
Gazi University Journal of Science

GU J Sci

29(4): 971-980 (2016)

Corresponding author, e-mail: shivaputra@dr-ait.org

Comp-Bit-List Size Improvement in Mespotine RLE

and its Applications

Shiva PUTRA1, ♠, H.S.SHESHADRI 2, V.LOKESHA 3

1Department of ECE, Assistant Professor, Dr Ambedkar Institute of Technology, Bengaluru,560056,India and

Research scholar @ Jain University, Bengaluru, India.

2Department of ECE, Professor and Research Dean, PES College of Engineering, Mandya,571401,India

3Department of Mathematics, Associate Professor, Vijayanagara Sri Krishnadevaraya University,

Bellary,583101,India

Received: 01/04/2016 Accepted: 03/09/2016

ABSTRACT

Run Length Encoding (RLE) is one of the simplest and primitive lossless data compression technique. RLE
sometimes doubles the size of compressed data stream. To overcome this disadvantage, several algorithms, one of

which is Mespotine RLE (MRLE), have been introduced. This paper introduces modification to MRLE technique in

which the constant size ‘Comp-Bit List’ has been replaced by ‘Variable Size Comp-Bit List’ and refers to the new
technique as improved – MRLE (iMRLE) technique. This paper discusses the details of ‘Variable Size Comp-Bit

List’ and utilizes this concept for lossless compression and decompression of 8-bit grayscale medical images and

extends the concept to 16-bit grayscale medical images. Image quality metrics such as Compression Ratio (CR),
Root Mean Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR) and Entropy are used to check the quality of

decompressed image obtained using iMRLE technique. Finally, the compression ratio achieved for existing MRLE

and iMRLE techniques for 8-bit and 16-bit grayscale images have been assessed and iMRLE is found to produce
best results for lossless compression and decompression of medical images.

Keywords: Mespotine-RLE, iMRLE, variable size comp-bits, medical image, lossless compression.

1. INTRODUCTION

Data compression is the art or science of representing

information in compact form [1]. Data compression

techniques usually eliminate redundant data and

unnoticeable data which are far beyond normal human

972 GU J Sci, 29(4):971-980 (2016)/ Shiva PUTRA, H.S.SHESHADRI, V.LOKESHA

perception [2]. The principal use of data compression

techniques is to minimize the size of raw data thus

eliminating unwanted bits which are of less importance

and further encoding it to a form which is much suitable

for storage and transmitting purposes [3].

Continued research in data compression algorithms

paves way for faster access to data, improved

compression logic and better storage techniques which

ultimately result in considerable cost savings [4] [5].

As discussed in [6], compression techniques can be

broadly classified into lossy and lossless.

Lossy compression techniques [7] permanently

eliminate the data which are either redundant or are

imperceptible by humans thus retaining vital data which

conveys the intended information to the end user.

Eliminating unwanted data can be done either in time-

domain [8] or frequency domain [9]. Time domain

operations include operating on the data directly (Ex:

pixel values in images) [10] whereas frequency domain

operations involve transforming data to frequency

domain using Fourier Transforms [11], Discrete Cosine

Transforms [12], Wavelet Transforms [13] and then

eliminating undesired frequencies and converting back

to time-domain. In all such techniques, it is practically

impossible to recover original data from compressed

data. However, there is minimal compromise in the

quality of the compressed data. Lossy compression is

usually employed in applications where higher

compression ratio is required with little compromise in

image quality [14]. Some of the standard lossy

compression techniques include Transform coding [15],

JPEG [16], Fractal Compression [17], etc.

Lossless compression techniques encode the data using

suitable data encoding algorithm so that the original

information can be decoded without any loss [18]. The

primary purpose of lossless compression is to recover

back the original information from compressed data.

Such techniques are best suited for compression and

decompression of text files, medical images, archives

files, etc. Majority of the lossless compression

techniques use statistical operations which can be

sometimes slower compared to lossy compression

techniques [19]. Some of the standard lossless

compression techniques include Run-Length encoding

(RLE) [20], Mespotine Run – Length encoding (MRLE)

[21], Huffman Coding [22], Lempel-Ziv-Welch (LZW)

[23], Arithmetic Coding [24], etc.

This paper studies Mespotine RLE, which is a lossless

compression & decompression technique and introduces

modifications to existing MRLE by replacing the

constant size MRLE Comp-Bit List by Variable Size

Comp-Bit List and refers to the new technique as

improved-MRLE (iMRLE) technique. This technique is

employed to compress and decompress 8-bit, 16-bit

grayscale medical images to assess the performance of

iMRLE in contrast to the existing MRLE technique.

2. LITERATURE REVIEW

Run Length Encoding technique is an entropy encoding

technique which is lossless and is independent of the

type of information being compressed [25]. With this

technique it is possible to recover the exact original

information from compressed data without any loss in

data or quality. It allows user to obtain perfect replica of

the original message.

RLE encoding technique can be discussed with an example.

Consider the sample uncompressed data

{B,C,A,D,D,D,D,D,D,E,E,E,E}. The RLE encoded data

is{1,B,1,C,1,A,6,D,4,E}. In RLE encoded data stream, odd

values represent run-count and even values represent run-

value. Since each character occupies 1 byte (or 8 bits) of

storage memory, the uncompressed data listed above

occupies 13 bytes of storage memory and the

compressed/encoded data occupies 10 bytes of storage

memory.

Table 1. Rle Encoding Scheme Examples

Original data

(Sample

Pixel values

of an 8-bit

grayscale

image)

Compressed/

Encoded

Data

Original

Data

Size

(Bytes)

Compre

ssed

Data

Size

(Bytes)

{B} {1, B} 1 2

{E, E, E, E,

E, E, E}

{7, E} 7 2

{A, A, C, B,

B, B, B}

{2, A, 1, C,

4, B}

7 6

{B, B, C, C,

A, A, A, A}

{2, B, 2, C,

4, A}

8 6

{A, C, E, E,

D, D, A, E}

{1, A, 1, C,

2, E, 2, D, 1,

A, 1, E}

8 12

{F, G, A, C,

B, A, C, D,

A, B}

{1, F, 1, G,

1, A, 1, C, 1,

B, 1, A, 1, C,

1, D, 1, A, 1,

B}

10 20

{A, B, C, D,

E, F, G, H}

{1, A, 1, B,

1, C, 1, D, 1,

E, 1, F, 1, G,

1, H}

8 16

As shown in Table – 1, the advantage of RLE scheme is

that it requires a minimum of 2 bytes in best case

scenario. This happens when the original data has a

single character or has all characters same. However,

RLE encoding scheme sometimes produces compressed

data whose size is more than that of the original data. In

the worst case scenario the size of compressed data is

double the size of uncompressed data. This happens if

the consecutive characters or all characters in the

GU J Sci, 29(4):971-980 (2016)/ Shiva PUTRA, H.S.SHESHADRI, V.LOKESHA 973

original data are different.

As known, RLE sometimes doubles the size of

compressed data. To overcome this disadvantage several

modifications were introduced to RLE.

Tsukiyama's method [26] transforms uncompressed data

which includes two regions in which the first region

consists of series of data whose occurrences is less than

a predetermined value and second region consists of

multiple occurrences of the data in region one. Such data

can be compressed in two steps. First step counts the

occurrences of the character string greater than the

predetermined threshold and in second step it combines

the data and its occurrences. This process is continued

till the end of the data string is reached.

In [27] the author discusses data compression using both

RLE and statistical encoding. In this technique a flag

byte symbol is inserted between the run value and run

count and in this technique, multiple statistical encoding

tables are selected based on previously occurring data.

In [28] the author discusses the method for compressing

a digitized waveform into a sequence of N-bit words

which includes selection of the corresponding bit values

from N data words and generating a value based on bit

values. The next N input words are selected and the

corresponding bits are used to generate next value. The

steps are repeated for each bit of the input sequence and

the generated data is run-length encoded to produce a

compressed data.

In [29] the author discusses the design and

implementation of a new RLE algorithm which is based

on data chunking and packing which exploits the Cray

gather-scatter vector hardware and multiple processors.

This approach reduces the input-output and file storage

requirements on average by an order of magnitude. By

using this method applications such as the integration of

environmental and global climate models become

practical in real-time.

In [30] a mixed DCT and RLE technique has been

introduced. The new technique is discussed for grayscale

image compression and the experimental results that this

method is advantageous as it is simple, fast with

minimal error.

A new FPGA based compression technique has been

discussed in [31] which reduces the size of bit stream

while maintaining minimum decompression ratio. This

technique discusses the smart arrangements of

compressed bits which can significantly remove

undesired overhead. It also discusses the combination of

bitmask-based compression and RLE of repetitive

patterns.

3. IMAGE QUALITY METRICS

This section discusses parameters which are required to

assess image quality.

A. Root Mean Squared Error (RMSE)

RMSE [32] determines the square root of Mean Squared

Error (MSE). Root Mean Squared Error is simply the

square root of Mean Squared Error. Mean Squared Error

is a parameter to evaluate the similarity between two

images. MSE is the average of square of the pixel

differences of compressed and decompressed image.

The value of RMSE for compressed and decompressed

images must be as least as possible. Ideal value is zero.

In such cases, the two images under test are identical.

RMSE is given in Equation (1) and MSE is given by

Equation (2).

1

0

1

0

2)],(),([
1 m

i

n

j

jiKjiI
mn

MSE (1)

MSERMSE (2)

B. Peak Signal-to-Noise Ratio (PSNR)

PSNR [33] depends on the Mean Squared Error (MSE)

between original image and decompressed image. PSNR

is measured on a logarithmic scale and its unit is

Decibels (dB). When two images are similar, the value

of MSE is minimum and the value of PSNR is

maximum. In ideal case, when compressed and

decompressed image are identical, MSE value is zero. In

such cases the PSNR value is infinity.

The equation for PSNR is given in Equation (3) and

Equation (4). Equation (3) depends on MSE and

Equation (4) depends on RMSE. Either of the two

equations can be used to determine PSNR.

dB
MSE

PSNR
n 2

10

)12(
log10

 (3)

dB
RMSE

PSNR
n)12(

log20 10

 (4)

In an 8-bit grayscale image the maximum value of an

image pixel is 255 i.e.)12(n
.

C. Entropy

Histogram represents the probability of occurrence of

different gray levels in a grayscale image. In order to

express the distribution of different gray levels of a

grayscale image as a single quantity, entropy is used.

The individual pixels in the image can be considered as

the symbols produced by information source with

different gray levels as its states.

Entropy [34] or average information is defined as the

expected value of information contained in each pixel

value. It is given in bits by the Equation (5).

)(log)(
1

0

2 ipipH
L

i

 (5)

Maximum entropy occurs when all pixel values occur

974 GU J Sci, 29(4):971-980 (2016)/ Shiva PUTRA, H.S.SHESHADRI, V.LOKESHA

with equal probability)/1(L . It is given by equation

(6).

 L
LL

H
L

i

2

1

0

2 log
1

log
1

(6)

If the image under test is an 8-bit grayscale image, then

the number of gray levels L is 256)2562(8 . As a

result the maximum possible entropy is 8 bits.

D. Percentage Improvement in Compression Ratio

Percentage improvement factor is used to compare the

compression ratio achieved using MRLE and iMRLE

techniques. It is determined using Equation (7).

)7(100

CReMRLE

CReMRLECRiMRLE
PI

where

PI=Percentage Improvement

iMRLE CR=Improved MRLE Compression Ratio

eMRLE CR=Existing MRLE Compression Ratio

Percentage improvement factor in turn uses the values of

MRLE compression ratio given by Equation (8) and

iMRLE compression ratio given by Equation (9).

)8(
32 ListBitcompMRLEbytesCISB

IISB
CRMRLE

where

IISB=Input image size in bytes

CISB=Compressed image size in bytes

)9(
var ListBitcompiableCISB

IISB
CRiMRLE

4. MESPOTINE RLE (MRLE)

Mespotine RLE introduces few modifications to RLE to

reduce the size of compressed data. First, it introduces

the concept of compressible bit called ‘Comp-Bit’.

Number of MRLE Comp-Bits needed to compress the

data is equal to the number of different characters in the

data. In [21] author discusses the concept of MRLE

considering 256 ASCII values. Since there are 256

ASCII values, 256 different Comp-Bits are needed, one

for each character. The 256 Comp-Bits are combined to

get 256 bits or 32 byte MRLE Comp-Bit List.

As an example, MRLE encoding and decoding steps as

described in [21] is discussed here considering the

sample data DDAAABCAACBDAAADBBBBB with

an assumption that the sample data can have any length

but is comprised of only four characters {A, B, C, D}.

A. Counting Occurrences

Counting occurrences of a pixel value is done batch-

wise and stored in a variable Counter, which is required

to generate MRLE Comp-Bit List in section 4.2.

Table 2. Counting Occurrences for MRLE Comp-Bit

List Generation

Number of occurrences in first batch Counter

One -1

Two 0

Three 1

Four 2

Five 3

Six 4

Seven 5

B. Generating MRLE Comp-Bit List

Generating Comp-Bit List for the uncompressed data

DDAAABCAACBDAAADBBBBB is discussed in the

below steps.

Above data has 4 different characters A, B, C and D. So,

consider 4 comp-Bits, one for each character.

Start with ‘A’. In the data,

DDAAABCAACBDAAADBBBBB, First batch of ‘A’

has three occurrences (1), second batch of ‘A’ has two

occurrences (0) and third batch of ‘A’ has three

occurrences (1). Sum the numbers: (1) + (0) + (1) = (2)

> 0. Comp-Bit for ‘A’ = 1. So, ‘A’ is a compressible

character.

Start with ‘B’. In the data,

DDAAABCAACBDAAADBBBBB, First batch of ‘B’

has one occurrence (-1), second batch of ‘B’ has one

occurrence (-1) and third batch of ‘B’ has five

occurrences (3). Sum the numbers: (-1) + (-1) + (3) = 1

> 0. Comp-Bit for ‘B’ = 1. So, ‘B’ is a compressible

character.

Start with ‘C’. In the data,

DDAAABCAACBDAAADBBBBB, First batch of ‘C’

has one occurrence (-1), second batch of ‘C’ has one

occurrence (-1). Sum the numbers: (-1) + (-1) = (-2) < 0.

Comp-Bit for ‘C’ = 0. So, ‘C’ is not a compressible

character.

Start with ‘D’. In the data,

DDAAABCAACBDAAADBBBBB, First batch of ‘D’

has two occurrences (0), second batch of ‘D’ has one

occurrence (-1), third batch of ‘D’ has one occurrence (-

1). Sum the numbers: (0) + (-1) + (-1) = (-2) < 0. Comp-

Bit for ‘D’ = 0. So, ‘D’ is not a compressible character.

So, the MRLE Comp-Bit List is: 1100 (4 bits).

C. MRLE encoding/compression using MRLE Comp-Bit

List

Uncompressed data is

DDAAABCAACBDAAADBBBBB and MRLE Comp-

GU J Sci, 29(4):971-980 (2016)/ Shiva PUTRA, H.S.SHESHADRI, V.LOKESHA 975

Bit List is 1100. MRLE encoding or compression is

discussed in below steps.

First character in data

DDAAABCAACBDAAADBBBBB is ‘D’. Comp-Bit

for D is ‘0’, which indicates ‘D’ is not a compressible

character. So, in the encoded data, retain ‘D’ as it is.

Encoded Data is D.

Second character in data

DDAAABCAACBDAAADBBBBB is ‘D’, Comp-Bit

for ‘D’ = ‘0’, not compressible, retain ‘D’ as it is.

Encoded Data is DD.

Third character in data

DDAAABCAACBDAAADBBBBB is ‘A’, Comp-Bit

for ‘A’ = ‘1’, compressible, apply RLE (A occurs 3

times). Encoded Data is DDA3. Skip next 2 characters

i.e. AA.

Sixth character in data

DDAAABCAACBDAAADBBBBB is ‘B’, Comp-Bit

for ‘B’ = ‘1’, compressible, apply RLE (B occur 1 time).

Encoded Data is DDA3B1.

In similar steps, one can get encoded data as

DDA3B1CA2CB1DA3DB5. Size of uncompressed data

is 21 characters = 21x8 = 168 bits (1 byte or 8 bits for

each character). Size of compressed data is 18 characters

= 18 x 8 = 144 bits + 4 Comp-Bits.

D. MRLE decoding/decompression using MRLE Comp-

Bit List

Compressed data is DDA3B1CA2CB1DA3DB5 and

MRLE Comp-Bit List is 1100. MRLE decompression is

discussed in below steps.

First character in encoded data

DDA3B1CA2C1B1DA3DB5 is ‘D’, Comp-Bit for ‘D’

is ‘0’, not compressible, retain ‘D’ as it is. Decoded data

is D.

Second character in encoded data

DDA3B1CA2C1B1DA3DB5 is ‘D’, Comp-Bit for ‘D’

is ‘0’, not compressible, retain ‘D’ as it is. Decoded data

is DD.

Third character in encoded data

DDA3B1CA2C1B1DA3DB5 is ‘A’, Comp-Bit for ‘A’

is ‘1’, compressible, next character to ‘A’ is ‘3’ which

indicate occurrence. So, ‘A’ has three occurrences.

Decoded data is DDAAA. Skip one position.

Fifth character in encoded data

DDA3B1CA2C1B1DA3DB5 is ‘B’, Comp-Bit for ‘B’ is

‘1’, compressible, next character to ‘B’ is ‘1’ which

indicate occurrence. So, ‘B’ has one occurrence.

Decoded data is DDAAAB. Skip one position.

Seventh character in encoded data

DDA3B1CA2C1B1DA3DB5 is ‘C’, Comp-Bit for ‘C’ is

‘0’, not compressible, Retain ‘C’ as it is. Decoded data

is DDAAABC.

In similar steps, one can get decompressed data as

DDAAABCAACBDAAADBBBBB = 21 characters =

21x8 = 168 bits.

5. DISADVANTAGES OF MRLE

As discussed in [21], major advantage of MRLE

technique is that it performs best compared to Packbits,

Tsukiyama’s Method and Standard RLE techniques.

However, MRLE technique specifies fixed size for

MRLE Comp-Bit List posing as a disadvantage. For 256

different characters, size of MRLE Comp-Bit List is 256

bits or 32 bytes which is fixed even if the uncompressed

data has only one character out of 256 different

characters.

As an example, consider a data stream having five

different characters, A, B, C, D and E which require 5

Comp-Bits, one for each character. If the uncompressed

data is ABCDE (5x8 = 40 bits), then the MRLE Comp-

Bit List is 00000 (5 bits) and MRLE compressed data is

ABCDE (5 x 8 = 40). So, the overall size of compressed

data is the sum of the size of MRLE Comp-Bit List and

MRLE compressed data i.e., (40 bits compressed data) +

(5 bits Comp-Bit List) = 45 bits. The disadvantage is

that even though, all comp-bits are zeros ‘00000’, it is

still being stored. In this case, the decompression steps

can be designed such that, if only compressed data is

present without Comp-Bit List, then it must assume all

Comp-Bits are zero.

Consider another example in which in which the data

stream has five different characters, A, B, C, D and E

which require 5 Comp-Bits, one for each character. If

the uncompressed data is AAAAB (5x8 = 40 bits), then

the MRLE Comp-Bit List is 10000 (5 bits) and MRLE

compressed data is A4B (3x8 = 24 bits). So, the overall

size of compressed data is the sum of size of MRLE

Comp-Bit List and MRLE compressed data i.e., (24 bits

compressed data) + (5 bits Comp-Bit List) = 29 bits. The

disadvantage here is that even though, only one comp-

bit is 1, five Comp-Bits, ‘10000’, is being stored which

isn’t required.

This paper improves the aforesaid disadvantages by

introducing the concept of iMRLE – Improved MRLE

Comp-Bit List.

6. PROPOSED METHODOLOGY –

‘IMPROVED MRLE (IMRLE)’ OR ‘VARIABLE

SIZE MRLE COMP-BIT LIST’

iMRLE introduces modifications to existing MRLE

Comp-Bit List, and discusses how the fixed size of 32

bytes MRLE Comp-Bit List can be modified to a

Variable size Comp-Bit List.

MRLE algorithm considers 256 ASCII values, so there

are 256 Comp-Bits, one for each character. So, length of

Comp-Bit-List will be 256 bits or 32 bytes (32 bytes is

fixed). As an example, for an 8-bit grayscale image,

each pixel value ranges from 0 to 255. There are 256 (0

to 255) different values. For, 256 different pixel values,

256 bits (32 bytes) MRLE Comp-Bit-List is required.

Consider the MRLE Comp-Bit List obtained for a chest

x-ray medical image shown in Table I.

976 GU J Sci, 29(4):971-980 (2016)/ Shiva PUTRA, H.S.SHESHADRI, V.LOKESHA

100

000

000

000

000

0000000000000000000000000000001

Comp-Bit value is ‘1’ for pixel values ‘0’, ‘255’; and ‘0’

for other pixel values, which is an indication that ‘0’ and

‘255’ are compressible. In the above 32 byte MRLE

Comp-Bit List, only 2 Comp-Bits are useful. Storing the

remaining Comp-Bits is not useful. This is achieved

using improved – MRLE Comp-Bit List.

A. Generating Variable Size Comp-Bit List from MRLE

Comp-Bit List

Generating Variable Size Comp-Bit-List (iMRLE

Comp-Bit List) from MRLE Comp-Bit List can be

described with an example.

Consider the 256 bits or 32 Bytes MRLE Comp-Bit-List

for 256 pixel values obtained for 8 bit chest x-ray image

as shown below.

100

000

000

000

000

0000000000000000000000000000001

Existing MRLE algorithm stores the above 256 bits or

32 bytes Comp-Bit-List along with encoded data. As an

improvement, this paper suggests the next few steps.

Convert the above 256 bits to 32 byte integers

integerData. Here, each integer value represents 8-bit

data. Ex: 128 is the decimal equivalent of binary

10000000.

integerData = {128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}

Store the previous 32 byte integerData in a temporary

variable numbersNew.

numbersNew = [128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

Extract non-zero values of numbersNew to a new

variable indexVal.

indexVal =[128, 1]

Consider another variable, cmpBitList1 initialized with

32 zero bits, one for each value in numbersNew.

cmpBitList1 = [00000000000000000000000000000000]

If any value in numbersNew is greater than zero, set its

corresponding comp-bit to ‘1’ in cmpBitList1. So, the

updated cmpBitList1 is

cmpBitList1 = [10000000000000000000000000000001]

Convert the above 32 bits binary data to 4 bytes

cmpBitList2.

cmpBitList2 = [128, 0, 0, 1]

Concatenate cmpBitList2 and indexVal to get

cmpBitListNew

cmpBitListNew = [128, 0, 0, 1, 128, 1]

So, iMRLE Comp-Bit List is [128, 0, 0, 1, 128, 1] in

which the first 4 values indicates header and the

remaining values indicate index. As a result, 32 byte

fixed size MRLE Comp-Bit-List has been converted to 6

bytes Variable Size Comp-Bit-List (iMRLE Comp-Bit

List).

A Variable size Comp-Bit List can have a minimum of

zero bytes and a maximum of 32 bytes for data having

256 different characters.

B. Regenerating original 32 Byte MRLE Comp-Bit List

from Variable Size Comp-Bit List (iMRLE Comp-Bit

List) during decompression

MRLE decompression steps require MRLE Comp-Bit

List. So, one must obtain MRLE Comp-Bit List from

Variable Size Comp-Bit List. This is described with an

example. Suppose that the iMRLE Comp Bit List stored

is [128, 0, 0, 1, 128, 1] along with compressed data.

Regenerating MRLE Comp-Bit List from iMRLE

Comp-Bit List is discussed below with an example.

Extract first 4 bytes of iMRLE Comp Bit List and save

in cmpBitListNewRX.

cmpBitListNewRX = [128, 0, 0, 1]

Extract remaining bytes in iMRLE Comp Bit List and

save in indexValRx.

indexValRx = [128, 1]

Convert cmpBitListNew to 32 bit binaries

cmpBitListNewBin =

[10000000000000000000000000000001]

Create a variable numbersRegen with 32 zeros (integers)

numbersRegen = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Replace values of numbersRegen by indexVal, at the

positions indicated by cmpBitListNewBin. So the

updated numbersRegen is

numbersRegen = [128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

Convert above 32 byte integer data to 256 bits binary

data which gives MRLE Comp-Bit List

100

000

000

000

000

0000000000000000000000000000001

By using above 256 MRLE Comp-Bit List, compressed

data can be decompressed.

GU J Sci, 29(4):971-980 (2016)/ Shiva PUTRA, H.S.SHESHADRI, V.LOKESHA 977

7. IMPLEMENTATION

Implementation of iMRLE comp-Bit List generation can

be grouped into any of the three categories as discussed

below.

A. Category 1 (Best Case)

Assume MRLE Comp-Bit-List in which all 256 comp-

bits are zeros.

000

000

000

000

000

0000000000000000000000000000000

Generate Variable Size MRLE Comp-Bit List from

MRLE Comp-Bit List as shown below

numbersNew = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

cmpBitList1 = [00000000000000000000000000000000]

cmpBitList2 = [0, 0, 0, 0]

indexVal = []

cmpBitListNew = [0, 0, 0, 0]

In this category 32 Bytes Mespotine Comp-Bit-List has

been converted to 4 bytes Variable size Comp-Bit-List.

Store only compressed data without Variable-Size

Comp-Bit List. As a result 32 bytes of storage memory

is saved.

During decompression MRLE Comp-Bit List must be

recovered from Variable Size Comp-Bit List. Since only

compressed data is present without iMRLE Comp-Bits,

the decompression logic assumes 256 bits or 32 byte

MRLE Comp-Bit List with all zeros.

000

000

000

000

000

0000000000000000000000000000000

Decompression is performed on compressed data using

the above newly generated MRLE Comp-Bit List.

B. Category 2

Assume 32 byte MRLE Comp-Bit-List as shown below.

100000000000001000001000000000000000000000000

000

000

000000000000000000000000011000001000000000000

000

0000000000000000000000010000001

New Variable Size Comp-Bit-List is generated as

represented in below steps.

numbersNew = [128, 2, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 193, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 129]

cmpBitList1 = [11100000000000000000100000000001]

cmpBitList2 = [224, 0, 8, 1]

indexVal = [128, 2, 8, 193, 129]

cmpBitListNew = [224, 0, 8, 1, 128, 2, 8, 193, 129]

In this category 9 Bytes Variable size Comp-Bit List is

used instead of fixed 32 byte MRLE Comp-Bit-List and

as a result 23 bytes of storage memory is saved. The size

of Variable Size MRLE Comp-Bit List can vary from 4

to 36 bytes depending on the values of MRLE Comp-Bit

List. This category stores Variable Size Comp-Bit List if

its size is less than or equal to 31 bytes.

During decompression MRLE Comp-Bit List is obtained

from Variable Size Comp-Bit List as shown in below

steps.

Extract first 4 bytes of cmpBitListNew and save in

cmpBitListRx

cmpBitListNew = [128, 0, 0, 1]

Extract remaining bytes in cmpBitListNew and save in

indexValRx

indexValRx = [128, 1]

Convert cmpBitListNew to 32 bit binaries

cmpBitListNewBin =

[10000000000000000000000000000001]

Create a variable numbersRegen with 32 zeros (integers)

numbersRegen = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Replace values of numbersRegen by indexVal, at the

positions indicated by cmpBitListNewBin. So the

updated numbersRegen is

numbersRegen = [128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

Convert above 32 byte integer data to 256 bits binary

data which gives MRLE Comp-Bit List

100

000

000

000

000

000000000000000000000000000001

Using above 256 bit MRLE Comp-Bit List, original data

can be obtained by decompressing compressed data.

C. Category 3 (Worst Case)

Assume 32 byte MRLE Comp-Bit-List as shown below.

100000000000001000001000000000000000000000001

000000010000000100000001000000010000000100000

001000000010000000100000001000000010000000100

000001000000010000000100011000001000010000000

100000001000000010000000100000001000000010000

0001000000010000000100010000001

New Variable Size Comp-Bit-List is generated as

represented in below steps

978 GU J Sci, 29(4):971-980 (2016)/ Shiva PUTRA, H.S.SHESHADRI, V.LOKESHA

numbersNew = [128, 2, 8, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

8, 8, 8, 193, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 129]

cmpBitList1 = [11100111111111111111111111111111]

cmpBitList2 = [231, 255, 255, 255]

indexVal = [128, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

193, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 129]

cmpBitListNew=[231, 255, 255, 255, 128, 2, 8, 8, 8, 8,

8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 193, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

129]

In this category, Variable Size Comp-Bit-List size 34

bytes which is more than 31 bytes. Hence, ignore the

variable size comp-bit list and transmit the existing

MRLE Comp-Bit-List along with compressed data. If

the size of Variable Size Comp-Bit List is greater than or

equal to 31 bytes, existing MRLE Comp-Bit List is

transmitted instead of Variable size Comp-Bit List,

because decompression process is faster in such cases.

Decompression is performed on compressed data using

MRLE Comp-Bit List as described in section 4.4.

8. IMPLEMENTATION RESULTS AND

ANALYSIS

Sample 8 bit and 16 bit medical images used in the

MATLAB implementation of MRLE and improved-

MRLE (iMRLE) techniques are shown in Table III.

Implementation results in Table V shows that the

compression ratio achieved using improved-MRLE is

more than existing MRLE technique. The compression

ratio achieved using improved-MRLE technique

increases as pixel depth of an image increases i.e., 8 bit,

16 bit, 32 bit and so on. This is because the number of

comp-bits required for 8 bit, 16 bit and 32 bit images are

256 bits (32 byte), 65536 bits (8192 bytes) and

4294967296 bits (536870912 bytes) respectively. Since

improved-MRLE technique uses Variable Size Comp-

Bit List, its size reduces significantly when it is stored

compared to MRLE technique. As a result the

Percentage Improvement using Compression Ratio

factor increases for 16-bit grayscale compared with 8 bit

images as shown in Table V. Percentage Improvement

factor for 32 bit images will be higher than 16-bit

images and so on. As the quality of the image increases,

higher compression rates are achieved and Percentage

Improvement in Compression rate factor increases.

The RMSE and PSNR achieved using MRLE and also

improved-MRLE are zero and infinity respectively.

Such results are evident because the compression and

decompression is lossless and the decompressed image

is identical to the original image.

Table 3. Input Images used in MRLE and Improved

MRLE (iMRLE Techniques)

Input

image

name

Input

image

Image

type

Resolutio

n in

Pixels

Image

size in

bytes

Brain

Tumor

8-bit

grayscal

e

256 x 256 65536

Chest

X-Ray

8-bit

grayscal

e

400 x 329 13160

0

Skull

8-bit

grayscal

e

350 x 280 98000

Arm

Fractur

e

16-bit

grayscal

e

120 x 160 38400

Ankle

16-bit

grayscal

e

150 x 150 45000

Spine

16-bit

grayscal

e

130 x 130 33800

Table 4. MRLE Implementation Results for 8-bit and

16-bit Medical images

Input image MRLE

compressed

image size

in bytes

MRLE

compression

ratio

MRLE

Comp

Bit

List in

bytes

Brain Tumor 43006 1.5238 32

Chest X-Ray 107473 1.2244 32

Skull 26731 3.6662 32

Arm Fracture 20922 1.8354 8192

Ankle 27932 1.6111 8192

Spine 22908 1.4755 8192

GU J Sci, 29(4):971-980 (2016)/ Shiva PUTRA, H.S.SHESHADRI, V.LOKESHA 979

Table 5. iMRLE Implementation Results for 8-bit and

16-bit Medical images

Input

image

iMRLE

compres

sed

image

size in

bytes

iMRLE

compress

ion ratio

iMRL

E

Com

p Bit

List

in

bytes

Percentag

e

improvem

ent in

compressi

on ratio

Brain

Tumo

r

42979

1.5248 5 0.0628

Chest

X-

Ray

107447 1.2247 6 0.0242

Skull 26705 3.6697 6 0.0955

Arm

Fractu

re

13755 2.7917 1025 52.1031

Ankle 20765 2.1671 1025 34.5106

Spine 15741 2.1473 1025 45.5303

9. CONCLUSION

MRLE proves to be a better method for lossless

compression and decompression of medical images.

However the primary disadvantage of MRLE is that the

size of the MRLE Comp-Bit List is fixed. It is 32 bytes

for 8-bit image (256 different pixel values), 8192 bytes

for 16-bit image (65536 different pixel values) and so

on. As a solution to this problem, this paper has

introduced modification to MRLE referred to as iMRLE

technique in which the actual MRLE Comp-Bit List has

been replaced by Variable Size Comp-Bit List.

Implementation details show that for practical medical

images, the size of Variable Size Comp-Bit List is less

than the MRLE Comp-Bit List. So, better compression

rate is achieved using improved – MRLE technique. The

compression ratio achieved using improved-MRLE

technique increases as pixel depth of an image increases

i.e., 8 bit, 16 bit, 32 bit and so on because the size of

Variable-Size Comp-Bit List will be significantly less

compared to MRLE Comp-Bit List. On an average, the

compression ratio achieved using improved – MRLE

technique increases by 0.0608 percentage for 8 bit

grayscale medical images and 44.048 percentage for 16

bit grayscale medical images.

Acknowledgment

The authors would like to thank the Management,

Panchajanya Vidya Peetha Welfare Trust (Regd),

Bengaluru, Dr. C. Nanjundaswamy, Principal, Dr.

R.Murali, Dr M V Mandi and Dr S Ramesh of Dr.

Ambedkar Institute of Technology, Bengaluru for their

assistance, suggestions, insight and valuable discussion

over the course of this research work

.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] Khalid Sayood, “Introduction to Data

Compression”, Newnes Publications, 2012, ISBN

978-012-41-5796-5

[2] Mohammad Ali Kakhaee, Farokh Marvasti, “A

Survey on Digital Data Hiding Schemes: Principals,

Algorithms, and Applications”, The ISC

International Journal of Information Security 5.1:

5, 2013

[3] Omar Adil Mahdi, Mazin Abed Mohammed,

Ahmed Jasim Mohamed, “Implementing a novel

approach an convert audio compression to text

coding via hybrid technique”, International Journal

of Computer Science Issues 9.6: 53-59, 2012

[4] Kishore A Kotteri, Amy E. Bell, Joan E. Carletta,

“Design of multiplierless, high-performance,

wavelet filter banks with image compression

applications”, Circuits and Systems I: Regular

Papers, IEEE Transactions on 51.3: 483-494, 2004

[5] Qin Lu, “Low-complexity and energy efficient

image compression scheme for wireless sensor

networks”, Computer Networks 52.13: 2594-2603,

2008

[6] Amine Nait-Ali, Christine Cavaro-Menard,

“Compression of Biomedical Images and Signals”,

John Wiley & Sons, 2008, ISBN: 978-1-84821-028-

8

[7] Asha Latha, Permender Singh, “Review of Image

Compression Techniques”, International Journal of

Emerging Technology and Advanced Engineering,

ISSN 2250-2459, ISO 9001: 2008 Certified

Journal, Volume 3, Issue 7, 2013

[8] Konstantinos N, Plataniotis, Anastasios N.

Venetsanopoulos, “Color image processing and

applications”, Springer-Verlag New York, 2013,

ISBN: 3-540-66953-1 560

[9] Uvais Qidwai, C.H. Chen, “Digital Image

Processing: An Algorithmic Approach with

MATLAB”, Chapman and Hall/CRC, 2009, ISBN

9781420079500

[10] Roger Bourne, “Fundamentals of Digital Imaging

in Medicine”, Springer-Verlag London, 2010,

ISBN 978-1-84882-086-9.

[11] P. Mansfield, I. L. Pykett, “Biological and medical

imaging by NMR”, Journal of Magnetic

Resonance, 213.2: 513-531, 2011

[12] Qiang Yang, Hua Jun Wang, Xue Gang Luo, “An

Improved Algorithm for Color Medical Image

Compression Based on DCT”, Applied Mechanics

and Materials, Vol. 602, 2014

980 GU J Sci, 29(4):971-980 (2016)/ Shiva PUTRA, H.S.SHESHADRI, V.LOKESHA

[13] Ruchika, Mooninder Singh, Anant Raj Singh,

“Compression of Medical Images Using Wavelet

Transforms”, International Journal of Soft

Computing and Engineering (IJSCE), ISSN: 2231-

2307, 2012

[14] D. Smutek, “Quality measurement of lossy

compression in medical imaging”, Prague medical

report 106.1: 5-26, 2005

[15] Michael Lustig, “Compressed sensing MRI”,

Signal Processing Magazine, IEEE 25.2: 72-82,

2008

[16] Shaou-Gang Miaou, Fu-Sheng Ke, Shu-Ching

Chen, “A lossless compression method for medical

image sequences using JPEG-LS and interframe

coding”, Information Technology in Biomedicine,

IEEE Transactions on 13.5: 818-821, 2009

[17] S. Bhavani, K. Thanushkodi, “A survey on coding

algorithms in medical image compression”,

International Journal on Computer Science and

Engineering 2.05: 1429-1434, 2010

[18] Ming-Bo Lin, Jang-Feng Lee, Gene Eu Jan (2006);

“A Lossless Data Compression and Decompression

Algorithm and its Hardware Architecture”, IEEE

Transactions on Very Large Scale Integration

(VLSI) Systems, Vol. 14, No. 9: 925 – 936

[19] Salomon, David, Giovanni Motta, “Handbook of

data compression”, Springer Science & Business

Media, 2010

[20] B.W.R Agung, F. P. Permana, “Medical image

watermarking with tamper detection and recovery

using reversible watermarking with LSB

modification and run length encoding compression,

Communication”, Networks and Satellite

(ComNetSat), IEEE International Conference, 2012

[21] Meo Mespotine, “Mespotine-RLE-basic v0. 9-An

overhead-reduced and improved Run-Length-

Encoding Method”, arXiv preprint arXiv:

1501.05542, 2015

[22] Yu-Chen Hu, Chin-hen Chang, “A new lossless

compression scheme based on Huffman coding

scheme for image compression”, Signal

Processing: Image Communication 16.4: 367-372,

2010

[23] K. Rajeswari, K. Kavitha, G. Boopathi Raja, “High

Efficient Image Compression Using Lempel-Ziv-

Welch Algorithm”, Digital Image Processing 7.2:

44-47, 2015

[24] Jiaji Wu, “Arithmetic coding for image

compression with adaptive weight-context

classification”, Signal Processing: Image

Communication 28.7: 727-735, 2013

[25] Fred Halsall, “Multimedia Communications –

Applications, Networks, Protocols and Standards”,

Pearson Education Ltd, 2008, ISBN – 978-81-317-

0994-8

[26] Tokuhiro Tsukiyama, “Method and system for data

compression and restoration”, U.S. Patent No.

4,586,027, 1986

[27] Edward L Hauck, “Data compression using run

length encoding and statistical encoding”, U.S.

Patent No. 4,626,829, 1986

[28] Douglas C Stevens, “Bit-wise run-length encoding

for data compression”, U.S. Patent No. 5,049,880,

1991

[29] G. Davis, “Parallel run length encoding

compression: Reducing I/O in dynamic

environmental simulations”, International Journal

of High Performance Computing Applications 12.4:

396-410, 1998

[30] Ling-fang Zhu, Ren-ren Liu, “DCT and RLE

Mixed Lossy Compression of Gray Image Based on

Matlab”, Computer Knowledge and Technology 21:

074, 2009

[31] P. Hemnath, V. Prabhu, “Compression of FPGA

bitstreams using improved RLE algorithm”,

Information Communication and Embedded

Systems (ICICES) International Conference on.

IEEE, 2013

[32] Hasan Demirel, Gholamreza Anbarjafari, “Discrete

wavelet transform-based satellite image resolution

enhancement”, Geoscience and Remote Sensing,

IEEE Transactions on 49.6: 483-495, 2011

[33] J.C Yoo,; C. W. Ahn, “Image matching using peak

signal-to-noise ratio- based occlusion detection”,

Image Processing, IET 6.5: 483-495, 2012

[34] M. Rangaraj Rangayyan, “Biomedical image

analysis”, CRC press, 2004

[35] Shivaputra, H.S. Sheshadri, V. Lokesha “An

Efficient Lossless Medical Image Compression

Technique for Telemedicine Applications”,

Computer Applications: An International Journal

(CAIJ), Vol.2, No.1, pp-63-69, 2015

[36] Shivaputra, H. S. Sheshadri and V. Lokesha “An

Exquisite Approach for Image Compression

Technique using Lossless Compression Algorithm

for ROI & Non-ROI regions” International Journal

of Computational Science, Information Technology

and Control Engineering (IJCSITCE) Vol.2,

No.1/2, pp 1-13, 2015.

[37] Shivaputra, H. S. Sheshadri and V. Lokesha “A

Naïve Visual Cryptographic Algorithm for the

Transfer of a Compressed Medical Images”

International Journal of Recent Contributions from

Engineering, Science & IT (iJES), eISSN: 2197-

8581, Vol.3, No.4, pp 26-36, December 2015.

