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§ 0. Introduction. A nonintegrable subbundle ∆ of a tangent bundle
TM yields an interesting geometry on a manifold M . A Riemannian metric
on ∆ enables one to measure the length of differentiable curves tangent to
∆. The metric obtained by minimizing the length of such curves is called
the Carnot–Carathéodory metric. The standard example of such a metric
arises if we take for ∆ the invariant 2-dimensional subbundle in the tangent
bundle of the Heisenberg group generated by two noncentral vectors of its
Lie algebra, and then equip ∆ with the invariant Riemannian metric. This
metric space, described more precisely in §1, will be denoted by Hc.

The aim of this paper is to classify, up to isometry, all 3-dimensional com-
pact manifolds with a Carnot–Carathéodory metric satisfying the property
of being locally differentiably isometric to Hc. This property of a Carnot–
Carathéodory metric will be called flatness. The above problem is in many
aspects similar to the classification problem for compact flat Riemannian
manifolds. All classified manifolds have the same universal covering space,
isometric to Hc, thus they are quotients of it by a free discrete action of
some group of isometries (cf. §2). The Heisenberg group translations of Hc

behave like ordinary translations of Rn, in particular, an analogue of the
Bieberbach theorem holds: the holonomy group of a compact manifold with
flat Carnot–Carathéodory metric is finite, thus the manifold is finitely cov-
ered by a nilmanifold (Theorem 5.3). The Heisenberg group nilmanifolds
(an analogue of tori in the Riemannian case) are dealt with in §4, where
they are classified up to isometry.

In §5 all possible holonomy groups (in the above sense) are determined,
and the classification is completed in §6 by considering each holonomy group
separately.

§ 1. Preliminaries. Let ∆ denote a distribution on a manifold M , i.e.
a subbundle of the tangent bundle TM .

1.1. Definition. The distribution ∆ is said to satisfy the Hörmander
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condition if any vector fields locally generating ∆, together with their com-
mutators, generate the tangent space TpM at each point p ∈ M .

1.2. A Riemannian metric on the distribution ∆ enables us to measure
the length of horizontal curves, i.e. differentiable curves tangent to ∆ at
each point. According to a theorem of Chow (cf. [M], p. 35), if ∆ satisfies
the Hörmander condition, then any two points of M can be joined by a
horizontal curve. This enables us to define the function

dc(a, b) = inf{length γ : γ horizontal joining a and b} ,

which is obviously a metric, called a Carnot–Carathéodory (C–C for short)
metric (cf. [M], [G], [P]).

1.3. Example. The Heisenberg group H is R3 with the following multi-
plication:

(x1, y1, z1)(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + 1
2 (x1y2 − x2y1)) .

The left-invariant vector fields

(1.3.1) X = ∂x − 1
2y∂z, Y = ∂y + 1

2x∂z, Z = ∂z

form a basis of the Lie algebra h of H with the commutation relations

(1.3.2) [X, Y ] = Z, [X, Z] = [Y, Z] = 0 .

The distribution ∆ spanned at each point by X and Y satisfies, of course,
the Hörmander condition, and the Riemannian metric on ∆ for which X
and Y are orthonormal yields a left invariant C–C metric on H. Denote the
Heisenberg group with this metric by Hc.

1.4. Definition. A C–C metric on a 3-dimensional manifold is called
flat if it is locally isometric to Hc.

1.5. R e m a r k. Every C–C metric is an example of a metric for which
the tangent cone exists (cf. [G] or [M], Definition 2.2). For a Riemannian
manifold M the tangent cone at a point p is the tangent space TpM with
the euclidean metric given by the Riemannian scalar product on TpM . In
particular, the tangent cone of the euclidean space is that space itself. This
observation leads to the following general definition of flatness: a metric
space is called flat if it has a tangent cone at each point and if the tangent
cone is locally isometric to the space itself. H is flat in this sense because it
is, like the euclidean space, its own tangent cone. Since Hc is also the tangent
cone of any 3-dimensional C–C manifold, Definition 1.4 is compatible with
the general definition of flatness.

§ 2. Universal covering space. All results of this section seem to
be known, but we do not know any references. A proof of the crucial fact
2.3 is given in the Appendix. The main result is Corollary 2.6, which is an
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analogue of the result for flat Riemannian manifolds (cf. [W], Section 3.2).
We begin with a description of the group of all differentiable isometries of
Hc.

2.1. Left group translations are, of course, isometries of Hc. We will
identify elements of H with the corresponding left translations, and the
whole group of such translations will also be denoted by H.

Another family of isometries of Hc is the group of isomorphisms of H
obtained from the Lie algebra isomorphisms

(2.1.1) X 7→ cos tX − sin tY, Y 7→ sin tX + cos tY, Z 7→ Z .

This group of differentiable isometries will be denoted by SO(2) and its
elements will be called rotations.

The isomorphism of H given by

(2.1.2) X 7→ −X, Y 7→ Y, Z 7→ −Z ,

is also an isometry of Hc, and the group of isometries generated by it and
SO(2), being isomorphic to the orthogonal group of R2, will be denoted by
O(2).

2.2. Denote by Gc the group generated by O(2) and H. Gc is a 4-
dimensional Lie group, a semidirect product of H and O(2).

2.3. Theorem. Gc is the group of all differentiable isometries of Hc.

2.4. Theorem. If φ : U1 → U2 is a differentiable isometry of open
subsets of Hc then there exists a unique differentiable isometry φ̃ ∈ Gc

which extends φ.

2.5. Theorem. Let M be a compact flat C–C 3-manifold. Then its
universal covering space with the lifted C–C metric is differentiably isometric
to Hc.

A proof of 2.3 is sketched in the Appendix; 2.4 can be proved by the
same methods; 2.5 is a consequence of 2.4. The results of the next sections
are based on the following corollary to Theorem 2.5:

2.6. Corollary. Any compact flat C–C 3-manifold is the quotient of Hc

by a group Γ of differentiable isometries satisfying the following conditions:

(2.6.1)

(i) Γ acts freely , i.e. γ ∈ Γ has no fixed points unless γ = id ;

(ii) Γ acts totally discontinuously , i.e. there exists an open subset

U ⊆ Hc such that {γ(U) : γ ∈ Γ} consists of disjoint sets;

(iii) the action of Γ is cocompact , i.e. the quotient space Hc/Γ is

compact.
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Furthermore, two groups satisfying (2.6.1) give isometric quotients if and
only if they are conjugate in Gc.

§ 3. Computations in Gc. This section contains technical results and
formulas.

3.1. The elements of the identity component of Gc will be called even
isometries; the remaining ones will be called odd.

3.2. Denote by Z the center of the Heisenberg group H; it consists of
elements of the form (0, 0, z). Since it is isomorphic to R, we will apply
the additive notation to it. The identification of Z with R enables us to
multiply a central element by a real scalar.

The same remarks on notation concern the group of central translations
(also denoted by Z). We will use the letters z and h to denote both central
elements and central translations.

3.3. Central translations, by definition, commute with elements of H.
They also commute with elements of O(2) as each α ∈ SO(2) is the identity
on Z, and so, recalling that α is an isomorphism of H, we have

(3.3.1) α ◦ z(x) = α(z(x)) = α(zx) = α(z)α(x) = zα(x) = z ◦ α(x)

where z ∈ Z and x is any element of H. Using the fact that m(z) = −z for
m ∈ O(2)\SO(2) and z ∈ Z one can prove similarly that m ◦ z = (−z) ◦m.

3.4. Any orbit of Z in Hc will be called a vertical line. We give the verti-
cal lines the orientations induced by a fixed orientation of Z. All isometries
in Gc transform vertical lines onto vertical lines; even isometries preserve
the orientation and odd ones reverse it.

3.5. It is useful to consider the action of Gc on the quotient space
Hc/Z, the space of vertical lines, which is diffeomorphic to R2. Since central
translations act on Hc/Z identically, the group acting on this space is Gc/Z,
which is isomorphic to the group E(2) of isometries of the euclidean plane
H/Z ∼= R2. Let Π denote both quotient maps Hc → Hc/Z and Gc → Gc/Z.

3.6. If p ∈ Hc/Z then the projection of the scalar product from ∆x

to Tp(Hc/Z) does not depend on the choice of a point x ∈ Hc such that
Π(x) = p. The Riemannian metric on Hc/Z defined in this way makes this
space isometric to the euclidean plane E2.

The transformations in Gc/Z acting on Hc/Z are then isometries and so
the identification of Gc/Z with E(2) makes sense. In particular, Π(H) =
H/Z corresponds to the group of translations of E2. The even isometries
of Hc are transformed by Π onto the group SE(2) of orientation preserv-
ing isometries of the euclidean plane, and the odd ones onto the second
component of E(2) consisting of orientation reversing isometries.
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3.7. Let αp denote the rotation through angle α about p in Hc/Z. Then
Π−1(αp) consists of transformations in Gc such that any two of them differ
by a central translation. Π−1(αp) includes a unique transformation that
preserves each point of the vertical line Π−1(p). It will be denoted by αx,
and called the rotation about the vertical line Π−1(p) (here x is any point
of this line).

P r o o f. Transformations in Π−1(αp) preserve the vertical line Π−1(p)
and, since by 3.6 they are even, they preserve its orientation (cf. 3.4). When
restricted to this vertical line, they are translations, and only one of them
is the identity.

From the above definition we see that for any x ∈ Hc and z ∈ Z

(3.7.1) αx = αz(x) .

3.8. Let kp denote the reflection of Hc/Z with axis parallel to a direction
k and containing a point p ∈ Hc/Z. For each x ∈ Π−1(p) there exists a
unique transformation in Π−1(kp) preserving x. Denote it by kx.

P r o o f. Transformations in Π−1(kp) preserve the vertical line Π−1(p)
but, as they are odd, they reverse the orientation. When restricted to that
line, they are reflections, and since they differ by central translations, any
reflection may be obtained uniquely by composing a fixed one with the
elements of Z.

From the above considerations one obtains the formula

(3.8.1) (2z) ◦ kx = kx ◦ (−2z) = kz(x) .

We will use the letters k, m to denote the directions on the plane Hc/Z and
call isometries of the form kx reflections in Hc.

3.9. Denote by δ the subspace of the Lie algebra h of the Heisenberg
group generated by the vectors X and Y (cf. 1.3). If Π(x) = p, then Π yields
an isomorphism between Tp(Hc/Z) and ∆x. We may treat this isomorphism
as an identification of vectors of the plane Hc/Z with vectors of δ (any vector
of ∆x can be uniquely extended to a left-invariant vector field on H which
is an element of δ).

For u being a translation of Hc/Z (which we identify with an element of
δ in the above sense) and for any x ∈ H

(3.9.1) f(t) = x ◦ exp(tu) ◦ x−1

is the only one-parameter subgroup of H such that Π(f(1)) = u and the
orbit f(t)(x) is tangent to ∆ at x. f(1) is then an element of Gc which
is uniquely determined by u and x; we denote it by ux. The orbit of f(t)
containing x will be denoted by Lu,x and called the horizontal line parallel
to u and passing through x.
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In the following we will use the letters u, w and v to denote translations
(or equivalently vectors) of Hc/Z.

3.10. Note that uy = ux for y ∈ Lu,x. Indeed,

(3.10.1) y = x ◦ exp(su) ◦ x−1(x) = x exp(su)

for some s ∈ R. Applying (3.9.1) with t = 1 we obtain

uy = y ◦ expu ◦ y−1 = x ◦ exp(su) ◦ expu ◦ exp(−su) ◦ x−1(3.10.2)
= x ◦ expu ◦ x−1 = ux .

We will denote points of Lu,x of the form x ◦ exp(su) = (su)x(x) by su(x).

3.11. The isometry defined by (2.1.2) is the reflection ke, where e is
the unit of H and k is the direction on Hc/Z parallel to Y . It follows from
(2.1.2) that ke preserves the horizontal line LY,e. We will sometimes denote
this line by Lk,e, as it depends only on the direction of Y . Similarly for any
direction m and any y ∈ Hc the reflection my preserves the horizontal line
Lm,y. An easy consequence is that if a ∈ Lm,y then

(3.11.1) my = ma .

3.12. Observe that if γ1, γ2 ∈ Gc then γ1 = γ2 if and only if Π(γ1) =
Π(γ2) and there exists x ∈ Hc such that γ1(x) = γ2(x); if Π(γ1) = Π(γ2)
then γ1 and γ2 may differ at most by a central translation (cf. 3.5).

3.13. If u is parallel to a direction k, then the isometries ux and kx

commute. That follows from 3.12 and the fact that the plane isometries
u = Π(ux) and kp = Π(kx) commute, and both ux and kx preserve the
horizontal line Lu,x and commute on it (cf. 3.9 and 3.11). In particular,

(3.13.1) ux ◦ kx ◦ ux ◦ kx = ux ◦ ux ◦ kx ◦ kx = (2u)x .

3.14. An argument very similar to that in 3.11 shows that if k is or-
thogonal to u then

(3.14.1) kx ◦ ux ◦ kx = (−u)x .

From this it follows that the reflection kx preserves the horizontal line Lu,x

(reflecting it with respect to x). But this in turn implies that

(3.14.2) ku(x) ◦ kx = (2u)x ,

and combining this with (3.8.1) we see that each group translation g ∈ H
can be expressed as a composition of two reflections:

(3.14.3) g = ky ◦ kx

with k orthogonal to Π(g) and y = γ(x), where γ ◦ γ = g (we will denote
that uniquely determined γ by 1

2g).
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3.15. If the composition of two reflections on the plane is a rotation, i.e.
mp ◦ kp = αp for p ∈ Hc/Z, we have mx ◦ kx = αx ◦ z for some z ∈ Z. But
mx ◦ kx(x) = x, hence z = 0 and we have

(3.15.1) mx ◦ kx = αx .

3.16. Let us calculate ux ◦ πx where πx is a rotation through π in Hc.
Denote by k the direction parallel to u and by m the orthogonal one. Then,
writing y = 1

2u(x), we have ux = my ◦mx and πx = mx ◦ kx, and we obtain

(3.16.1) ux ◦ πx = my ◦mx ◦mx ◦ kx = my ◦ kx .

But since y = 1
2u(x) ∈ Lx,k (u is parallel to k), ky = kx and so

(3.16.2) ux ◦ πx = my ◦ ky = πy .

3.17. Since [h,[h,h]]=0 for the Lie algebra h of the Heisenberg group,
the Campbell–Hausdorff formulas simplify considerably, for example

(3.17.1) expV ·expW ·exp(−V ) = exp(W +[V,W ]) = expW ·exp([V,W ]) ,

(3.17.2) [expV, expW ] = exp([V,W ]) ,

(3.17.3) expV · expW = exp(V + W ) · exp( 1
2 [V,W ])

for any V,W ∈ h.

3.18. From (3.17.2) it is clear that the center Z is also the commutant
[H,H] of the Heisenberg group. Let [a, b] = aba−1b−1 for a, b ∈ H. Since
[a, b] = [a · z1, b · z2] for z1, z2 ∈ Z, the value of [a, b] depends only on Π(a)
and Π(b) and so, if u, w are translations of Hc/Z then [u, w] = [ux, wy] is
well defined. [ , ] may be viewed as a bilinear antisymmetric form on the
vector space Hc/Z with values in Z. Indeed,

[tu, sw] = [(tu)x, (sw)x] = [exp(tU), exp(sW )] = exp([tU, sW ])
= exp(ts[U,W ]) = ts · exp([U,W ]) = ts[expU, expW ]
= ts[ux, wx] = ts[u, w] .

3.19. If V,W ∈ h and expW = ux, exp V = g, we obtain from (3.17.1)

(3.19.1) g ◦ ux ◦ g−1 = ux ◦ [g, ux] .

Notice that g◦ux◦g−1 = ug(x) because, recalling 3.9, if exp(tW )x is tangent
to ∆ at x then g ◦ exp(tW ) ◦ g−1(g(x)) is tangent to ∆ at g(x). Then

(3.19.2) ug(x) = ux ◦ [g, ux] .

The particular case with g replaced by z ∈ Z gives

(3.19.3) uz(x) = ux .

3.20. If the vectors V and W in (3.17.3) are taken from δ then expV =
Ve, expW = We and exp(V + W ) = (V + W )e, where e is the unit of H.
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Then we have

(3.20.1) Ve ◦We = (V + W )e ◦ 1
2 [V,W ] .

Using (3.19.2) we obtain a similar result for any x ∈ Hc and any translations
u, w of Hc/Z:

(3.20.2) ux ◦ wx = (u ◦ w)x ◦ 1
2 [u, w] .

3.21. We wish to calculate the composition of a nonzero rotation αx

with a translation ux. Choose directions m and k so that αx = kx ◦mx and
ux = k 1

2 u(x) ◦ kx. If p = Π(x) we have

(3.21.1) Π(ux ◦ αx) = u ◦ αp = k 1
2 u(p) ◦ kp ◦ kp ◦mp = k 1

2 u(p) ◦mp = αq

where q is the intersection point of the axes of the reflections k 1
2 u(p) and mp.

From (3.21.1) we obtain

(3.21.2) ux ◦ αx = k 1
2 u(x) ◦mx = αy ◦ z

for any y ∈ Π−1(q) and some z ∈ Z. Our aim is to calculate z.
We are interested in the horizontal lines Lm,x and Lk, 1

2 u(x) which corre-
spond to the sets of fixed points of the two reflections in the middle term
of (3.21.2). Both lines intersect the vertical line Π−1(q); denote the points
of intersection by a and b respectively. Then, by (3.10.2) and (3.11.1),
mx = ma and k 1

2 u(x) = kb, and consequently ux ◦ αx = ma ◦ kb. If h(a) = b

for h ∈ Z, then from (3.8.1), ux ◦ αx = αa ◦ 2h. We will calculate h.
Denote by w the vector on Hc/Z perpendicular to u and such that (w +

1
2u)(p) = q. Since the transformation ( 1

2u)x preserves the distribution ∆,
it transforms the line Lk,x onto the line Lk, 1

2 u(x), and therefore transforms
the point wx(x) into b ∈ Lk, 1

2 u(x). Hence b = ( 1
2u)x ◦ wx(x). Now, since

a ∈ Lm,x and 1
2u + w is parallel to m, we have by (3.20.2)

(3.21.4) a = (1
2u + w)x(x) = ( 1

2u)x ◦ wx ◦ 1
2 [w, 1

2u](x) = 1
4 [w, u](b) ,

and therefore h = 1
4 [u, w]. So we obtain the following formula:

(3.21.5) ux ◦ αx = αa ◦ 1
2 [u, w] .

§ 4. Nilmanifolds

4.1. Definition. Any subgroup of Gc satisfying conditions (2.6.1) will
be called a discrete uniform subgroup.

Note that usually “discrete uniform” only means that the group is dis-
crete and its orbit space is compact. Here we assume additionally that it
acts totally discontinuously.
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4.2. R e m a r k. If a discrete uniform subgroup Γ of Gc is contained in
H then Hc/Γ is a Heisenberg group nilmanifold carrying the induced C–C
metric. Such a Γ is then, of course, a discrete uniform subgroup of H.

By Theorem 2.21 of [R] we have the following

4.3. Theorem. Any discrete uniform subgroup of H has the form

(4.3.1) Γ = gp{a, b, c}
where [a, b] 6= 0 and c = 1

n [a, b] for some natural n, and where gpA denotes
the group generated by the set A.

The number n is determined by Γ and will be called the index of Γ .

4.4. Proposition. If Γ is a discrete uniform subgroup of H then Π(Γ )
is a rank two lattice of translations of the euclidean plane Hc/Z.

P r o o f. If Γ is as in (4.3.1) then Π(a) and Π(b) generate Π(Γ ). They
are linearly independent since otherwise, according to 3.18, [a, b] = 0.

4.5. Definition. Any orbit of the action of Π(Γ ) on the plane Hc/Z
will be called a fundamental lattice of Γ .

The importance of the introduced notions is revealed by

4.6. Theorem. Two discrete uniform subgroups of H are conjugate in
Gc if and only if they have the same indexes and isometric fundamental
lattices.

P r o o f. Let Γj = gp{aj , bj , cj} for j = 1, 2, Π(aj) = aj ,Π(bj) = bj ,
and a1 = (a1)x ◦ za, b1 = (b1)x ◦ zb. Then, by 3.18 and (3.19.2), for any real
numbers t and s, setting p = (ta1 + sb1)x(x), we have

a1 = (a1)x ◦ za = (a1)p ◦ ([a1, ta1 + sb1] + za) = (a1)p ◦ (t[a1, b1] + za) ,

and similarly b1 = (b1)p ◦ (s[a1, b1] + zb). Now, since [a1, b1] 6= 0, we can
choose t and s such that a1 = (a1)p and b1 = (b1)p. In an analogous manner
a2 = (a2)q and b2 = (b2)q for some q, and we have

Γ1 = gp{(a1)p, (b1)p, c1}, Γ2 = gp{(a2)q, (b2)q, c2} .

Suppose that the isometry of the fundamental lattices is given by
i ◦ a1 ◦ i−1 = a2 and i ◦ b1 ◦ i−1 = b2, where i is an isometry of Hc/Z,
and take any γ ∈ Gc with Π(γ) = i. If we compose this γ with a translation
in H obtaining φ such that φ(p) = q then Π(φ) ◦ a1 ◦ Π(φ)−1 = a2. Let
us calculate φ ◦ (a1)p ◦ φ−1. It must belong to Π−1(a2), but since the orbit
{φ◦(ta1)p◦φ−1(q) : t ∈ R} is tangent to ∆ at q (because (ta1)p(p) is tangent
at p), we simply have

φ ◦ (a1)p ◦ φ−1 = (a2)q and similarly φ ◦ (b1)p ◦ φ−1 = (b2)q ,

thus φ conjugates Γ1 with Γ2. The inverse implication is obvious.
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§ 5. Holonomy. In this section we introduce an invariant of a flat
C–C manifold which is an analogue of the holonomy group of a Riemannian
manifold. We prove that this group is finite and that only a finite number
of groups appear as a holonomy group. The main result of this section
is a classification of the holonomy groups. The classification in §6 is its
refinement.

Recall that Gc is a semidirect product of H and O(2). Denote by Ψ :
Gc → O(2) the canonical quotient homomorphism onto the second factor.

5.1. Definition. The holonomy group of a compact flat C–C 3-manifold
is the group Ψ(Γ ) where Γ is such that Hc/Γ is isometric to M .

Since Ψ(γΓγ−1) = Ψ(γ)Ψ(Γ )Ψ(γ)−1, Ψ(Γ ) depends up to isomorphism
only on the conjugacy class of Γ in Gc, so it is a well defined invariant of
M .

5.2. R e m a r k. It is possible to define a parallel translation on M by
taking the group translation in the universal covering Hc of M . The holo-
nomy group obtained with the use of this parallel translation can be easily
identified with the group defined above.

The following result is a special case of Theorem 1 of [A]:

5.3. Theorem. Let Γ be a discrete uniform subgroup of Gc. Then Γ ∗ =
Γ ∩H is a normal subgroup of finite index in Γ and so it is also a discrete
uniform subgroup of Gc.

Corollary. The holonomy group Ψ(Γ ) is a finite subgroup of O(2).

P r o o f. Γ ∗ is the kernel of the homomorphism Ψ : Γ → O(2).

R e m a r k. Any manifold Hc/Γ is finitely covered by a nilmanifold.

Recall that E(2), the group of isometries of the euclidean plane, is a
semidirect product of R2 and O(2), hence there exists a natural homomor-
phism Φ : E(2) → O(2). We mention without proof the following easy

5.4. Proposition. The transformation Ψ(γ) 7→ Φ ◦ Π(γ) for γ ∈ Γ is
well defined and is an isomorphism of O(2).

Take γ ∈ Γ such that Ψ(γ) ∈ SO(2)\{id}. Then γ is even, hence Π(γ) is
an orientation preserving isometry of Hc/Z. As it cannot be a translation,
it must be a rotation about some x ∈ Hc/Z.

5.5. Lemma. Let γ and x be as above and let Λ(x) be the orbit of x under
the action of Π(Γ ∗). Then the rotation Π(γ) preserves the lattice Λ(x).

P r o o f. Let y ∈ Λ(x). By definition, there exists g ∈ Γ ∗ such that
y = Π(g)(x). Then Π(γ)(y) = Π(γ)◦Π(g)(x) = Π(γ)◦Π(g)◦Π(γ)−1(x) =
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Π(γgγ−1)(x). Since Γ ∗ is a normal subgroup of Γ , γgγ−1 ∈ Γ ∗, hence
Π(γ)(y) ∈ Λ(x).

By the argument of Lemma 3.5.2 in [W] the following corollary can be
obtained from Lemma 5.5:

5.6. Corollary. If Ψ(γ) ∈ SO(2)\{id} then Π(γ) is a rotation through
an angle of π/3, π/2, 2π/3 or π. In view of Proposition 5.4 the same holds
for Ψ(γ).

The corollary shows that if the holonomy group is contained in SO(2)
then it can only be the cyclic rotation group of order 2, 3, 4 or 6. Now we
shall study other possibilities.

5.7. Lemma. If the reflection ke belongs to Ψ(Γ ) then there exists in Γ
an element of the form kx ◦ ux where u is parallel to k.

P r o o f. Let γ ∈ Γ and Ψ(γ) = ke. Then Π(γ) is the composition of a
reflection with a nonzero translation u parallel to k, Π(γ) = u ◦ kp (if u = 0
then Π(γ) has a fixed point in Π−1(p)). Then γ = ux ◦ ky ◦ z for some x,
y ∈ Π−1(p) and z ∈ Z. The lemma now follows from (3.8.1) and (3.19.3).

5.8. Lemma. If ke ∈ Ψ(Γ ) then one can choose x ∈ Hc and u, a vector
on Hc/Z, in such a way that u is parallel to k, kx ◦ ux ∈ Γ , and there is
v ∈ Π(Γ ∗) orthogonal to u such that 2u and v generate the fundamental
lattice of Γ (which is rectangular).

P r o o f. u can be chosen to be the shortest possible vector parallel to k
with kx ◦ ux ∈ Γ for some x. Then, since by (3.13.1), (2u)x = (kx ◦ ux)2 ∈
Γ ∗, there exists an element wx ◦ z ∈ Γ ∗ such that 2u and w generate the
fundamental lattice of Γ ∗. By (3.19.1) we have

(kx ◦ ux) ◦ (wx ◦ z) ◦ (kx ◦ ux)−1 = kx ◦ ux ◦ wx ◦ z ◦ u−1
x ◦ kx

= kx ◦ ([u, w] + z) ◦ wx ◦ kx = kx ◦ wx ◦ kx ◦ ([w, u]− z) .

Denote Π(kx ◦wx ◦ kx) by wk. Since wk and w are symmetric with respect
to k and both belong to Π(Γ ∗), w + wk = 2nu for some integer n (recall
that u is parallel to k). The number n cannot be odd since in this case
the transformation (wx ◦ z) ◦ (kx ◦ ux)−n would have a fixed point, which is
impossible as it belongs to a discrete uniform Γ . So Π((wx ◦ z) ◦ (2u)−n/2

x )
can be taken for v.

5.9. Corollary. If ke ∈ Ψ(Γ ) then the index of Γ ∗ is even.

P r o o f. By Lemma 5.8, let u, v generate Π(Γ ∗) with kx ◦ ux ∈ Γ ,
vx ◦ z ∈ Γ and v orthogonal to u and k. Then using (3.14.1) and (3.19.1)
we get

(kx ◦ ux)−1 ◦ (vx ◦ z) ◦ kx ◦ ux = u−1
x ◦ kx ◦ vx ◦ z ◦ kx ◦ ux
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= u−1
x ◦ (vx ◦ z)−1 ◦ ux = [u, v] ◦ (vx ◦ z)−1 ,

which proves that [u, v] ∈ Γ ∗. But [u, v] = 1
2 [2u, v], so the index is even.

As a consequence of Lemma 5.8 the following restriction on the holonomy
group can be formulated:

5.10. Corollary. If Ψ(Γ ) contains a reflection then it contains at most
one more reflection with axis orthogonal to the first one, and also a rotation
through π.

P r o o f. This follows from the fact that a lattice can have at most one
orthogonal basis.

§ 6. Classification. The classification of compact flat C–C 3-manifolds
given in this section is done separately for different holonomy groups. In
fact, it is a classification of discrete uniform subgroups of Gc up to conjugacy
(compare Corollary 2.6). In the whole section the results and notation of
§3 are used. The symbol |u| will denote the length of a vector u in the
canonical metric described in 3.6.

6.1. Ψ(Γ ) = {id}. This case has been considered in §4. According to
Theorems 4.3 and 4.6, the general form of Γ is

Γ = gp
{

ux, vx,
1
n

[u, v]
}

where u, v are linearly independent vectors in Hc/Z.
The conjugacy class for groups of this type is completely determined by

the isometry class of the fundamental lattice and the index number n.

6.2. Ψ(Γ ) = {id, ke}. By Lemma 5.8 together with Corollary 5.9 we
have

Γ = gp
{

ux ◦ z, kx ◦ vx,
1
n

[u, v]
}

where u, v are orthogonal and k is parallel to v. According to 3.10, (3.11.1)
and (3.19.2), we can choose y ∈ Lx,k such that ux ◦ z = uy, kx = ky and
vx = vy. This gives the more convenient form

(6.2.1) Γ = gp
{

uy, ky ◦ vy,
1
n

[u, v]
}

.

For any orthogonal u, v the group of the above form is discrete uniform.
In order to prove that, it suffices to show that no φ ∈ Γ, φ 6= id, has fixed
points. That is obvious for φ ∈ Γ ∗\{id}. For φ ∈ Ψ−1(ke) = ky ◦ vy ◦ Γ ∗

that follows from the fact that Π(φ) has no fixed points on Hc/Z.
Two groups of the form (6.2.1) are conjugate in Gc if and only if n1 =

n2, |u1| = |u2| and |v1| = |v2|. To prove this observe that Γ ∗
1 and Γ ∗

2
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are conjugate under these conditions, and the conjugating map φ ∈ Gc

transforms Ly1,k1 onto Ly2,k2 , so it conjugates the reflections too.

6.3. Ψ(Γ ) = {id, ke,me, πe}; k is orthogonal to m. According to
Lemma 4.9 and Corollary 4.11

(6.3.1) Γ = gp{kx ◦ ux,my ◦ wy, z0} ,

where the vectors 2u and 2w, parallel to k and m respectively, generate the
fundamental lattice of Γ ∗.

Since the lines Π(Lk,x) and Π(Lm,y) are orthogonal, they intersect at a
point of Hc/Z. Hence, by 3.10, we may assume that, in (6.3.1), y = z(x)
for some z ∈ Z. But then my ◦ wy = my ◦ wx = mx ◦ wx ◦ 2z (cf. (3.19.1)
and (3.8.1)), and denoting 2z by h we obtain

(6.3.2) Γ = gp{kx ◦ ux,mx ◦ wx ◦ h, z0} .

Moreover, [u, w] ∈ Γ ∗. To prove this, we first combine (3.14.1), (3.20.2)
and (3.16.2) to obtain

(6.3.3) (kx ◦ ux) ◦ (mx ◦ wx ◦ h) = kx ◦mx ◦ (−u)x ◦ wx ◦ h

= πx ◦ (w − u)x ◦ ( 1
2 [−u, w] + h) = πa ◦ (h− 1

2 [u, w]) = πa ◦ h0 ,

where a = ( 1
2 (w − u))x(x). Next we use the following relations: (2u)x =

(2u)a ◦ [u, w] by (3.19.2), πa = ka ◦ ma by 3.15, ka ◦ (2u)a = (2u)a ◦ ka by
3.13, ma ◦ (2u)a = m−u(a) by (3.14.2), ka = k−u(a) by 3.13, to calculate

(πa ◦ h0) ◦ (2u)x = ma ◦ ka ◦ (2u)a ◦ (h0 + [u, w])(6.3.4)
= mb ◦ kb ◦ (h0 + [u, w]) = πb ◦ (h0 + [u, w]) ,

where b = (−u)a(a). Now, observe that 2h0 ∈ Γ ∗ (2h0 = (πa ◦ h0)2) and
2[u, w] ∈ Γ ∗ (Corollary 5.9), but h0 6∈ Γ ∗ (otherwise πa ∈ Γ and the action
of Γ is not free). If [u, w] 6∈ Γ ∗ then (h0 + [u, w]) ∈ Γ ∗ and consequently,
since the left-hand side of (6.3.4) is a composition of elements of Γ , πb ∈ Γ .
But πb has fixed points, which gives a contradiction. Thus [u, w] ∈ Γ ∗ and
the index of Γ ∗ is a multiple of 4.

Returning to (6.3.3) we have 2h0 = 2h−[u, w] and so 2h ∈ Γ ∗. Moreover,
if 1

2 [u, w] ∈ Γ ∗ we may assume h = 1
2z0 and if 1

2 [u, w] 6∈ Γ ∗ we may assume
h = 0 (we know that h 6∈ Γ ∗ and 2h ∈ Γ ∗). We then obtain two possible
forms of Γ :

(6.3.5)
Γ = gp

{
kx ◦ ux,mx ◦ wx,

1
2n + 1

[u, w]
}

,

Γ = gp
{

kx ◦ ux,mx ◦ wx ◦ h,
1
2n

[u, w]
}

, h =
1
4n

[u, w] ,

where k ⊥ m ⊥ u ⊥ w.
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By the argument of 6.2 we see that in groups of the form (6.3.5) no
maps in Ψ−1({ke,me}) have fixed points. Further, arguments similar to the
above discussion show that the same holds for Ψ−1(πe). This implies that if
we choose orthogonal u, w of any length and any natural n then the group
of the form (6.3.5) will be discrete uniform. It is obvious that Γ1, Γ2 are
conjugate if and only if Γ ∗

1 , Γ ∗
2 are. The conjugacy class is then determined

by the fundamental lattice and the index number.

6.4. Ψ(Γ ) = {id, πe}. By 4.3 we may assume that Γ ∗ = gp{f, g, z0},
z0 = 1

n [f, g]. Then

(6.4.1) Γ = gp{f, g, πx ◦ z, z0} = gp{f, g, πx ◦ z} for some x ∈ Hc .

Note that 2z = (πx ◦ z)2 ∈ Γ ∗, hence z = 1
2z0 may be assumed, and then

z0 = (πx ◦ z)2.
Define u = Π(f), w = Π(g) and let f = ux ◦ zu, g = wx ◦ zw for some

zu, zw ∈ Z. Then, by 3.16, πx◦z◦ux◦zu = π 1
2 u(x)◦(z+zu), hence 2zu ∈ Γ ∗.

Thus, by composing g with a multiple of z0, zu may be assumed to equal 0
or 1

2z0. The second possibility implies, however, that (z + zu) ∈ Γ ∗, hence
π 1

2 u(x) ∈ Γ , a contradiction. Similarly one may prove that zw = 0.
To check that no φ in Ψ−1(πe) has fixed points we examine (by use of

(3.20.2) and 3.16) the composition

(ux)k ◦ (wx)m ◦ πx ◦ z = (ku)x ◦ (mw)x ◦ πx ◦ z

= (ku + mw)x ◦ 1
2 [mw, ku] ◦ πx ◦ z

= π 1
2 (ku+mw)(x) ◦ (z + 1

2km[w, u]) .

If 1
2 [w, u] 6∈ Γ ∗ then putting k = m = 1 in the above formula we find that

z + 1
2 [w, u] ∈ Γ ∗ and consequently π 1

2 (u+w)(x) ∈ Γ , a contradiction. Thus
1
2 [w, u] ∈ Γ ∗, hence n in (6.4.1) is even. We then obtain

(6.4.2) Γ = gp{ux, wx, πx ◦ z}, z =
1
4n

[u, w] ,

and notice that by the above argument, for any u, w linearly independent,
a group of the form (6.4.2) is discrete uniform.

We omit the easy proof of the fact that the conjugacy class of any group
of the type (6.4.2) is determined by the fundamental lattice and the index
number.

6.5. Ψ(Γ ) = gp{(2π/3)e}. Denote 2π/3 by θ. By Lemma 5.5 the
fundamental lattice Π(Γ ∗) is invariant under the rotation through θ. The
only possibility then is that it is generated by two vectors u, w of the same
length making angle θ. Thus we start with

Γ = gp{θx ◦ z, ux ◦ zu, wx ◦ zw, z0}
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for some zu, zw ∈ Z and z = 1
3z0, which can be assumed because (θx ◦z)3 =

3z ∈ Γ ∗. Moreover, since θx ◦ ux ◦ θ−1
x = wx, we obtain (θx ◦ z) ◦ (ux ◦ zu) ◦

(θx ◦ z)−1 = θx ◦ ux ◦ θ−1
x ◦ zu = wx ◦ zu, hence we may assume zu = zw.

Furthermore, by 3.20 we calculate

(6.5.1) (ux ◦ zu)n ◦ (θx ◦ z) = θyn ◦
(

z + nzu +
n2

6
[u, w]

)
,

where yn = (2n
3 u + n

3 w)x(x), and by 3.18

(6.5.2) ux ◦ zu = uyn ◦
(
zu +

n

3
[u, w]

)
.

Putting n = 2 in (6.5.1) and calculating the third power of the right-hand
side we see that 6zu ∈ Γ ∗. The possible values of zu depend on the index
number n such that nz0 = [u, w]. We should investigate the cases where n =
6k + r for r = 0, 1, 2, 3, 4, 5 in order to make sure that Γ is discrete uniform
(use (6.5.1) and exclude the fixed points) and to find the more convenient
form of Γ (use (6.5.2) and replace x by yn to simplify the form or reduce it
to the case previously considered). These elementary considerations will be
omitted. We summarize the possible forms of Γ :

Γ = gp{θx ◦ z, ux, wx}, z =
1
3n

[u, w], n 6= 6k + 4 ;(6.5.3)

Γ = gp{θx ◦ z, ux ◦ h, wx ◦ h}, z =
1
3n

[u, w] ,(6.5.4)

where n = 6k + 3 or n = 6k + 5, h = 1
2z0 = 1

2n [u, w]. In both cases the
conjugacy class is determined by the length of u and by n.

6.6. Ψ(Γ ) = gp{(π/3)e}. As in 6.5 the fundamental lattice of Γ ∗ is
generated by vectors u, w of the same length making angle π/3. Since Γ
with the holonomy considered contains subgroups of the form (6.5.3) or
(6.5.4) and (6.4.2), one may easily prove that

Γ = gp{ux, wx, (π/3)x ◦ z} ,

with z = 1
12n , is the general form of a discrete uniform subgroup of Gc

having such holonomy. The conjugacy class is determined by the length of
u and the index number 2n.

6.7. Γ = gp{(π/2)e}. The group with such holonomy contains a sub-
group of the form (6.4.2), and following the methods of 6.4 and 6.5 one
easily proves that

Γ = gp{(π/2)x ◦ z, ux, wx}
where u, w generate the square fundamental lattice of Γ ∗ and z = 1

8n [u, w].
Again, the conjugacy class is determined by the length of u and the index
number 2n.
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Since, according to 5.10 and the remark after 5.6, all the holonomy
groups have been taken into account, the classification is complete.

Appendix. We begin with listing the geometric properties of the C–C
metric dc on Hc.

A.1. For each C–C manifold there exist geodesics, i.e. differentiable
curves locally realizing the distance dc. For every distributional direction at
each point of Hc there exists a family of geodesics tangent to it, naturally
parametrized by the set R of real numbers (cf. [H], [V-G], p. 334).

A.2. A direct computation shows the following formula for geodesics γ1,
γ2 tangent to each other at a point of Hc:

dc(γ1(t), γ2(t)) = C(γ1, γ2)t3/2 + O(t2) .

The function ρ : (γ1, γ2) → C(γ1, γ2)2 is a metric on the family of tangent
geodesics, making it a space isometric to the euclidean line.

A.3. In each family of geodesics in Hc tangent to a fixed vector there
is exactly one having no conjugate points. For each r > 0 there are exactly
two geodesics having their first conjugate points at a distance r from the
initial point (cf. [H] or [V-G], pp. 333–337).

A.4. It is clear that a differentiable isometry of a C–C manifold preserves
the distribution defining the metric and the scalar product on it. Such an
isometry transforms geodesics to geodesics and preserves the structure of
conjugate points. In the case of Hc a differentiable isometry also preserves
the metric structure (described in A.2) on the family of geodesics tangent
to a fixed vector.

Now we prove a lemma which is a crucial step in the proof of Theorem
2.3:

Lemma. Let f : ∆p → ∆q be a linear transformation of fibres of the
distribution ∆ preserving the invariant scalar product (defining the metric
dc of Hc). Then there exists at most one differentiable isometry F such that
the tangent map dF restricted to ∆p is equal to f .

P r o o f. It is enough to show that for any geodesic starting from p
there is only one geodesic starting from q that can be its image. Choose
any geodesic γ starting at p and let v ∈ ∆p be a vector tangent to γ at
p. Then the geodesic F (γ) must be tangent to f(v) ∈ ∆q. If γ has no
conjugate points then the only candidate for F (γ) is the unique geodesic
tangent to f(v) having no conjugate points (cf. A.3). If γ has its first
point conjugate to p at a distance r from p then, again by A.3, among the
geodesics tangent to f(v) there are two having this property with respect
to q, thus being the only candidates for F (γ). Each choice determines F for
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all other geodesics tangent to the same vector, since the metric structure on
the family described in A.2 must be preserved. But a direct computation
of distances between points of different geodesics shows that only one of the
choices leads to an isometry, which concludes the proof.

P r o o f o f T h e o r e m 2.3. The theorem follows from the easy observa-
tion that for any f : ∆p → ∆q as in the Lemma there exists an isometry
φ ∈ Gc such that dφ|∆p = f .

REFERENCES

[A] L. Aus lander, Bieberbach’s theorems on space groups and discrete uniform sub-
groups of Lie groups, Ann. of Math. 71 (1960), 579–590.

[G] M. Gromov, Structures métriques pour les variétés riemanniennes, notes de
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Reçu par la Rédaction le 26.2.1990 ;
en version modifiée le 17.12.1990


