(t) and a fraction

µ
1− µ(πσ)−r

µ(π(t))−r

¶
invested in the

riskfree asset. Mean-variance optimizing investors only differ in terms of which fraction of
their wealth they put in the tangency portfolio.
The result that all mean-variance investors will hold only two kinds of portfolios (or mutual
funds), the exclusively risky portfolio π(t) and the riskfree asset, is often called a Mutual
Fund Theorem or a Two Fund Separation Theorem.
Note that in case r = µ

¡
π(m)

¢
, there is no tangency portfolio, but any portfolio on the

efficient frontier can still be constructed as a linear combination of two basic portfolios on
the efficient frontier.
The Capital Market Line can be rewritten as

µ (πσ) = r +

Ã
µ
¡
π(t)
¢− r

σ (π(t))

!
σ. (55)

This equation describes the drift of the return as related to the volatility that the investor is

willing to accept. The slope
µ(π(t))−r

σ(πt)
is referred to as the ’Sharpe ratio’. It can be interpreted

as the price of risk reduction: It shows by how much the drift decreases if the volatility de-
creases by 1 unit.

Many papers have been published that consider variants of the classical mean-variance
portfolio selection criterion, where the variance is replaced by an alternative asymmetric risk
measure that measures downside risk, in order to avoid penalization due to over-performance,
see e.g. Emmer, Klüppelberg & Korn (2001) or Li, Ng, Tan & Yang (2003). Note that
Markowitz (1959) already introduced the idea to replace the variance by an alternative
asymmetric risk measure in a more general mean - risk approach.
The single period mean-variance model was soon extended to multiperiod portfolio selection.
Research on multiperiod portfolio selection has been dominated by the idea of maximizing
expected utility functions of terminal wealth. Markowitz (1959) already considered long-
term investment planning by considering multiperiod models based on attaching a utility to
the levels of consumption of wealth over time.
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4 Saving and terminal wealth

4.1 General problem description

In this section, we will consider the problem of how to invest periodic saving amounts in
order to reach some target capital at a predetermined future time n. Let α

i be the positive
amount that will be invested at time i, (i = 0, 1, 2 , · · · , n). We assume that these amounts
are invested according to a constant mix portfolio π as defined in Section 3.2. The choice of
the constant portfolio mix has to be made at time 0. An amount of 1 unit invested at time
i will grow to the random amount e

Pn
j=i+1 Yj(π) at time n.

Let Wj (π) be the wealth at time j, defined by the following recursive relation:

Wj (π) =Wj−1 (π) eYj(π) + αj, j = 1, · · · , n, (56)

with initial value W0 (π) = α0. Hence, Wj (π) is the wealth that will be available at time j,
including the savings amount αj at time j. The realization of Wj (π) will be known at time
j. It depends on the investment returns (stochastic part) and on the savings (deterministic
part) in the past. Note that the random variables Yj (π) are i.i.d. and normal distributed
with parameters µ (π) and σ (π) as defined in (40).
From the recursion (56) for the wealth process, we find the following explicit expression

for terminal wealth Wn (π):

Wn (π) =
nX
i=0

αi e
Pn

j=i+1 Yj(π). (57)

By convention,
Pn

i=m bi is set equal to 0 if m > n.
Within the expected utility theory framework of Von Neumann & Morgenstern (1947),

the investor could choose the investment strategy π that maximizes his expected utility of
final wealth:

max
π

E [u(Wn (π))] , (58)

where u is the (non-decreasing) utility function he uses to appreciate the different levels of
final wealth.
Another approach, within the framework of Yaari’s (1987) dual theory of choice under

risk, is to choose the optimal investment strategy as the one that maximizes the distorted
expectation of final wealth:

max
π

ρf [Wn (π)] , (59)

where f is the investor’s distortion function (which means that f(0) = 0, f(1) = 1 and f is
non-decreasing on the interval [0, 1]) and ρf is the ’distorted expectation’, determined with
f (Pr (Wn (π) > x)) :

ρf [Wn (π)] =

Z ∞

0

f (Pr (Wn (π) > x)) dx. (60)

While in utility theory, choosing among risks is performed by comparing expected values
of transformed wealth levels (utilities), in Yaari’s theory the quantities that are compared
are the ’distorted expectations’ of wealth levels. The distorted expectation of final wealth
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Wn (π) can be interpreted as an expectation ofWn (π) evaluated with a ’distorted probability
measure’ in the sense of a Choquet-integral, see Denneberg (1994). The decision maker acts
in order to maximize the distorted expectation of final wealth.
For a distortion function fp, 0 < p < 1, given by

fp(x) =

½
0 : 0 ≤ x < p
1 : p ≤ x ≤ 1 (61)

we find

ρfp [Wn (π)] = Q+
1−p [Wn (π)] (62)

= sup {x ∈ R | Pr (Wn (π) > x) ≥ p} .
The optimization problem (59) with distortion function given by (61) determines the optimal
investment strategy as the one that maximizes the largest amount that will be reached with
a probability of at least p.
For the convex distortion function gp, 0 < p < 1, given by

gp(x) =

½
0 : 0 ≤ x < p

x−p
1−p : p ≤ x ≤ 1 (63)

we find
ρgp [Wn (π)] = CLTE1−p [Wn (π)] . (64)

In Yaari’s theory, a decision maker is called risk-averse if he has a convex distortion function.
Hence, the optimization problem (59) with distortion function (63) can be interpreted as the
problem to be solved by a risk-averse decision maker with distortion function gp. The optimal
investment strategy is the one that maximizes the conditional expected value of final wealth,
given that the p-target capital is not reached.
We have that

Wn (π)
d
=

nX
i=0

αi e
(n−i) [µ(π)− 1

2
σ2(π)]+

√
n−i σ(π)Zi , (65)

where ’ d=’ stands for ’equality in distribution’ and (Z0, Z1, · · · , Zn) is a multivariate normal
random vector with standard normal distributed marginals.
Now consider two portfolios π1 and π2 with σ(π1) = σ (π2) and µ(π1) <µ(π2) . Following a
similar reasoning as in Ahcan, Darkiewicz, Dhaene, Goovaerts & Hoedemakers (2004), we
find from (65) that

FWn(π1)(x) ≥ FWn(π2)(x), x ≥ 0. (66)

From the monotonicity property of distortion risk measures, we can conclude that

ρf [Wn (π1)] ≤ ρf [Wn (π2)] (67)

holds for any distortion risk measure ρf [.]. This implies that the solution of the optimization
problem (59) can be found on the Capital Market Line. Hence, we can replace (59) by
optimization problem

max
σ

ρf [Wn (π
σ)] . (68)
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Notice that the optimization (58) also reduces to a one-dimensional optimization over all
portfolios on the Capital Market Line.
For a more detailed comparison between the two theories of choice under risk and their

relation to risk measures, see e.g. Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke
(2004).

4.2 The case of a single investment

4.2.1 Time and portfolio diversification

Emmer, Klüppelberg &Korn (2001) remark that there seems to be common wisdom that long
term stock investment leads to an almost sure gain over locally riskfree bond investments.
In the long run stock indices are growing faster than riskfree rates, despite the repeated
occurrence of stock market declines. The conventional perception therefore holds that the
longer the investment horizon, the greater should be one’s proportion invested in risky assets.
In order to verify if this common wisdom holds true, we will consider the terminal wealth
problem with a single investment of 1 at time 0. Hence, α0 = 1 and α1 = α2 = . . . = αn = 0.
We will assume that one can invest in one riskfree asset P 0(t) and in m risky assets P i(t)
as explained in section 3.1. We will also assume that µ

¡
π(m)

¢
> r holds, which implies that

µ
¡
π(t)
¢
> r.

The distribution function of final wealth Wn (π) follows from

Wn (π)
d
= en [µ(π)−

1
2
σ2(π)]+

√
n σ(π)Φ−1(U). (69)

Within the framework of expected utility theory, one determines the optimal constantly
rebalanced portfolio as the one that maximizes the investor’s expected utility of final wealth:

max
π

E [u (Wn (π))] . (70)

For the logarithmic utility function u(x) = ln(x), one finds that the optimal portfolio π∗ lies
on the Capital Market Line and is given by

π∗ =

Ã
µ
¡
π(t)
¢− r

σ2 (π(t))

!
πt. (71)

Note that within the logarithmic utility framework, the optimal strategy (71) is independent
of the investment horizon. For more details, see e.g. Merton (1990).
Within Yaari’s dual theory of choice under risk, let us now consider the optimization

problem
max
π

Q+
1−p [Wn (π)] (72)

with 1
2
< p < 1. The quantiles of final wealth Wn (π) are given by

Q+
1−p [Wn (π)] = Q1−p [Wn (π)] = en (µ(π)−

1
2
σ2(π))−√n σ(π) Φ−1(p). (73)

One can easily verify that for a fixed value of µ (π), the quantile is decreasing in σ (π). On
the other hand, for a fixed value of σ (π), the quantile is increasing in µ (π), implying that
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the optimal portfolio of (72) will correspond to a point on the Capital Market Line and is
given by

π∗ =
µ
µ (πt)− r

σ2 (πt)
− Φ−1(p)√

n σ (πt)

¶
+

πt,
1

2
< p < 1, (74)

where (x)+ stands for max(0, x). From (74) it follows that in this setting, increasing the
investment time horizon transforms the optimal investment strategy into a more risk-taking
one. Hence, investors with a longer time horizon should have a larger exposure to stocks
relative to investors with a shorter time horizon. The optimal risky proportion converges to
the optimal growth portfolio (71). We can conclude that in case the time horizon becomes
infinitely large, the optimal growth portfolio will outperform any other portfolio, with respect
to optimality criterion (72).
Next, consider the optimization problem of a risk averse decision maker who determines

the optimal investment strategy as the solution of the following maximization problem:

max
π

CLTE1−p [Wn (π)] . (75)

From (16) we find that

CLTE1−p (Wn (π)) = enµ(π)
1− Φ (

√
n σ (π) + Φ−1(p))
1− p

(76)

One can again verify that for a fixed value of µ (π), the CLTE1−p is decreasing in σ (π) ,
while for a fixed value of σ (π), it is increasing in µ (π). This implies that the optimum of
problem (75) will also correspond to a point on Capital Market Line.
Another way to look at the time diversification effect is to consider the ’Equity Shortfall

Risk’ of the investment portfolio. Following Milevsky (2003), we define the Equity Shortfall
Risk over a given investment period n and for a given investment strategy π by

ESR (π, n) = Pr (Wn (π) ≤ enr) . (77)

Hence, ESR(π, n) is the probability that the risky investment strategy π will underperform
the riskfree investment strategy over a time horizon n. It can be interpreted as the probability
of regretting the investment, where the investor regrets his choice π compared to the riskfree
strategy if this last strategy will have performed better than the risky investment strategy.
The concept of Expected Shortfall Risk was introduced in the financial literature by Roy
(1952), in a one-period discrete-time setting.
A straightforward calculation leads to

ESR (π, n) = 1− Φ

µ√
n

µ
µ (π)− r

σ (π)
− 1
2
σ (π)

¶¶
. (78)

From this expression, we see that, provided µ (π)− 1
2
σ (π)2 > r, increasing the time horizon

n will decrease ESR(π, n). Moreover, when the time horizon goes to infinity, the Expected
Shortfall Risk disappears and the risky investment strategy π will outperform the risk-
free investment strategy with probability 1. Important to note however is that when the
portfolio variance σ (π)2 becomes large relative to µ (π) − r, ESR(π, n) increases with the

18



time horizon and reaches level 1 at infinity. We can conclude that the general perception of
time-diversification expressed in terms of decreasing Expected Shortfall Risk is in accordance
with the theory, provided the expected yearly returns E [Yk (π)] exceed the risk free yearly
return r.
Comparing the optimal investment strategies (71) and (74), we can conclude that the

time diversification benefit strongly depends on the optimality criterion that is considered.
It has to be mentioned that the belief in time-diversification is not general and that the
(non-) existence of a time-diversifying benefit is the subject of a heavy debate. The topic is
considered in Samuelson (1989), Marshall (1994), Bodie (1995), Jagganathan &Kocherlakota
(1996) and Milevsky (2003), amongst others.
Milevsky (2003) also considers the concept of space diversification, by which he means

the diversification effect caused by increasing the number of risky assets in the investment
portfolio. Provided µ (π) > r, we find that decreasing the portfolio volatility σ (π) will,
ceteris paribus, lead to an increase of the argument in the Φ (.) function in (78). Hence,
any increase of the number of risky assets which allows to reduce the portfolio volatility
while keeping the portfolio drift constant (or increasing it) will decrease ESR(π, n). In other
words, a better space-diversified portfolio implies a lower Equity Shortfall Risk.
This phenomenon can easily be illustrated in the case of a homogeneous market (i.e. all
securities have equal drift and variance, all correlations are equal and positive) and applying
the ’naive’ constant mix strategy where all proportions are kept equal: πi =

1
m
. In this

particular case, it is straightforward to prove that increasing the number of securities m will
keep the portfolio drift constant while decreasing the portfolio variance.
The interrelationship and trade-off between the two possible dimensions of diversification,
i.e. the number of stocks in a portfolio and the number of periods over which an investment
is held, is investigated in detail in Milevsky (2003).

4.2.2 Numerical illustration

Consider a Black & Scholes market with a riskfree asset with a yearly return r = 0.03 and
two risky assets with yearly drifts equal to µ1 = 0.06 and µ2 = 0.10 respectively. The
volatilities of the risky assets are given by σ1 = 0.10 and σ2 = 0.20. Pearson’s correlation
coefficient σ12

σ1σ2
is given by 0.5. From (53) we find that the tangency portfolio is given by

π(t) = (5
9
, 4
9
) with drift µ

¡
π(t)
¢
= 7/90 and volatility σ(π(t)) =

q
43
2700

.

We consider a single investment at time 0. In Table 1 and Table 2 we present the optimal
proportions invested in the tangency portfolio, with respect to the optimization problems
(72) and (75), for different values of the probability level p and the investment period n. For
instance, for criterion (72) with p = 0.99 and n = 40 we find that the optimal investment
strategy consists in investing 9% in the tangency portfolio and 91% in the riskfree asset.
The figures in Table 1 and Table 2 illustrate that increasing the time horizon leads to

an increased optimal proportion invested in the tangency portfolio. Also, the lower the
probability level p with which we want to reach the target, the higher the proportion to be
invested in π(t). Finally observe that the maximization of CLTE1−p[Wn (π)] leads to lower
optimal risky proportions as compared to the maximization of Q+

1−p [Wn (π)] .
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p n = 1 n = 10 n = 20 n = 40 n = 100
0.99 0 0 0 0.09 1.16
0.97 0 0 0 0.64 1.51
0.95 0 0 0.09 0.94 1.70
0.90 0 0 0.73 1.39 1.98

Table 1: Optimal proportion invested in π(t) in case of maximizing Q1−p[Wn(π)].

p n = 1 n = 10 n = 20 n = 40 n = 100
0.99 0 0 0 0 0.96
0.97 0 0 0 0.18 1.31
0.95 0 0 0 0.47 1.50
0.90 0 0 0 0.93 1.79

Table 2: Optimal proportion invested in π(t) in case of maximizing CLTE1−p[Wn(π)].

4.3 Comonotonic approximations for the general problem

Let us now consider the general terminal wealth problem as described in Section 4.1. From
(57), we see that Wn (π) is a sum of non-independent lognormal random variables. As it
is impossible to determine the distribution function of Wn (π) analytically, we will derive a
convex order upper bound W c

n (π) and a convex order lower bound W l
n (π) for Wn (π).

Rewriting Wn (π) as

Wn (π) =
nX
i=0

αi e
Zi , (79)

we see that we can apply the results of Section 2.3 with

Zi = Yi+1 (π) + Yi+2 (π) + · · ·+ Yn (π) , (80)

E [Zi] = (n− i)

·
µ (π)− 1

2
σ2 (π)

¸
,

σ2Zi = (n− i) σ2 (π) .

It follows that the comonotonic upper bound W c
n (π) for Wn (π) is given by

W c
n (π) =

nX
i=0

αi e
(n−i) [µ(π)− 1

2
σ2(π)]+

√
n−i σ(π)Φ−1(U). (81)

For p ∈ (0, 1), the quantiles of W c
n (π) are given by

Q+
1−p [W

c
n (π)] = Q1−p [W c

n (π)] =
nX
i=0

αi e
(n−i) [µ(π)− 1

2
σ2(π)]−

√
n−i σ(π)Φ−1(p), (82)

while CLTEp [W
c
n (π)] is given by

CLTE1−p [W c
n (π)] =

nX
i=0

αi e
(n−i) µ(π) 1− Φ

¡√
n− i σ (π) + Φ−1(p)

¢
1− p

. (83)
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In order to define a convex lower bound W l
n (π) for Wn (π), we choose the conditioning

random variable as follows:

Λ (π) =
nX

j=1

βj (π) Yj (π) (84)

where the coefficients βj (π) follow from (24). Notice that the lower bound approximation

W l
n (π) = E [Wn (π) | Λ (π)] (85)

is only determined up to a linear transformation of Λ (π). Hence, we propose to choose the
coefficients βj (π) as follows:

βj (π) =

j−1X
k=0

αk e
−k µ(π). (86)

For this choice of the parameters, the variance of the lower bound will be close to the
variance of Wn (π), provided σ2 (π) is small enough.
From Section 2.3, we find

W l
n (π) =

nX
i=0

αi e
(n−i) µ(π)− 1

2
r2i (π) (n−i) σ2(π)+ri(π)

√
n−i σ(π) Φ−1(U) (87)

where the coefficients ri (π) are given by

ri (π) =

Pn
j=i+1

Pj−1
k=0 αk e

−k µ(π)

√
n− i

rPn
j=1

³Pj−1
k=0 αk e−k µ(π)

´2 . (88)

Note that the correlation coefficients ri (π) are non-negative which implies that W l (π) is a
comonotonic sum of lognormal random variables.
The following expression can be derived for the risk measure Q+

1−p
£
W l

n (π)
¤
, p ∈ (0, 1):

Q+
1−p
£
W l

n (π)
¤
= Q1−p

£
W l

n (π)
¤
=

nX
i=0

αi e
(n−i) (µ(π)− 1

2
r2i (π) σ

2(π))−ri(π)
√
n−i σ(π) Φ−1(p), (89)

while for CLTE1−p
£
W l

n (π)
¤
we find

CLTE1−p
£
W l

n (π)
¤
=

nX
i=0

αi e
(n−i) µ(π) 1− Φ

¡
ri (π)

√
n− i σ (π) + Φ−1(p)

¢
1− p

. (90)

From Theorem 2.1 we find that

−W l
n (π) ≤cx −Wn (π) ≤cx −W c

n (π) . (91)

This implies that

CTEp

£−W l
n (π)

¤ ≤ CTEp [−Wn (π)] ≤ CTEp [−W c
n (π)] , 0 < p < 1, (92)

see e.g. Dhaene, Vanduffel, Goovaerts, Kaas, Vyncke (2004). Using (6) we find

CLTE1−p [W c
n (π)] ≤ CLTE1−p [Wn (π)] ≤ CLTEl

1−p [W
c
n (π)] , 0 < p < 1. (93)

Note however that the approximations Q1−p
£
W l

n (π)
¤
and Q1−p [W c

n (π)] for the quantiles
Q1−p [Wn (π)] are not necessarily ordered in the same way.
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4.4 Determining the investment strategy that maximizes the tar-
get capital, for a given probability level

4.4.1 The p - target capital

For a given probability level and a given investment strategy π, we define the p-target capital
K as the (1− p)-th order “+”-quantile of terminal wealth:

K = Q+
1−p [Wn (π)] . (94)

One immediately finds that

K = sup {x ∈ R | Pr [Wn (π) > x] ≥ p} . (95)

Hence, the target capital at probability level p can be interpreted as the maximal amount
that will be available at time n, with a probability of at least p.
Now assume that a probability level p is fixed and that the optimal investment strategy

π∗ is determined as the one that maximizes the p- target capital. Denoting the optimal
target capital by K∗, we have

K∗ = max
π

Q+
1−p [Wn (π)] . (96)

Note that from (59) and (62), it follows that this optimization problem can be interpreted
in terms of Yaari’s dual theory of choice under risk.
Solving (96) is from a computational point of view a complicated problem because of the
multi-dimensionality involved. Indeed, a ’time-dimensionality’ occurs because Wn (π) is a
sum of n dependent accumulation factors. In the following sections we will show how to get
rid of this ’curse of dimensionality’.
At first sight, there is also a ’portfolio-dimensionality’ involved, as the maximum has to

be determined over all portfolios π. But from the reasoning that led to (68), we know that
in (96), it suffices to consider the portfolios on the Capital Market Line. Hence, the optimal
target capital K∗ and the optimal investment strategy π∗ follow from

K∗ = max
σ

Q+
1−p [Wn (π

σ)] , (97)

where the efficient portfolios πσ are given by (48).

4.4.2 Comonotonic bounds for Wn (π)

As it is impossible to determine Q+
1−p [Wn (π)] analytically, we first propose to approximate

it by Q+
1−p [W

c
n (π)]. The optimization problem (97) is then replaced by the following one:

Kc = max
σ

Q+
1−p [W

c
n (π

σ)] , (98)

where for each value of σ, the portfolios πσ are given by (48) and where Kc is the approxi-
mated optimal target capital. The optimal portfolio π∗ is approximated by πc which is the
portfolio that corresponds to the optimum in (98). Notice that Q+

1−p [W
c
n (π

σ)] follows from
(82).
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Next, we propose to approximate the optimal investment strategy π∗ by πl, where πl is
the investment strategy that maximizes Q+

1−p
£
W l

n (π)
¤
on the Capital Market Line. The p -

target capital K∗ is then approximated by Kl, which is given by

K l = max
σ

Q+
1−p
£
W l

n (π
σ)
¤
. (99)

The quantiles Q+
1−p
£
W l

n (π
σ)
¤
follow from (89). As we will illustrate, the approximation

defined in (99) that will be extremely accurate, see also Dhaene, Denuit, Goovaerts, Kaas &
Vyncke (2002b).
The approximated optimization problems (98) and (99) solve the curse of dimensionality.

Introducing the comonotonic approximations W c
n (π

σ) and W l
n (π

σ) for Wn (π
σ) reduce the

multi-dimensionality caused by the n yearly returns involved to dimension 1.

4.4.3 Constant savings amounts

In this subsection, we consider the special case that the saving amounts are constant. For
each investment strategy π we look for the required periodic saving amount α (π) that leads
to a p -target capital equal to 1. From (94) we find that this saving amount α (π) is given
by

α (π) =
1

Q+
1−p
£
W n (π)

¤ , (100)

with W n (π) given by

Wn (π) =
nX
i=0

e
Yi+1(π)+Yi+2(π)+···+Yn(π)

. (101)

The optimal investment strategy is now defined as the one that minimizes the period savings.
Denoting the minimal saving amount by α∗, we have

α∗ = min
π

α (π) . (102)

Note that in the case of constant saving amounts, the investment strategy that maximizes
the p - target capital K for given saving amounts α is identical to the investment strategy
that minimizes the periodic savings α for a given target capital equal to 1.
Now we approximate Wn (π) by W

c

n (π) as explained in (81). The minimal periodic
savings amount α∗ is then approximated by αc which is given by

αc = min
σ

1

Q+
1−p
£
W

c

n (π
σ)
¤ . (103)

Next, we propose to approximate Wn (π) by W
l

n (π) as explained in (87). The minimal
periodic savings amount α∗ is then approximated by αl which is determined by

αl = min
σ

1

Q+
1−p
h
W

l

n (π
σ)
i . (104)
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Figure 1: The approximated target capitals Q0.05[W
l
40 (π

σ)] (solid line), Q0.05[W
c
40 (π

σ)]
(dashed line) and the simulated target capital Q0.05[W

s
40 (π

σ)] (dotted line) as a function
of the proportion invested in π(t).

4.4.4 Numerical illustration

Consider the Black & Scholes type market with one riskfree and two risky assets as ex-
plained in Subsection 4.2.2. First, we assume saving amounts αi = 1 for i = 0, 1, , . . . , 39,
while α40 = 0.
As we have seen, the solution of the problem (94) is to be found on the Capital Market
Line. Because of the Two Fund Theorem, any portfolio on the Capital Market Line can be
expressed as a linear combination of the riskfree portfolio and the tangency portfolio π(t).
Hence, we can reduce the market to a market consisting of one riskfree asset with r = 0.03
and one risky asset with drift and volatility equal to the corresponding values of the tangency
portfolio in the original setting.
In Figure 1 we show the comonotonic lower bound approximations Q0.05[W

l
40 (π

σ)] (solid
line) and the comonotonic upper bound approximations Q0.05[W

c
40 (π

σ)] (dashed line) for
the 0.95 target capital Q0.05[W40 (π

σ)], for different values of the proportion invested in the
tangency portfolio π(t), i.e. for the different portfolios on the mean-variance efficient set.
We compare these quantiles with the simulated quantiles Q0.05[W

s
40 (π

σ)] (dotted line). The
simulation was performed by generating 20,000 paths using antithetic variables. We observe
that the lower bound approximation is very close to the results obtained by simulation. In-
deed, the maximum of the relative deviations

¯̄̄
Q0.05[W l

40(π
σ)]−Q0.05[W s

40(π
σ)]

Q0.05[W s
40(π

σ)]

¯̄̄
is less than 0.5%.

The maximum of the respective curves correspond to the (approximated or simulated) opti-
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mal portfolio.
For the comonotonic lower bound approximation we find that the optimal 0.95 - target cap-
ital Kl is given by K l = 89.78. This target capital corresponds to a fraction 0.92 invested
in the tangency portfolio.
The comonotonic upper bound approximation gives rise to an optimal fraction 0.51 invested
in π(t), which corresponds to a maximal target capital Kc = 82.25. The simulated optimum
is reached for a proportion equal to 0.92 and equals Ks = 89.52.
We can conclude that the lower bound approximation for the optimal investment strategy
performs very well, compared to the simulated solution. From Figure 1 we also see that
increasing the risky proportion increases the target capital until a certain level. Further in-
creasing the investment in the risky asset decreases the target capital again. This observation
is in accordance with intuition about optimal investment strategies.
In Figure 2, we consider the same market as above. We assume constant saving amounts

α at times 0, 1, , . . . , 39 and a target capital equal to 1 to be reached at time 40. We consider
the investment strategy that minimizes the yearly savings amount for different probability
levels p of the target capital. The computations were performed with the lower bound ap-
proximation W

l

40 (π) for W 40 (π).
The solid line represents the (approximated) minimal savings amount αl for different proba-
bility levels p of a target capital equal to 1 (left scale). As we see from the figure, increasing
the required probability of reaching the target of 1, increases the optimal savings amount.
Note that the required savings amount in case of the riskfree investment, i.e. the one that
corresponds to p = 1, is given by 0.0127.
The dashed line represents the (approximated) optimal risky proportion to be invested in
the tangency portfolio π(t), for different probability levels p (right scale). As could be ex-
pected, increasing the probability of reaching the target capital decreases the optimal risky
proportion in the portfolio.

4.4.5 Maximizing the CLTE

The optimal investment strategy π∗ can also be defined as the one that maximizes the CLTE
for a given value of p:

CLTE1−p [Wn (π
∗)] = max

π
CLTE1−p [Wn (π)] . (105)

Note that this optimization problem can be interpreted in terms of Yaari’s dual theory of
choice under risk. It is the problem faced by a risk averse decision maker with distortion
function (64) who wants to optimize the distorted expectation of his final wealth. The
optimization problem in this case can be expressed as follows: the decision maker with target
capital Q+

1−p [Wn (π)] maximizes the expected value of final wealth, given that the target
capital is not reached. From (64) and (67) it follows that the n-dimensional maximization
problem can again be reduced to a one-dimensional optimization problem over all portfolios
on the Capital Market Line.
ApproximatingWn (π) byW l

n (π) orW
c
n (π) and using the results of the previous sections,

leads to approximate solutions similar to the one derived above for problem (96). Indeed,
the CLTE’s of both approximations can be written as sums of CLTE’s of lognormal random
variables. Derivation of the results is left as an exercise to the reader.
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Figure 2: The minimal savings amount αl (solid line - left scale) and the optimal proportion
invested in π(t) (dashed line - right scale) as a function of p.

4.5 Determining the investment strategy that maximizes the prob-
ability level for a given target capital.

4.5.1 The probability of reaching the target

In this subsection, we will assume that the target capital K > 0 is given. For any investment
strategy π, the probability of reaching this target is given by

p = FWn(π) (K) , (106)

where FWn(π)(x) = 1− FWn(π)(x) = Pr [Wn (π) > x]. The optimal investment strategy π∗ is
now defined as the one that maximizes the probability of reaching the target K. Denoting
this optimal probability level by p∗, we have that

p∗ = max
π

FWn(π) (K) . (107)

Consider two portfolios π1 and π2 with σ(π1) = σ (π2) and µ(π1) <µ(π2) . From (65) we find
that FWn(π1) (K) ≤ FWn(π2) (K) . This implies that the solution of the optimization problem
(107) is to be found on the Capital Market Line. Hence, we can replace (107) by

p∗ = max
σ

FWn(πσ) (K) . (108)

One possible choice for the target capital K is the final wealth that would arise if all
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savings were invested in the riskfree asset:

Kr =
nX
i=0

αi e
(n−i)r

. (109)

Extending definition (77), the equity shortfall risk of a given investment strategy is now
defined as

ESR (π, n) = FWn(π) (K
r) , (110)

which is the probability that the investment strategy will underperform the riskfree invest-
ment strategy. Solving the maximization problem (107) withK = Kr comes down to finding
the investment strategy that minimizes the equity shortfall risk.

4.5.2 The comonotonic upper bound for Wn (π)

Neither the decumulative distribution function FWn(π)(x), nor its quantiles can be determined
analytically. Therefore, we will introduce comonotonic approximations for FWn(π) (K).
The approximation πc for the the optimal investment strategy π∗ of the problem (107) is

defined as the investment strategy that maximizes FW c
n(π) (K) on the Capital Market Line.

The approximation pc for the optimal probability level p∗ is then given by

pc = max
σ

FW c
n(π

σ) (K) . (111)

In order to determine the probabilities FW c
n(π

σ) (K), notice that for any σ > 0, it follows from
(82) that Qp [W

c
n (π

σ)] is a continuous and strictly increasing function of p, mapping (0, 1)
in (0, ∞). This implies that FW c

n(π
σ)(x) is a strictly increasing and continuous function

of x. Hence, for any K, we find that FW c
n(π

σ)(K) is the unique solution of the equation
QFWc

n(π
σ)(K)

= K, which can be written as

nX
i=0

αi e
(n−i) [µ(πσ)−1

2
σ2]−

√
n−i σ Φ−1(FWc

n(π
σ)(K)) = K. (112)

The approximation πl for π∗ is defined as the investment strategy that maximizes FW l
n(π)

(K)
on the Capital Market Line. The approximation pl for the optimal probability level p∗ is then
given by

pl = max
σ

FW l
n(π

σ) (K) . (113)

Similar as above, it can be proven that for any σ > 0, the probability FW l
n(π

σ) (K) follows
from

nX
i=0

αi e
(n−i) [µ(πσ)− 1

2
r2i (π

σ) σ2]−
√
n−i r2i (πσ) σπ Φ−1(F

Wl
n(π

σ)
(K))

= K. (114)

Notice that the expressions (112) and (114) can be generalized to any investment strategy
π with σ(π) > 0.
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Figure 3: The maximal probability pl of reaching the target capital (solid line - left scale)
and the optimal proportion to be invested in π(t) (dashed line - right scale) as a function of
the target capital K.

4.5.3 Numerical illustration

Assume the Black & Scholes market as described in Subsection 4.2.2. Consider saving
amounts αi = 1 for i = 0, 1, , . . . , 39, while α40 = 0. We approximate the problem (107) by
(113) for different values of the target capital K.
It suffices to consider portfolios that are linear combinations of the riskfree asset and the
tangency portfolio π(t).
In Figure 3 we show the maximal probability pl of reaching the target capital and the

optimal proportion to be invested in π(t), as a function of the target capital K.
The solid line represents the (approximated) maximal probability levels pl of reaching a
given target capital K (left scale), whereas the dashed line represents the (approximated)
corresponding optimal proportion to be invested in π(t) (right scale).
The figure shows that increasing the level of the target capital leads to decreasing opti-
mal probability levels and increasing risky proportions. Note that the riskfree investment
corresponds to a target capital equal to 78.50 that is reached with a probability equal to 1.
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5 Reserves for future obligations

5.1 General problem description

Consider a given set of deterministic obligations, i.e. a series of deterministic non-negative
payments α1, α2, · · · , αn, that are due at times 1, 2, · · · , n, respectively. Being able to meet
these future obligations requires an appropriate funding, this means that appropriate assets
has to be available to set up a reserve and/or a solvency margin. Following Atkinson &
Dallas (2000), the reserve is defined as the amount of funds that have to be set aside as a
liability in order to meet future obligations, whereas the solvency margin is the capital that
regulators, rating agencies or the company itself deem necessary for the company to be able
to withstand reasonable fluctuations in financial results.
At current time 0, assets of value R0 are set up in order to be able to meet these future
obligations. We will call R0 the initial reserve. It can be interpreted as the reserve as defined
above, or also as the total balance sheet requirement, i.e. reserve and solvency margin. We
will assume that this reserve can be invested according to one of the constant mix portfolios
π as defined in the Section 3.2. This investment strategy has to be chosen at time 0. Starting
from the initial reserve R0 and investing according to π, we define Rj (R0, π) at time j by
the following recursion:

Rj (R0, π) = Rj−1 (R0, π) eYj(π) − αj, j = 1, · · · , n, (115)

with R0 (R0, π) = R0. Hence, Rj (R0, π) is the value of the assets that will be available at
time j, after the payment of αj, given that R0 (R0, π) = R0 is the initial reserve at time
0. The realization of Rj (R0, π) will be known at time j, and depends on the investment
returns (stochastic part) and on the payments (deterministic part) in the past years. Often
we will call Rj (R0, π) the (retrospective) reserve available at time j. Note that the random
variables Yj (π) are i.i.d. and normal distributed with parameters µ (π) and σ (π) as defined
in (40). Solving the recursion (115), we find that the value of the assets available at time n
is given by

Rn (R0, π) = R0 e
Pn

j=1 Yj(π) −
nX
i=1

αi e
Pn

j=i+1 Yj(π). (116)

The random variable Sj (π) is defined as the stochastically discounted value of all future
payment obligations from time j on, given that the investment strategy is π:

Sj (π) =
nX

i=j+1

αi e
−(Yj+1(π)+Y2(π)+···+Yi(π)). (117)

This random variable will be called the ’stochastic future obligations’ at time j. The following
relation holds between Sj (π), Rj (R0, π) and Rn (R0, π):

Rn (R0, π) = (Rj (R0, π)− Sj (π)) eYj+1(π)+···+Yn(π). (118)

This relation implies that

Rn (R0, π) ≥ 0⇔ Rj (R0, π) ≥ Sj (π) , j = 0, · · · , n− 1. (119)
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Hence,

Pr [Rn (R0, π) ≥ 0] = Pr [Rj (R0, π) ≥ Sj (π) , j = 0, · · · , n− 1] (120)

= FS0(π) (R0 ) .

Results similar to (120), applied in an obligation-based solvency framework for pension
annuities can be found in Olivieri & Pitacco (2003). Related results in case of ’deterministic
future obligations’ can be found in Vanduffel, Dhaene, Goovaerts & Kaas (2003).
An investor will be interested in the probability p = Pr [Rn (R0, π) ≥ 0] = FS0(π) (R0 )

of “reaching the finish”, for different choices of the reserve R0 and the investment strategy
π.
Let us assume that the initial reserve for an investment strategy π is defined as ρf [S0 (π)]

where ρf is a distortion risk measure as defined in (60). The optimal investment strategy
could then be defined as the one that corresponds to the following minimization problem:

min
π

ρf [S0 (π)] . (121)

Notice that

S0 (π)
d
=

nX
i=1

αi e
−i [µ(π)− 1

2
σ2(π)]+

√
i σ(π)Zi , (122)

where (Z1, · · · , Zn) is a multivariate normal random vector with standard normal distributed
marginals.
Now consider two portfolios π1 and π2 with σ(π1) = σ (π2) and µ(π1) <µ(π2) . As in Ahcan,
Darkiewicz, Dhaene, Goovaerts & Hoedemakers (2004), we find that

FS0(π1)(x) ≤ FS0(π2)(x), x ≥ 0, (123)

which implies
ρf [S0 (π1)] ≥ ρf [S0 (π2)] . (124)

Hence, the solution of the optimization problem (121) can be found on the Capital Market
Line. The optimization problem (121) can be reduced to

min
σ

ρf [S0 (π
σ)] . (125)

5.2 The case of a single obligation

In this subsection, we consider the special case of setting a reserve at time 0 for a single
payment obligation at time n. Hence, α1 = α2 = αn−1 = 0 and αn = 1. The distribution
function of the stochastic provision S0 (π) follows from

S0 (π)
d
= e−n (µ(π)−

1
2
σ2(π))+

√
n σ(π)Φ−1(U), (126)

with U uniformly distributed on the unit interval. For a given investment strategy π and
a given probability level p (with p sufficiently large), we determine the initial reserve R0 as
the p-quantile of S (π):

R0 = Qp [S0 (π)] . (127)
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This reserving principle clearly makes sense, as one can easily prove that

Qp [S0 (π)] = inf {x | Pr [Rn (x, π) ≥ 0] ≥ p} . (128)

This means that for a given investment strategy π, the p-quantile reserving principle deter-
mines the initial reserve as the “smallest” amount such that the probability of “reaching the
finish” is at least p. From (15) it follows that the quantile Qp [S0 (π)] is given by

Qp [S0 (π)] = e−n (µ(π)−
1
2
σ2(π))+

√
n σ(π)Φ−1(p). (129)

The optimal investment strategy π∗ is defined as the one that minimizes Qp [S0 (π)]. The
initial provision R∗0 is then set equal to this minimal quantile:

R∗0 = min
π

Qp [S0 (π)] . (130)

As
Qp [S0 (π)] =

1

Q+
1−p [Wn (π)]

(131)

with Q+
1−p [Wn (π)] given by (73), we find that the optimal portfolio of problem (130) is

identical to the optimal portfolio of problem (72). Hence, π∗ is given by (74).
We can conclude that increasing the investment time horizon transforms the optimal invest-
ment strategy into a more risk-taking one. Investors with a longer time horizon should have a
larger exposure to stocks relative to investors with a shorter time horizon. The optimal risky
proportion converges to (71), which corresponds to the so-called optimal growth portfolio.

5.3 Comonotonic approximations for the general case

From (120) we see that in order to compute the “probability of reaching the finish”
Pr [Rn (R0, π) ≥ 0] for a given pair (R0, π), we have to determine the d.f. of S0 (π). How-
ever, the random variable S0 (π) is a linear combination of dependent lognormal random
variables. This implies that it is impossible to determine the distribution function of S0 (π)
analytically. Therefore, we will consider a convex order upper bound Sc (π) and a convex
order lower bound Sl (π) for S (π). Rewriting S0 (π) as

S0 (π) =
nX
i=1

αi e
Zi , (132)

we can apply the results of Subsection 2.3 with

Zi = −Y1 (π)− Y2 (π)− · · ·− Yi (π) , (133)

E [Zi] = −i
·
µ (π)− 1

2
σ2 (π)

¸
,

σ2Zi = i σ2 (π) .

The comonotonic upper bound Sc
0 (π) =

Pn
i=1 F

−1
αi eZi

(U) for S0 (π) is given by

Sc
0 (π) =

nX
i=1

αi exp

·
−i µ (π) + 1

2
i σ2 (π) +

√
i σ (π) Φ−1(U)

¸
, (134)
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while for p ∈ (0, 1), the quantiles and CTE’s of Sc
0 (π) are given by

Qp [S
c
0 (π)] =

nX
i=1

αi e
−i µ(π)+ 1

2
i σ2(π)+

√
i σ(π) Φ−1(p), (135)

CTEp [S
c
0 (π)] =

nX
i=1

αi e
−i µ(π)+i σ2(π) Φ

¡√
i σ (π)− Φ−1(p)

¢
1− p

.

In order to define a convex lower bound Sl
0 (π) for S0 (π), we choose the conditioning

random variables Λ (π) as

Λ (π) =
nX

j=1

βj (π) Yj (π) , (136)

with coefficients βj (π) that follow from (24):

βj (π) = −
nX

k=j

αk e
k (−µ(π)+σ2(π)).

For this choice of the parameters βj (π), the variance of the lower bound will be close to the
variance of S0 (π), provided σ2 (π) is small enough. Hence, the lower bound

Sl
0 (π) = E [S0 (π) | Λ (π)] (137)

will have a distribution function that is close to the distribution function of S0 (π), provided
σ (π) is small enough. From Section 2.3, we find

Sl
0 (π) =

nX
i=1

αi e
−i µ(π)+(1−1

2
r2i (π)) i σ

2(π)+ri(π)
√
i σ(π) Φ−1(U) (138)

where the coefficients ri (π) are given by

ri (π) =

Pi
j=1

Pn
k=j αk e

−k (µ(π)−σ2(π))

√
i

rPn
j=1

³Pn
k=j αk e−k (µ(π)−σ

2(π))
´2 . (139)

Note that the correlation coefficients ri (π) are non-negative. This implies that Sl (π) is a
comonotonic sum of lognormal random variables. From Section 2.3, we find the following
expressions for the risk measures Qp

£
Sl
0 (π)

¤
and CTEp

£
Sl
0 (π)

¤
, p ∈ (0, 1):

Qp

£
Sl
0 (π)

¤
=

nX
i=1

αi e
−i µ(π)+(1− 1

2
r2i (π))i σ2(π)+ri(π)

√
i σ(π) Φ−1(p), (140)

CTEp

£
Sl
0 (π)

¤
=

nX
i=1

αi e
−i µ(π)+ i σ2(π) Φ

¡
ri (π)

√
i σ (π)− Φ−1(p)

¢
1− p

.

From Theorem 2.1 we find that

Sl
0 (π) ≤cx S0 (π) ≤cx S

c
0 (π) . (141)
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This implies that

CTEp

£
Sl
0 (π)

¤ ≤ CTEp [S0 (π)] ≤ CTEp [S
c
0 (π)] , (142)

see e.g. Dhaene, Vanduffel, Goovaerts, Kaas & Vyncke (2004). Note however that the
approximations Qp

£
Sl
0 (π)

¤
and Qp [S

c
0 (π)] for Qp [S0 (π)] are not necessarily ordered in the

same way.

5.4 Determining the investment strategy that minimizes the p-
quantile initial reserve for a given probability level

5.4.1 The p-quantile reserving principle

As in Section 5.2, we set the initial reserve for a given investment strategy π and a given
probability level p, equal to the p-quantile of S0 (π):

R0 = Qp [S0 (π)] . (143)

As we noted in Section 5.2, the p-quantile reserving principle determines the initial reserve
as the “smallest” amount such that the probability of “reaching the finish” is at least p, see
(128).
For a given probability level p, we determine the optimal investment strategy π∗ as the one

that minimizes Qp [S0 (π)]. The initial reserve R∗0 is then set equal to this minimal quantile:

R∗0 = min
π

Qp [S0 (π)] . (144)

Similar to the optimization problem (96), the optimization problem (144) suffers from a
’curse of dimensionality’, as S0 (π) is a sum of n non-independent random variables. The
dimensionality problem will be solved by introducing comonotonic approximations for the
stochastic provision S0 (π). The portfolio dimensionality can be reduced because the solution
of the minimization problem (144) will be an element of the Capital Market Line, see (121)
and (125). Hence, we can transform (144) into

R∗0 = min
σ

Qp [S0 (π
σ)] . (145)

5.4.2 Comonotonic bounds for S0 (π)

First, we propose to approximate the optimal investment strategy π∗ by πc, which is the
investment strategy that minimizes Qp [S

c
0 (π)] on the Capital Market Line, and we approx-

imate the initial provision R∗0 by R
c
0 which follows from:

Rc
0 = min

σ
Qp [S

c
0 (π

σ)] , (146)

where the quantiles Qp [S
c
0 (π

σ)] are given by (135).
Secondly, we propose the approximation πl for π∗, where πl is the investment strategy

that minimizes Qp

£
Sl
0 (π)

¤
on the efficient frontier, and we approximate the initial provision

R∗0 by R
l
0 which follows from

Rl
0 = min

σ
Qp

£
Sl
0 (π

σ)
¤
. (147)
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Figure 4: The approximated reserves Q0.95[S
l (πσ)] (solid line) and Q0.95[S

c (πσ)] (dashed
line) and the simulated reserve Q0.95[S

s (πσ)] (dotted line) as a function of the proportion to
be invested in π(t).

The quantiles Qp

£
Sl
0 (π)

¤
are given by (140).

The approximations (146) and (147) both reduce the time multidimensionality of problem
(144), or equivalently (145), to dimension 1. As we will illustrate in the next subsection, it
is especially the approximation (147) that will perform very well.

5.4.3 Numerical illustration

Consider the Black & Scholes market as considered in Section 4.2.2. consisting of one riskfree
asset and two risky assets. We want to solve (approximately) problem (144) in case of a series
of obligations αi that are all equal to 1, for i = 1, , . . . , 40. As the solutions of the problems
(146) and (147) are to be found on the efficient frontier, we can again restrict to the case of
a market consisting of the riskfree asset and a risky asset that corresponds to the tangency
portfolio.
In Figure 4, the comonotonic lower bound approximationQ0.95

£
Sl
0 (π

σ)
¤
and the comonotonic

upper bound approximation Q0.95 [S
c
0 (π

σ)] are given for different values of the propor-
tion invested in the tangency portfolio π(t). Also the corresponding simulated quantiles
Q0.95 [S

s
0 (π

σ)] are given. The simulation is obtained by generating 20,000 paths using anti-
thetic variables. We can conclude that the lower bound approximation performs extremely
well. Indeed, the maximal value of the relative deviation

¯̄̄
Q0.95[Sl0(π

σ)]−Q0.95[Ss0(πσ)]
Q0.95[Ss0(π

σ)]

¯̄̄
was found

to be as small as 0.20%.
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Figure 5: The minimal Qp-reserve Rl
0 (solid line - left scale) and the optimal proportion to

be invested in π(t) (dashed line - right scale) as a function of p.

The minimum of the respective curves corresponds to the (approximated or simulated)
optimal portfolio. For the comonotonic lower bound approximation we find that the optimal
proportion invested in the tangency portfolio is given by πl = 0.35. This corresponds to an
optimal initial reserve given by Rl

0 = 22.442.
The comonotonic upper bound approximation gives rise to an optimum Rc

0 = 22.945 corre-
sponding with an optimal proportion of 0.015.
The simulated optimal provision is given by Rs

0 = 22.444, with a risky proportion of 0.345.
Notice the high accuracy of the comonotonic lower bound approximation.
In Figure 5, we consider the same obligations pattern and determine the investment

strategy that minimizes the initial p-quantile reserve for different probability levels p. The
computations were performed using the lower bound approximation Sl

0 (π) for S0 (π). The
dashed line represents the (approximated) optimal proportions invested to be invested in the
tangency portfolio, for different probability levels p (right scale). The solid line represents
the (approximated) initial reserve for different probability levels p (left scale). In accordance
with intuition, we find that increasing the probability of reaching the finish will increase the
optimal initial reserve and decrease the optimal risky proportion.
Note that if one sets the probability level p equal to 1, the investment strategy is com-

pletely riskfree. The initial reserve is in this case given by 22.946.
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5.5 Determining the investment strategy that minimizes the CTEp-
quantile initial reserve for a given probability level

5.5.1 The CTEp-quantile initial reserve

In this subsection we will set the initial reserve, for a given probability level p, and a given
investment strategy π, equal to CTEp [S (π)]:

R0 = CTEp [S0 (π)] . (148)

One can prove that

CTEp [S0 (π)] = Qp [S0 (π)] +
¯̄
E
£
Rn e−Y1(π)−···−Yn(π) | Rn < 0

¤¯̄
, (149)

where Rn is given by
Rn = Rn (Qp [S0 (π)] , π) . (150)

The second term in (149) can be interpreted as the expected discounted shortfall, given that
the initial reserve is set according to the p - quantile reserving principle and given that there
is a shortfall. Hence, with the CTEp reserving principle the initial reserve is set equal to the
sum of the p - quantile initial reserve and the expected discounted conditional shortfall of
the p - quantile initial reserve.
Assuming that the probability level p is fixed, the optimal investment strategy π∗ is now

determined as the one that minimizes CTEp [S0 (π)]. The initial provision R∗0 is set equal to
this minimal conditional tail expectation:

R∗0 = min
π

CTEp [S0 (π)] . (151)

From the equivalence of (121) and (125), we find that the minimization problem (151) can
be transformed into

R∗0 = min
σ

CTEp [S0 (π
σ)] . (152)

As the Conditional Tail Expectations cannot be determined analytically, we again propose
comonotonic approximations for this minimization problem.

5.5.2 Comonotonic bounds for S0 (π)

First, we propose to approximate the optimal investment strategy π∗ by the investment
strategy πc that minimizes CTEp [S

c
0 (π)] on the efficient frontier. The initial reserve R

∗
0 is

approximated by Rc
0 :

Rc
0 = min

σ
CTEp [S

c
0 (π

σ)] . (153)

The quantities CTEp [S
c
0 (π

σ)] can be determined from (135).
Next, we propose to approximate π∗ by πl which is the investment strategy that minimizes

CTEp

£
Sl
0 (π)

¤
on the efficient frontier. The initial reserve R∗0 is then approximated by

Rl
0 = min

σ
CTEp

£
Sl
0 (π

σ)
¤
. (154)

The quantities CTEp

£
Sl
0 (π)

¤
are given by (140).

36



21

22

23

0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

p

m
in

im
al

 re
se

rv
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

op
tim

al
 ri

sk
y 

pr
op

or
tio

n

Figure 6: The minimal CTEp-reserve Rl
0 (solid line - left scale) and the optimal proportion

invested in π(t) (dashed line - right scale) as a function of p.

It is straightforward to prove that the following inequalities hold for any investment
strategy π:

CTEp

£
Sl
0 (π)

¤ ≤ CTEp [S0 (π)] ≤ CTEp [S
c
0 (π)] . (155)

These inequalities imply
Rl
0 ≤ R∗0 ≤ Rc

0. (156)

5.5.3 Numerical illustration

Consider the Black & Scholes market as presented in Section 4.2.2. Now we want to solve
(approximately) problem (151) in case of a series of obligations αi that are all equal to 1,
for i = 1, , . . . , 40. As the solution of problem (151) is a portfolio on the efficient frontier, we
can again restrict to the case of a market consisting of the riskfree asset and a risky asset
that corresponds to the tangency portfolio.
In Figure 6, we consider the investment strategy that minimizes the initial CTEp- reserve

for different values of the probability level p. The computations were performed with the
lower bound approximation Sl (π) for S (π).
The dashed line represents the (approximated) optimal risky proportion πl to be invested in
the tangency portfolio, for different probability levels p (right scale). As could be expected,
increasing the required probability level of reaching the finish will decrease the optimal risky
proportion in the portfolio.
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The solid line represents the (approximated) CTE-reserve for different probability levels p
(left scale). As we see from the figure, increasing the probability will increase the optimal
reserve.
Comparing Figures 5 and 6, we see that for a given probability level p, the CTE provi-

sioning principle will lead to a less risky investment strategy than the quantile provisioning
principle.

5.6 Determining the investment strategy that maximizes the prob-
ability level, for a given initial reserve.

5.6.1 The probability of reaching the finish

From (120), we find that for a given investment strategy π and a given initial reserve R0,
the probability p of ”reaching the finish” is given by

p = Pr [Rn (R0, π) ≥ 0] = FS0(π)(R0). (157)

In this subsection, we will assume that the initial reserve R0 > 0 is given. We propose to
determine the optimal investment strategy π∗ as the one that maximizes the probability of
“reaching the finish” in relation (157). Denoting this maximal probability by p∗, we find

p∗ = max
π

FS0(π)(R0). (158)

Consider two portfolios π1 and π2 with σ(π1) = σ (π2) and µ(π1) <µ(π2) . From (123) we
find that the solution of the optimization problem (158) is to be found on the Capital Market
Line. Hence, we can replace (158) by

p∗ = max
σ

FS0(πσ)(R0).

Neither the probabilities FS0(πσ)(R0), nor the quantiles Qp [S0 (π
σ)] can be determined

analytically. Moreover, solving optimization problem (158) by simulation is time-consuming,
due to the multi-dimensionality in time. Therefore, we will again propose comonotonic
approximations for π∗ and p∗.

5.6.2 Comonotonic bounds for S0 (π)

A first approximation consists in approximating the optimal investment strategy π∗ by the
investment strategy πc which is the one that maximizes FSc0(π)

(R0). The probability of
“reaching the finish” p∗ is then approximated by pc, which follows from

pc = max
σ

FSc0(π
σ)(R0). (159)

For any investment strategy πσ, with σ > 0, it follows from (135) that Qp (S
c
0 (π

σ)) is a
continuous and strictly increasing function of p, mapping (0, 1) in (0, ∞). This implies that
FSc0(π

σ)(x) is a strictly increasing and continuous function of x. Hence, for any R0, we find
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that FSc0(π
σ)(R0) is the unique solution of the equation QFSc0(π

σ)(R0) = R0, or equivalently,
FSc0(π

σ)(R0) is the unique solution of

nX
i=1

αi e
−i µ(πσ)+ 1

2
i σ2+

√
i σ Φ−1(FSc0(πσ)(R0)) = R0. (160)

The approximation πl for π∗ is the investment strategy that maximizes FSl0(π)
(R0). The

probability of “reaching the finish” p∗ is then approximated by pl, which is given by

pl = max
σ

FSl0(π
σ)(R0). (161)

Provided σ > 0, one finds that FSl(πσ)(R0) is the unique solution of the following equation:

nX
i=1

αi e
−i µ(πσ)+(1− 1

2
r2i (π

σ))i σ2+ri(πσ)
√
i σ Φ−1(F

Sl0(π
σ)
(R0))

= R0. (162)

5.6.3 Numerical illustration

Consider again the Black & Scholes market as introduced in Section 4.2.2.We want to find
the optimal investment strategy determined by (158) for a series of future obligations αi that
are all equal to 1, for i = 1, , . . . , 40. We propose to approximate the exact solution by the
solution of problem (161). In Figure 7 we show the maximal probability pl of reaching the
finish (solid line - left scale), as well as the optimal proportion to be invested in π(t) (dashed
line - right scale), as a function of the initial reserve R0.
The figure shows that increasing the level of the initial reserve will lead to an increase of the
maximal probability of reaching the finish. On the other hand, increasing the initial reserve
will lead to an optimal investment strategy that is less risky.

6 Final remarks

In this paper we considered the problem of how the available funds should be allocated
among a basket of riskfree and risky assets, when the available investment strategies are to
be chosen within the class of constant mix strategies. Two general asset allocation decision
problems were distinguished. The terminal wealth problem considers the optimal investment
mix in a situation where at regular points in time saving amounts are added to the available
funds. The reserving problem describes situations where funds are set up and invested in
order to be able to fulfill a future deterministic consumption pattern. For both problems
several optimization criteria were considered.
These portfolio selection problems can be considered as multidimensional in two direc-

tions. First, they are multidimensional in terms of portfolio choice as the proportions related
to the m + 1 assets have to be chosen. They are also multidimensional in terms of time
as n yearly returns Yi (π) are involved. The portfolio-dimension is easily reduced to a single
dimension, as it is straightforward to prove that optimal distorted expectations correspond
to portfolios on the Markowitz mean-variance efficient frontier. On the other hand, the com-
plexity caused by time-dimensionality and dependence cannot be solved in a straightforward
way.
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Figure 7: The maximal probability of reaching the finish pl (solid line - left scale) and the
optimal proportion invested in π(t) (dotted line - right scale) as a function of the initial
reserve R0.
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The classical way to solve the optimization problems we considered in this paper is
via Monte Carlo simulation. Take as an example the final wealth problem described in (96).
Such a strategy starts with simulating series of outcomes (u1, u2, . . . , un) of the multivariate
random vector (U1, U2, . . . , Un) with mutually independent marginals that are uniformly
distributed on the unit interval. From these simulated values, one determines series of yearly
returns (y1 (π) , y2 (π) , . . . , yn (π)) for each possible portfolio πT = (π1, π2, · · · , πm) on
the efficient frontier. This leads to a simulated value of the quantiles Q+

1−p [Wn (π)] for all
efficient portfolios. The optimal investment strategy is then the one that correspond to the
largest quantile. Because of the multiple simulations and calculations involved, this method
is time-consuming, with a trade-off to be made between speed and accuracy.
In this paper we proposed a way to escape the ’curse of time-dimensionality’. The

comonotonicity approach reduces the time-dimensionality to one dimension, as the ran-
domness of the n - dimensional vector of yearly returns is reduced to the randomness of
one single uniform variable U . Moreover, the comonotonicity technique avoids simulation as
analytical expressions for approximations of the quantiles are available. These expressions
can be computed very quickly and are highly accurate at the same time.
Many of the results presented in this paper can be generalized in several directions. A

first immediate generalization consists in finding optimal investments mixes when restrictions
are set on the proportions held in the different asset classes. E.g. there may be general linear
constraints on the weights πi, such as

lj ≤ aj0 + πT × ¡aj−aj0 1¢ ≤ uj, j = 1, · · · , c, (163)

with aj = (a1, a2, . . . , am). These bounds might express restrictions on the individual weights,
such as ’the fraction of the portfolio in property must be between 0% and 15%’ or ’a fixed
percentage of the fund should be available in cash’ and ’there shall be no short-selling of
assets’. But also more general linear restrictions such as ’the total fraction of the portfolio
allocated to all international assets must not exceed 40%’ can be expressed by a constraint
of the form (163).
It is straightforward to prove that with constraints of this type, the approximations

for the investor’s optimal portfolio choice of all problems considered in this paper will be
found on the adjusted mean-variance efficient frontier {(σ, µ (πσ))} where for a given level of
the volatility σ, the mean-variance efficient portfolio πσ is the one that corresponds to the
maximum in the following problem:

Maxπ�R µ (π) subject to σ (π) = σ, (164)

where R is the set of all portfolios π fulfilling the constraints (163). Note however that in this
case, the efficient frontier cannot be expressed analytically anymore and the special structure
of the efficient frontier is destroyed. However, powerful numerical methods are available to
solve the mean-variance problem (164).
In this paper, we restricted the optimization function to be a quantile, or a conditional

(left) tail expectation. Many results can be generalized to the case where the optimization
function is a distortion risk measure. Indeed, as is explained in Dhaene, Vanduffel, Tang,
Goovaerts, Kaas & Vyncke (2004) for instance, any distortion risk measure of a sum of
comonotonic random variables such as W l

n(π), W
c
n(π), S

l
0(π) and Sc

0(π) can be expressed as
the sum of the distortion risk measures of the (lognormal) random variables involved.
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We considered the portfolio selection problem within the framework of a Black & Scholes
market. In particular we assumed that the drift and volatility of the different asset classes
are constant over time and that the yearly returns are lognormally distributed. The results
can be generalized in a straightforward way to take into to account the time-dependency of
drifts and volatilities. Also many of the results presented here can be generalized to other
than normal distributions for the yearly investment returns. In particular, many results can
be generalized in a Lévy-type or elliptical-type world. Comonotonic approximations for sums
of random variables with distributions of this type are considered in Valdez & Dhaene (2004)
and Albrecher, Dhaene, Goovaerts & Schoutens (2004).
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