

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 20, 2022

Compact circuits for combined AES encryption/decryption

Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco

Published in:
Journal of Cryptographic Engineering

Link to article, DOI:
10.1007/s13389-017-0176-3

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Banik, S., Bogdanov, A., & Regazzoni, F. (2019). Compact circuits for combined AES encryption/decryption.
Journal of Cryptographic Engineering, 9(1), 69-83. https://doi.org/10.1007/s13389-017-0176-3

https://doi.org/10.1007/s13389-017-0176-3
https://orbit.dtu.dk/en/publications/e82ef3ea-48f3-400a-ab8c-3e9387866105
https://doi.org/10.1007/s13389-017-0176-3

Noname manuscript No.
(will be inserted by the editor)

Compact Circuits for Combined AES Encryption/Decryption

Subhadeep Banik · Andrey Bogdanov · Francesco Regazzoni

Received: date / Accepted: date

Abstract The implementation of the AES encryption

core by Moradi et al. at Eurocrypt 2011 is one of the

smallest in terms of gate area. The circuit takes around

2400 gates and operates on an 8 bit datapath. How-

ever this is an encryption only core and unable to cater

to block cipher modes like CBC and ELmD that re-

quire access to both the AES encryption and decryption

modules. In this paper we look to investigate whether

the basic circuit of Moradi et al. can be tweaked to

provide dual functionality of encryption and decryp-

tion (ENC/DEC) while keeping the hardware overhead

as low as possible. We report two constructions of the

AES circuit. The first is an 8-bit serialized implementa-

tion that provides the functionality of both encryption

and decryption and occupies around 2605 GE with a la-

tency of 226 cycles. This is a substantial improvement
over the next smallest AES ENC/DEC circuit (Grain

of Sand) by Feldhofer et al. which takes around 3400

gates but has a latency of over 1000 cycles for both the

encryption and decryption cycles.

In the second part, we optimize the above architec-

ture to provide the dual encryption/decryption func-

tionality in only 2227 GE and latency of 246/326 cycles

for the encryption and decryption operations respec-

tively. We take advantage of clock gating techniques

Sections 1, 2 and 3 appeared in the article “Atomic-AES: A
Compact Implementation of the AES Encryption/Decryption
core” accepted in Indocrypt 2016, LNCS 10095, pp. 173-190.

Subhadeep Banik
LASEC, École Polytechnique Fédérale de Lausanne, Switzer-
land, E-mail: subhadeep.banik@epfl.ch

Andrey Bogdanov
DTU Compute, Technical University of Denmark, Lyngby
E-mail: anbog@dtu.dk

Francesco Regazzoni
ALARI, University of Lugano. E-mail: regazzoni@alari.ch

to achieve Shiftrow and Inverse Shiftrow operations in

3 cycles instead of 1. This helps us replace many of

the scan flip-flops in the design with ordinary flip-flops.

Furthermore we take advantage of the fact that the In-

verse Mixcolumn matrix in AES is the cube of the For-

ward Mixcolumn matrix. Thus by executing the For-

ward Mixcolumn operation three times over the state,

one can achieve the functionality of Inverse Mixcolumn.

This saves some more gate area as one is no longer re-

quired to have a combined implementation of the For-

ward and Inverse Mixcolumn circuit.

Keywords AES 128 · Serialized Implementation

1 Introduction

There has been extensive research into the construc-

tion of compact implementations of lightweight block ci-

phers. This line of research has essentially evolved along

two different lines. The first aims to construct propri-

etary lightweight block ciphers by optimizing one or

several parameters in the design spectrum, as has been

evidenced by numerous such designs proposed in the

past few years: HIGHT [21], KATAN [11], Klein [18],

LED [19], Noekeon [13], Present [7], Piccolo [27], Prince

[8], Simon/Speck [6] and TWINE [28]. The second aims

at attempting to implement standardized ciphers like

AES 128 [14] in a lightweight fashion.

There have been several lightweight implementa-

tions of AES proposed in literature. Some results like

[20] and [10] aim for compact implementations in ASIC

and FPGA platforms respectively (however the work

in [20] is for an encryption only core). The works in

[22] and [29] aim at lowering critical path and increas-

ing throughput. And the works in [3] and [5] aim to

2 Subhadeep Banik et al.

implement circuits with low energy consumption per

encryption operation.

For compact implementations of the dual encryp-

tion/decryption circuit, the following results are known.

In [26], the authors propose a 32-bit serial architec-

ture with optimized tower field implementation of the

S-box and a combinatorial optimization of the Mix-

column circuit. The size of this implementation was

around 5400 GE (gate equivalents, i.e. area occupied

by an equivalent number of 2-input NAND gates). The

“Grain of Sand” implementation [17] by Feldhofer et al.

constructs an 8-bit serialized architecture with circuit

size of around 3400 GE but a latency of over 1000 cycles

for both encryption and decryption. Very recently in

[23], the authors report an 8-bit serial implementation

that takes 1947/2090 GE for the encryption/decryption

circuits respectively. This implementation makes use of

intermediate register files that can be synthesized in the

ASIC flow using memory compilers.

The implementation by Moradi et al. in [25] with

size equal to 2400 GE and encryption latency of 226

cycles is one of the smallest known architectures for

AES. The design combines 8-bit and 32-bit serial dat-

apaths in a manner that achieves a surprisingly com-

pact implementation. The design uses scan flip-flops for

constructing the registers for the state update and key

schedule. A scan flip-flop occupies 1 GE less area than

the combination of an ordinary flip-flop and a 2:1 multi-

plexer, while offering the same functionality. Thus this

trick saves 1 GE per flip-flop used. This implementa-

tion also uses a 32 bit Mixcolumn circuit instead of the

8-bit serialized structure of [17], because the authors

argue that any savings in area achieved by an 8-bit se-

rial circuit is offset by the additional registers required

to store its output. Finally since each round function

in this circuit is implemented in 21 cycles, the control

system is made using a 21 cycle LFSR that generates

all timing signals accordingly. However this circuit is

an encryption-only core, and therefore cannot be used

to implement modes like CBC [16], COPA [2], ELmD

[15], POET [1] that require access to both AES encryp-

tion and decryption functionalities. Therefore area-wise

the three smallest known circuits that perform the dual

functionalities of both encryption and decryption are

A. Grain of Sand implementation [17] at 3400 GE

B. 8-bit serial implementation in [23] at 4037 GE

C. 32-bit serial implementation in [26] at 5400 GE.

Moreover the Grain of Sand implementation has a la-

tency of over 1000 cycles for both the encryption and

decryption operations and so for efficient lightweight

implementation of all modes that require access to both

AES encryption and decryption it is critical to have an

architecture that is both lightweight and incurs mini-

mal latency.

1.1 Contribution and Organization

In this paper we present two circuits. The first, Atomic-
AES, is an 8-bit serial architecture that performs the

dual functionality of encryption and decryption, and

has a circuit size of around 2605 GE when synthesized

with the standard cell library of the STM 90nm CMOS

logic process. The circuit has a latency of 226 cycles for

both encryption and decryption operations. The circuit

is closely related to the 8-bit encryption only serial ar-

chitecture presented in [25], and in fact the architecture

has the following additional logic components over the

basic circuit proposed by Moradi et al.

1. 2 additional 8-bit multiplexers added to the state

datapath,

2. 3 additional 8-bit xor gates in the key datapath,

3. 24 additional and gates in the key datapath,

4. 1 additional 8-bit multiplexer, 1 additional 8-bit xor

gate, 16 additional and gates during state-key addi-

tion,

5. Other additional logic required to implement

a. S-box and its inverse,

b. Mixcolumn and its inverse,

c. Round constants and their inverses.

Thereafter, we propose the Atomic-AES v2.0 archi-

tecture that at 2227 GE, occupies around 400 GE less

using the same standard cell library. The architecture

has encryption/decryption latency of 246/326 cycles.

Each encryption round is computed in 23 cycles, each

decryption round takes 31 cycles. The savings in area

comes from principally two avenues:

1. The Shiftrow/Inverse Shiftrow operations are per-

formed over three cycles rather than 1. This reduces

the number of 2 input flip-flops required in the de-

sign. So it helps the designer replace a lot of the

scan flip-flops in the design with ordinary flip-flops.

A scan flip-flop usually occupies 1 GE more than

an ordinary flip-flop. Hence this trick, on average,

saves 1 GE of area per bit of storage.

2. Additionally the Inverse Mixcolumn matrix used in

AES is the cube of the Forward Mixcolumn matrix.

This implies that executing the Mixcolumn opera-

tion 3 times over the state achieves the functionality

of Inverse Mixcolumn. Thus the designer no longer

needs a combined implementation of the Forward

and Inverse Mixcolumn Circuit.

The paper is organized in the following manner. Sec-

tion 2 gives some background and description of the ar-

chitecture presented in [25]. This would be beneficial for

Compact Circuits for Combined AES Encryption/Decryption 3

the self-sufficiency and better understanding of this pa-

per. Section 3, describes the architecture and function-

ing of Atomic-AES in details, and highlights some issues

related to its implementation. Section 4 describes the

architecture and functioning of Atomic-AES v2.0. Sec-

tion 5 tabulates all implementation results and com-

pares it with previous architectures present in litera-

ture. Section 6 concludes the paper.

2 Background and Preliminaries

In Figure 1, a pictorial description of the architecture in

[25] is given. As can be seen the basic elements of stor-

age are the 16 byte sized registers made of scan flip-flops

in the state and key path respectively, used to store the

intermediate states and roundkeys. Each round func-

tion is calculated in 21 cycles and so it is important

to understand how the data is maneuvered through the

registers during this period. An important point to note

is that this particular architecture interprets the AES

input vectors in a row major fashion i.e. the first four

bytes are placed in the first row, the second four bytes

in the second row so on. Most AES implementations

use a column major ordering. If column major ordering

is needed, 20 additional 8-bit multiplexers are required.

However since the reordering costs are marginal, we as-

sume that it is performed offline by some processor or

microcontroller that communicates with the hardware

circuit.

Let us label the 21 cycles per round by the integers

0 to 20. The encryption process starts with the addi-

tion of the whitening key and the S-box computation

of the first round function. In order to do so the finite

state machine (FSM) generating the timing signals is

initialized to cycle number 5. So in cycles numbered 5

to 20 (i.e. the very first 16 cycles) the following trans-

formations take place:

Cycles 5 to 20: The 8 bit chunks of plaintext and key

are respectively filtered out of the main state and

key multiplexers respectively. They are xored, and

the resultant signal fed to the S-box. The output

of the S-box is fed to the bottom most multiplexer

in the state path (marked by SBIN), from where

it is shifted serially forward in the next round. Ef-

fectively, after the cycle 20 is completed, the state

registers would store the value S(PT ⊕ K), where

S(·) denotes the bytewise application of the AES

S-box function. In the same period the 8 bit chunk

of the Key is input to key register marked “33”,

from where it is serially forwarded in the next round,

much like in the state register. Therefore, at the end

of cycle 20, the Key registers hold the value of the

initial whitening key.

After this the cycle counter is automatically reset to 0,

and each 21 cycle round function is executed 10 times,

thus accounting for a total latency of 16+21∗10 = 226.

During this period the order of operations is as follows:

Shiftrow → Mixcolumn → Add roundkey + S-box∗

where S-box∗ denotes the substitution layer of the sub-

sequent round function. To clarify, let us see the cycle-

wise description of the data movement:

Cycle 0: This cycle is used for the Shiftrow operation.

Since each 8-bit register in the state and key paths

are constructed using scan flip-flops, they have two

input data ports which they filter depending on a

select signal. As can be seen in Figure 1, the state

registers are connected to facilitate the Shiftrow op-

eration during cycle 0. The key register is “frozen”

in this cycle and so no data movement takes place.
1

Cycles 1 to 4: The Mixcolumn operation is performed

during these 4 cycles. The Mixcolumn circuit used

in this architecture is a {0, 1}32 → {0, 1}32 logic

block, and so data from leftmost column (registers

marked 00,10,20,30) of the state is fed as input to

the Mixcolumn circuit. In the subsequent cycle the

Mixcolumn output is driven into the rightmost col-

umn (registers marked 03,13,23,33). This operation

carried out over 4 cycles computes the Mixcolumn

over the entire state. Note that this operation is

bypassed in the 10th encryption round as the Mix-

column function is omitted in the final round.

During this period, the non-linear function of the

Keyschedule operation is computed in the Key reg-

isters. Recall that the non linear operation in the

AES Keyschedule is given as

F (K3) = S(K3 ≪ 8)⊕RCONi,

where K3 denotes the third column of the current

roundkey, ≪ denotes the left rotate operation and

RCONi is the ith round constant (note that the

round constant is added to the most significant byte

of S(K3 ≪ 8)). (K3 ≪ 8) is a 32 bit value and so

S(K3 ≪ 8) implies the S-box function applied to

each of the 4 bytes of the input. In order to imple-

ment the rotation operation, the data is taken from

the output of the key register marked “13” and fed

to the S-box. Although the architecture uses only

1 One way to achieve this is to use a gated clock which does not
present a leading edge during the shiftrow period.

4 Subhadeep Banik et al.

bb
M

IX
C

O
L

U
M

N
SBOX

RoundKey

RoundKey

b

KEY

TEXT

ENCOUT

StateOUT

SBIN

SBOUT

SBIN

b

32

SBOUT

MCIN

32

8

StateOUT
SELXOR

b

b

b

SELRC

RC

b

b

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Fig. 1: The 8-bit serial architecture in [25]

one S-box, in cycles 1 to 4, the state path opera-

tions do not use the S-box circuit and so the key

path S-box operations can be done in this period.

The S-box output is xored to the output of the reg-

ister “00” and the round constant and, in the next

cycle is driven into the register marked “30”. Note

that since there is “vertical” movement of data in

the key registers in this period, at the end of cycle

4, the four columns of the key register store the val-

ues K0 ⊕ F (K3),K1,K2,K3 respectively, where Ki

denotes the ith column of the current roundkey.

Cycles 5 to 20: The bytes of state and roundkey are re-

spectively taken out of the registers marked “00” of

both the state and key paths and xored together

and fed to the S-box. The output of the S-box is

again driven into the bottom most state register

“33” and serially shifted forward in the subsequent

rounds. This sequence of operations is exactly same

as the ones performed in the very first 16 cycles,

with the only exception that an intermediate state

and roundkey chunks are xored instead of the raw

plaintext and key.

The operations in the Key register are a little more

interesting during this period. Note that in order to

perform roundkey addition during these cycles, the

data emanating from key register “00” needs to be

equal to the current roundkey. However we have seen

that at the end of cycle 4 the columns of the key reg-

isters hold the value K0 ⊕ F (K3),K1,K2,K3. Note

that if K0,K1,K2,K3 and L0, L1, L2, L3 denote the

4 columns of the current and next roundkey then

we have

L0 = K0 ⊕ F (K3), L1 = K1 ⊕ L0, L2 = K2 ⊕ L1,

L3 = K3 ⊕ L2.

Thus at the end of cycle 4, only the 0th column

holds the correct next roundkey L0. The problem

is solved by having an extra xor gate taking inputs

from the registers “00” and “01” and output feeding

into “00”. Since the movement of data is switched

to “horizontal”, this helps to perform on the fly ad-

dition as the key chunks are driven out of the “00”

register. The addition is however not executed at

cycles 8,12,16,20 by zeroing the SELXOR signal be-

cause as previously noted, the 0th column already

has the required roundkey. Also after the roundkey

addition, each 8-bit key is circularly shifted back

into the key registers through register “33” in or-

der to facilitate the operations in the next round

function.

The ith round in this architecture computes the

Substitution layer for the (i + 1)th AES encryption

round. This being so, in the tenth and final encryp-

tion round the only operations that need be performed

are Shiftrows and the final roundkey addition. Thus in

the tenth round, the Mixcolumn operation is bypassed

in cycles 1-4 and the output ciphertext is available just

after the roundkey addition from cycles 5 through 20.

3 Atomic-AES: Architecture and Dataflow

We will now present a full description of the proposed

architecture for Atomic-AES which provides dual func-

Compact Circuits for Combined AES Encryption/Decryption 5

tionalities for encryption and decryption. A diagram

for the proposed architecture is presented in Figure 2.

The architecture builds on the basic circuit in [25], and

so the functioning of the circuit during encryption is

exactly as described in Section 2.

3.1 Issues with the Decryption Circuit

In order to accommodate decryption operation in the

basic circuit of [25], there are some principal difficulties.

We will list them one by one:

1. Shiftrow/Inverse Shiftrow: In the Shiftrow op-

eration, the data in the ith row is left-rotated by i

bytes (0 ≤ i ≤ 3). Hence the Inverse Shiftrow opera-

tion would require the i-byte right-rotation of the ith

row data. However, in order to accommodate Inverse

Shiftrow, and Forward Shiftrow simultaneously we

would potentially require another multiplexer at the

input of each 8-bit state register.

2. Forward/Inverse Keyschedule: The Keysched-

ule used in AES has a non-linear shift register like

structure, and it is obvious that the key register

structure in [25] was explicitly constructed to ac-

commodate its unique mathematical structure, and

at the same time produce the current roundkey in an

8-bit serial fashion. It is not immediately clear how

the Inverse Keyschedule could be arranged in such

a circuit without increasing the circuit size signifi-

cantly. Also we must note that for decryption, the
inverse cipher key (i.e. the final round encryption

key) must be made available, because all roundkeys

in the decryption circuit are calculated in the re-

verse order.

3. Sequence of operations during Decryption:

The circuit in [25] requires 21 cycles to complete

a round function, with the order of operations be-

ing: Shiftrows, Mixcolumn followed by Add round-

key and the S-box layer of the following round. It

is however not clear what order of operations would

achieve the most efficient circuit for decryption. If

one chooses to have roughly the same order of oper-

ations i.e. Inverse Shiftrows, Inverse Mixcolumn fol-

lowed by Add roundkey and Inverse S-box, then as

per the specification of the Decryption function, we

would require the Inverse Mixcolumn of the round-

key as well (as described in [26]). This would most

likely require additional cycles to compute the In-

verse Mixcolumn of the roundkey and thus increase

the latency.

3.2 Inverse Shiftrow

An efficient Encryption/Decryption circuit would need

to address all the above issues judiciously. To begin with

let us address the issue of Shiftrow/Inverse Shiftrow.

We make the following observations before proceeding:

Observation 1: For the 0th and the 2nd rows of the AES

state, Shiftrow and Inverse Shiftrow bring about the

same transformation.

Observation 2: For the 1st and the 3rd rows of the AES

state, Shiftrow and Inverse Shiftrow bring about op-

posite transformations. Which is to say, that the

Shiftrow operation on the 1st row brings about the

same transformation as the Inverse Shiftrow on the

3rd row and vice versa.

A careful examination of the architecture in [25] re-

veals that each 8-bit register (constructed with scan

flip-flops) accepts two inputs (see Figure 1): one from

the register immediately to its right (the rightmost reg-

ister accepts its input from the leftmost register of the

row below it), this connection is to facilitate the serial

loading and unloading of the bytes in the state during

cycles 5 to 20. The other input facilitates the transfer

of data during they Shiftrow cycle. However, for the

first three registers of the 1st row (i.e. “10”,“11” and

“12”) the two inputs are actually the same. So in order

to accommodate the Inverse Shiftrow, the second input

connection of these three registers can be rewired (see

Figure 2) just like in the third row (since the Inverse

Shiftrow of the first and Forward Shiftrow of the third

row are actually identical transformations). For the last

register of this row i.e. “13”, an extra multiplexer with

input from “10” is required. And that solves the prob-

lem for the first row.

For the 3rd row, the situation is even more straight-

forward. One of the direct results of Observation 2 ,

is that the first input connection for the registers “30”,

“31” and “32” (used primarily for serial loading of data)

can be used for the dual purpose of performing In-

verse Shiftrow. This being the case there is no need for

rewiring the inputs. However just as in the 1st row, for

register “33”, an extra multiplexer with input from reg-

ister “30” is required. Also as per Observation 1 , no

change in wiring or logic is required in the 0th and 2nd

rows. In Table 2, we summarize the input connections

for the first and third row state registers during the var-

ious operation stages. For example during serial load-

ing/unloading, register ‘13’ accepts data coming from

register ‘20’, whereas it takes data from ‘10’/‘12’ during

Shiftrow/Inverse Shiftrow respectively. As seen in Fig-

ure 2, the register ‘33’ takes data from the DECOUT

pin during the serial loading phase (i.e. cycles 5 to 20).

6 Subhadeep Banik et al.

bb

MIXCOLUMN/INVMIXCOLUMN

SB
O

X
/

R
ou

nd
K

ey

R
ou

nd
K

ey

SB
O

X
−1

b

K
E

Y

T
E

X
T

E
N

C
O
U
T

D
E

C
O
U
T

St
at

e O
U
T

SB
I
N

SB
O
U
T

SB
I
N

b

b b

b

b
b

b

32

SB
O
U
T

M
C

I
N

32

8

St
at

e O
U
T

SE
L A

K
1

SE
L A

K
2

SE
LX

O
R

bbb

SE
L E

D

SE
L R

C

R
C

/R
C

−
1

b
b

b

00
01

02
03

10
11

12
13

20
21

22
23

30
31

32
33

00
01

02
03

10
11

12
13

20
21

22
23

30
31

32
33

Fig. 2: The AES 8 bit Encryption/Decryption architecture for Atomic-AES

Compact Circuits for Combined AES Encryption/Decryption 7

Register SL SR ISR # Register SL SR ISR
Row 1 Row 3

1 10 11 11 13 1 30 31 33 31
2 11 12 12 10 2 31 32 30 32
3 12 13 13 11 3 32 33 31 33
4 13 20 10 12 4 33 DECOUT 32 30

Table 1: Input connections to the 1st and 3rd row state registers during various stages of the operation. (SL: Serial

Loading, SR: Shiftrow, ISR: Inverse Shiftrow)

3.3 Inverse Keyschedule

To recall, if K0,K1,K2,K3 and L0, L1, L2, L3 denote

the 4 columns of the current and next roundkey then

we have

L0 = K0 ⊕ F (K3), L1 = K1 ⊕ L0, L2 = K2 ⊕ L1,

L3 = K3 ⊕ L2.

During decryption, the roundkeys are generated in re-

verse order and so in the context of decryption, L =

L0, L1, L2, L3 is essentially the current roundkey and

K = K0,K1,K2,K3 is the key to be generated in the

subsequent round. So we rewrite the above relation as

K3 = L2 ⊕ L3

K2 = L1 ⊕ L2

K1 = L0 ⊕ L1

K0 = F (K3)⊕ L0 = F (L2 ⊕ L3)⊕ L0

So in order to have an Encryption/Decryption circuit

we need an architecture around the key registers that

can both (a) generate L given K as input and (b) gen-

erate K given L as input. The basic architecture in [25]

all ready achieves (a) and so we need accommodate (b)

i.e. the roundkey generation mechanism during decryp-

tion. We offer the following solution. Place three 8-bit

xor gates in the 3rd row of Key registers in the following

way (refer to Figure 2).

1. For 1 ≤ i ≤ 2, the xor gate takes inputs from the key

registers “3i” and “3 (i + 1)” and feeds its output

into register “3i”.

2. The third xor gate takes inputs from the registers

“33” and the current roundkey byte and feeds its

output into register “33”.

3. For each of these xor gates, the input coming from

register “3i” is anded with a SELED signal. This is

done so that serial loading and unloading can be

done when required by simply zeroing the SELED

signal.

To understand how the Inverse Keyschedule works, let

us look at the flow of data in cycles 5 to 20. For the

purpose of simplification let L0i, L1i, L2i, L3i denote the

4 key bytes in the column Li, and similarly let K0i,K1i,

K2i,K3i denote the 4 key bytes in the column Ki. Note

that the signal SELED is made 1 only during cycles 8,

12, 16, 20 of the decryption phase. The flow of data has

been explained in Figure 3.

It can be seen that at cycle 8, the three rightmost

key registers in the bottommost row have the key bytes

L00, L01, L02. At this point SELED is set to 1. Thus

in the next cycle the bottommost key row would con-

tain the bytes L00, K01 = L00 ⊕ L01, K02 = L01 ⊕
L02, K03 = L02 ⊕ L03 respectively. Similar additions

occur at cycles 12, 16 and 20 and as a result at the be-

ginning of cycle 0 of the next round the four columns of

the key register would have the values L0,K1,K2,K3

respectively. Thereafter in cycles 1 to 4, F (K3) is com-

puted in the same manner as described in the encryp-

tion cycles and added to L0 in the first column. And as

a result at the beginning of cycle 5, the key columns

contain K0 = L0 ⊕ F (K3),K1,K2,K3 which is the

complete next roundkey. Since the complete roundkey

is already available, the SELXOR signal controlling the

xor gate in the topmost row is zeroed as the roundkeys

are serially driven out for the add roundkey operation.

Thus all the functionalities of Inverse Keyschedule are

completely accommodated using this architecture. Fur-
thermore the complete decryption roundkey is available

from cycles 5 through 20, which is incidentally the pe-

riod during which we perform the add roundkey oper-

ation.

3.4 Sequence of operations

Unlike ciphers like Midori [4], Prince [8] and Noekeon

[13], AES was probably not concieved as an efficiently

implementable involutive cipher. As a result, the se-

quence of operations during the encryption and decryp-

tion flow are quite different. The sequence of operation

during the encryption flow is as follows:

1. Add whitening key.

2. Rounds 1 to 9

A. Substitution layer, B. Shiftrows,

C. Mixcolumn, D. Add roundkey

3. Round 10

A. Substitution layer, B. Shiftrows,

8 Subhadeep Banik et al.

L00

5

L01

6

L00 L02

7

L03

8

L02L01L00 L01L00

L10

9 10 11 12

K03K02K01L00 L11L10K03K02K01

L00

L12L11L10K03K02

K01L00

L13L11K03

K02K01

L12L10

L00

13 14

L20K13K12K11L10

K03K02

L21L20K13K12K11

L10K03K01L00 K02K01

L00
b b b b b b b b b b

SELED = 1

Fig. 3: Data flow in the Key registers during Decryption

C. Add roundkey

As previously mentioned, the 21 cycle encryption phase

is arranged as Shiftrow→Mixcolumn→ Add roundkey

+ Substitution layer of next round. The decryption flow

of operations must exactly be opposite of encryption.

Since the Shiftrows/Inverse Shiftrows can be commuted

with S-box/Inverse S-box operation respectively, we can

go with the following composition of one decryption

round (also used in the architecture in [26]):

Inv. Shiftrow → Inv. Mixcolumn → Add roundkey

+ Inv. S-box

This sequence is attractive in this particular architec-

ture because it has exactly the same order of operations

as in encryption, and so it does not need too many

changes in the underlying control system that produces

select signals for the various multiplexers in the circuit.

However as mentioned in [26], this sequence essentially

swaps the order of Add roundkey and Inverse Mixcol-

umn operations. Since Mixcolumn and hence also In-

verse Mixcolumn are linear functions, this requires the

Inverse Mixcolumn function to be operated on the cur-

rent roundkey before using it during the Add round-

key operation (since MC−1(X + K) = MC−1(X) +

MC−1(K)). There are two ways to achieve this: a)

use an additional circuit for Inverse Mixcolumns or b)

spend extra cycles to compute the Inverse Mixcolumn

of the current roundkey. Option a increases circuit size

and option b increases latency.

In this paper we propose an alternate sequence of

the decryption cycle that compromises on neither the

circuit size nor latency. We propose the following flow:

Inv. Mixcolumn → Inv. Shiftrow → Inv. S-box +

Add roundkey

Since this sequence of operations is essentially the mir-

ror inverse of the AES encryption round function, no

swapping of Add roundkey and Inverse Mixcolumn is

needed, and that obviates the need to calculate the In-

verse Mixcolumn of the roundkey. To better explain the

operations, let us present a cycle by cycle breakdown of

the 21 cycle decryption round function. The decryption

starts with the addition of the whitening key. The fi-

nite state machine (FSM) generating the round signals

is again initialized to cycle number 5. So in cycles num-

bered 5 to 20 (i.e. the very first 16 cycles) the following

transformations take place:

Cycles 5 to 20: The 8 bit chunks of ciphertext and key

are respectively filtered out of the main state and

key multiplexers respectively They are xored, and

the resultant signal fed to the state registers. Note

that in the corresponding encryption stage, we ad-

ditionally calculated the S-box of the first round.

Hence in order to accommodate both encryption

and decryption we need a multiplexer after the S-

box circuit as shown in Figure 2. The Key bytes are

input to key register “33”, from where it is serially

forwarded in the next round. However as mentioned

in the previous subsection, the SELED signal is set to

1 at rounds 8, 12, 16, 20 due to which at beginning of

the next phase, the Key four register columns hold

the value L0,K1,K2,K3 respectively.

Compact Circuits for Combined AES Encryption/Decryption 9

ENCRYPTION 0 1-4 5-20

0 1-4 5-20

5-20

DECRYPTION

0-3 4

Add Whitening Key + S-box of 1st round

Store Key serially

Add roundkey + S-box of next round

Compute roundkey + Store it serially

State

Key

State

Key

Round

0

1-10

Round

0

1-10

0

1-10
State

Key

Shiftrow

Frozen

Mixcolumn

Compute F (K3)

Store Key serially (with SELED=1 at 8,12,16,20)

Store Key serially (with SELED=1 at 8,12,16,20)

Add Whitening Key

Inverse S-box + Add roundkey

Frozen Compute F (K3)

Mixcolumn−1 Shiftrow−1

Fig. 4: Operation sequences in the Encryption/Decryption stages

After this the cycle counter is automatically reset to 0,

and each 21 cycle round function is executed 10 times.

Since the data flow in the key registers has already been

explained in the previous subsection, we concentrate on

the state register.

Cycles 0 to 3: These cycles perform the Inverse Mix-

column operation on the state columns, in exactly

the same way Forward Mixcolumn is executed in the

encryption stage in cycles 1 to 4. However only in

the very first round the Inverse Mixcolumn opera-

tion is bypassed, as required in AES decryption.

Cycle 4: This cycle is reserved for the Inverse Shiftrow

operation.

Cycles 5 to 20: The bytes of state are taken out from

register “00” and input into the combined Forward

and Inverse S-box circuit to compute the Inverse

S-box operation. The output of the S-box is then

xored with the current roundkey byte from the key

register “00” and circulated serially back into the

state registers via the register marked “33”. Note

that the order of S-box and Add roundkey in the

decryption phase is exactly the opposite as the en-

cryption phase. As a result we employ two 8-bit xor

gates, one before and one after the S-box circuit, for

key addition in the encryption and decryption stages

respectively. The xor gate inputs are controlled by

and gates as shown in Figure 2, in order to bypass

the addition operation as required.

In the tenth and final round, the decrypted plaintext is

made available from cycles 5 through 20 after the Add

roundkey operation. The above process is explained pic-

torially in Figure 4. We now describe some of the com-

ponents used in the circuit.

3.5 S-box

Over the years, there has been substantial research into

compact circuit implementations of the AES S-box [9,

12,24,26,30]. Almost all of them use the underlying

algebraic structure of the AES S-box, that essentially

combines an affine transformation with an inverse com-

putation over the AES finite field. However the archi-

tecture due to Canright [12] remains one of the smallest

in terms of circuit size for the combined Forward and

Inverse S-box, and thus this is the architecture we chose

for the combined S-box/Inverse S-box circuit.

3.6 Combined Forward and Inverse Mixcolumn Circuit

In [26], the authors use the following decomposition of
the Inverse Mixcolumn matrix to achieve an efficient

10 Subhadeep Banik et al.

implementation:
14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14

 =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 +


8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

 +


4 0 4 0

0 4 0 4

4 0 4 0

0 4 0 4


The xxtime (i.e. multiplication by 4) operation in AES

finite field can be implemented in 5 xor gates as shown

(b6 ⊕ b7 is computed just once and the output is reused

to construct the 5th LSB)

xxtime(b7, b6, . . . , b0) 7→ (b5, b4, b3 ⊕ b7, b2 ⊕ b6 ⊕ b7 ,

b1 ⊕ b6, b0 ⊕ b7, b6 ⊕ b7 , b6)

Using this implementation of xxtime, the authors pro-
posed a construction of Inverse Mixcolumns using 193
xor gates and a 32 bit multiplexer. However a more
efficient implementation is due to Paulo Barreto [14,
Section 4.1.3], which factorizes the Inverse Mixcolumn
matrix as :
14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14

 =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 ·


5 0 4 0

0 5 0 4

4 0 5 0

0 4 0 5


To implement the above circuit, we simply premultiply

the input column by the Circulant(5,0,4,0) matrix as

follows:

y3 = xxtime(x3⊕x1)⊕x3, y2 = xxtime(x2⊕x0)⊕x2

y1 = xxtime(x3⊕x1)⊕x1, y0 = xxtime(x2⊕x0)⊕x0

where X = (x3, x2, x1, x0) and Y = (y3, y2, y1, y0) are

the input and output columns of the multiplication

block. The multiplication block takes exactly 58 xor

gates. Thereafter we choose either X for Mixcolumns or

Y for Inverse Mixcolumns, and input the resultant to

the AES Mixcolumn circuit, as shown in Figure 5. Since

the Mixcolumn circuit can be efficiently implemented in

108 gates, the combined circuit takes 108+58=166 xor

gates and a 32 bit multiplexer which is more efficient

than the construction in [26].

Multiply By


5 0 4 0
0 5 0 4
4 0 5 0
0 4 0 5




AES

Mixcolumn

ENC/DEC

MCIN
MCOUT

Fig. 5: Combined Forward and Inverse Mixcolumn cir-

cuit

3.7 Round Constants and Control System

We use LUT based round constants. If r is the cur-

rent round number, then the encryption operation uses

LUT(r), while the decryption operation uses LUT(11−
r). The two signals can be input to an 8-bit multiplexer

so that one can be chosen over the other as required.

To further optimize, one can instead place a multiplexer

before the LUT and choose between the 4-bit constants

r and 11 − r, and use the resultant signal as input to

the LUT. Since this requires only a 4-bit multiplexer,

it saves us additional area equivalent to a 4-bit mul-

tiplexer. Furthermore, all control signals are generated

using a 21 cycle LFSR as described in [25].

4 Atomic-AES v2.0: Architecture and Dataflow

We will now present a full description of the proposed

architecture for Atomic-AES v2.0 which provides dual

functionalities for encryption and decryption. A dia-

gram for the proposed architecture is presented in Fig-

ure 6. The Atomic-AES v2.0 architecture has strong

structural similarities with the Atomic-AES described

in the previous section, and thus it would be more ex-

pedient to highlight the salient dissimilarities between

the two architectures before providing a complete de-

scription of the functionalities in the data and key path.

4.1 Main changes

There are two structural optimizations in the Atomic-
AES v2.0 architecture, due to which it was possible to

reduce the area. They are listed as follows:

1. Replacing scan flip-flops with ordinary flip-

flops: One of the reasons why scan flip-flops are

used for implementing both the state and key reg-

isters was that these storage units needed to sup-

port multiple modes of operation, in which each

byte sized register needs to accept data from mul-

tiple sources. The state registers need to support

serially loading and unloading data as well as the

Shiftrow and Inverse Shiftrow operations. The key

registers support 2 types of data movement: hori-

zontal and vertical. the horizontal is meant for serial

loading/unloading data, while the vertical is used to

efficiently compute the nonlinear function F used in

the Keyschedule.

To begin, let us start with the Keyschedule. The ver-

tical movement of data used to compute the F func-

tion is required only in the outermost columns of

the key registers, i.e. columns 0 and 3. It is actually

Compact Circuits for Combined AES Encryption/Decryption 11

bb

MIXCOLUMN

SB
O

X
/

R
ou

nd
K

ey

R
ou

nd
K

ey

SB
O

X
−1

b

K
E

Y

T
E

X
T

E
N

C
O
U
T

D
E

C
O
U
T

St
at

e O
U
T

SB
I
N

SB
O
U
T

SB
I
N

b

b

b
b

b

32

SB
O
U
T

M
C

I
N

32

8

St
at

e O
U
T

SE
L A

K
1

SE
L A

K
2

SE
LX

O
R

bbb

SE
L E

D

SE
L R

C

R
C

/R
C

−
1

b
b

b

00
01

02
03

10
11

12
13

20
21

22
23

30
31

32
33

00
01

02
03

10
11

12
13

20
21

22
23

30
31

32
33

bbb

Fig. 6: The AES 8 bit Encryption/Decryption architecture for Atomic-AES v2.0 (boxes in grey denote byte registers

made of scan flip-flops)

12 Subhadeep Banik et al.

not required in the two middle columns 1 and 2. It

is therefore possible to implement the middle-most

columns with ordinary rather than scan flip-flops.

Of course this requires that the data movement in

the middle columns be frozen when the function F

is being calculated. This can be easily achieved us-

ing clock gating techniques.

In the state registers, we argue that scan flip-flops

are required to implement only the byte registers

“13”, “23” and “33”. These are the byte registers in

the final column of rows 1, 2, 3 respectively. Scan

flip-flops are not required for “03” because the ze-

roth row does not require data movement during

the Shiftrow or Inverse Shiftrow operations. For ei-

ther the Shiftrow or Inverse Shiftrow operations,

there is a maximum movement of three columns

to the left for any row. Indeed, except the zeroth

row which does not require data movement, any

row which has a movement of x columns towards

the left for Shiftrow would undergo a movement of

4−x columns towards the left for Inverse Shiftrows.

Thus if the designer is prepared to allow 3 clock

cycles for the Shiftrow/Inverse Shiftrow operation

then both operations can be achieved by single di-

rectional data movement towards the left. This is

precisely why, the remaining byte registers can be

implemented with ordinary flip-flops. However, the

designer has to take help of clock gating to freeze

data movement in certain rows during the row-wise

shifting operation. This has been tabulated in Ta-

ble 2. As we will see shortly, during the Encryption

flow, the Shiftrow is executed in cycles labelled 0,

1, 2 and during Decryption the Inverse Shiftrow op-

eration is executed in cycles 12, 13, 14. Figure 6,

gives a complete picture of the architecture. Reg-

isters implemented using scan flip-flops are labeled

in grey. Except for 3 registers in the state and 8

in the key, all can be implemented using ordinary

flip-flops. Since ordinary flip-flops occupy approxi-

mately 1 GE less than scan flip-flops, this saves us

around 25 × 8 = 200 GE. In addition, we do not

need to use 2 extra 8-bit multiplexers used in the

state registers in Atomic-AES. So the total savings

is around 230 GE minus some additional logic used

to implement the clock gating signals.

2. Replacing Combined Mixcolumn circuit with

Forward Mixcolumn: In the previous section we

were using a combined Mixcolumn/Inverse Mixcol-

umn circuit which took 166 xor gates and a 32 bit

multiplexer. Since the circuit operated on a column

every clock cycle, a total of 4 cycles were required

to compute the Mixcolumn over the entire state. In

this work, we take advantage of the fact that the

Inverse Mixcolumn matrix used in AES is the cube

of the Forward Mixcolumn matrix, i.e.




14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14


 =




2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2




3

This directly implies that if the designer runs the

Forward Mixcolumn operation 3 times over the state

i.e. for 3 × 4 = 12 cycles, he would functionally

achieve the Inverse Mixcolumn operation. This in

turn means that a Forward Mixcolumn circuit which

occupies 108 xor gates is sufficient for both pur-

poses. This saves us area equal to 58 xor gates and

one 32 bit multiplexer, which amounts to around

130 GE. Note that in most standard cell libraries,

this would ordinarily lead to a saving of over 200

GE, instead of just 130 GE. However, we need to re-

alize that the Combined Mixcolumn circuit as shown

in Figure 5 is only a simplistic representation of the

logic blocks involved in the circuit. In practice, when

the synthesizer optimizes the Combined Mixcolumn

circuit for area, it is constructed using a network of

and/xor gates which ends up taking area which is

usually less than the sum of the areas of the For-

ward Mixcolumn circuit, 58 xor gates and a 32 bit

multiplexer. Hence the area savings of the Forward

Mixcolumn circuit over the combined circuit is only

around 130 GE.

4.2 Encryption Flow

The encryption flow is almost the same as the one used

in Atomic-AES and which has been described in brief in

the previous section and it maintains exactly the same

order of operations. There are subtle differences how-

ever. Since Shiftrow is executed over 3 cycles rather

than 1, one encryption round is carried out over 23 cy-

cles rather than 21. The circuit uses a maximum length

5 bit LFSR to generate control signals, which has a

period of 31 cycles which we label as 0 to 30. In the

beginning the control system is initialized to cycle 15.

Cycles 15 to 30: As before, the initial S(PT ⊕K) op-

eration is performed and the result is stored serially

in the state registers and the key bytes are stored

serially in the key registers.

Thereafter the counter is reset to 0, and the 10 en-

cryption rounds are executed one after the other. Each

Compact Circuits for Combined AES Encryption/Decryption 13

Shiftrow Cycles Inverse Shiftrow Cycles
Row 0 1 2 12 13 14

1 0 F F F F F F
2 1 F F O O O O
3 2 F O O F O O
4 3 O O O F F O

Table 2: Data flow in the rows of state registers during Shiftrow/Inverse Shiftrow. (F: Frozen, O: Operational)

ENCRYPTION

0-2 3-6 15-30

15-30

DECRYPTION

0-11 12-14

7-14

0-2 3-6 15-307-14

Round

Round

Key

Key

Key

State

State

State

Add Whitening Key + S-box of 1st round

Store Key serially

Add roundkey + S-box of next round

Compute roundkey + Store it serially

0

1-10

0

1-10

0

1-10

Shiftrow

Frozen

Mixcolumn

Compute F

Control System
jumps from 6
to 15 during

ENCRYPTION

Store Key serially (with SELED=1 at 18,22,26,30)

Store Key serially (with SELED=1 at 18,22,26,30)

Add Whitening Key

Inverse S-box + Add roundkey

Frozen Compute F Frozen

Mixcolumn−1 Shiftrow−1

Fig. 7: Operation sequences in the Encryption/Decryption stages

round consists of the following ordered sequence of op-

erations:

Cycles 0 to 2: The state registers execute Shiftrow, and

the Key registers are frozen.

Cycles 3 to 6: The state registers execute Mixcolumn,

and the outermost columns of the Key register com-

pute the function F as explained in the previous

section. During encryption, the control system tran-

sitions from cycle 6 to cycle 15, so that cycles 7 to

14 do not occur.

Cycles 15 to 30: Exactly as in the previous section, the

bytes are driven serially out of “00” from both the

state and key side, the Add roundkey and Substitu-

tion layer of the next round are performed and the

resultant signal, and the key bytes are driven seri-

ally back into the state/key registers respectively.

The encryption function thus takes 23× 10 + 16 = 246

cycles to complete.

4.3 Decryption Flow

The decryption flow is also almost the same as the one

used in Atomic-AES and exactly the same order of op-

erations is maintained. The main differences are that

Inverse Mixcolumn is executed over 12 cycles and In-

verse Shiftrow over 3 cycles. Thus one decryption round

takes 31 cycles to complete. As before, in the beginning

the control system is initialized to cycle 15.

Cycles 15 to 30: As before the initial whitening key ad-

dition i.e. CT ⊕K operation is performed and the

result is stored serially in the state registers and the

key bytes are stored serially in the key registers. As

explained in the previous section, the SELED signal

is set to 1 in cycles 18, 22, 26, 30 to enable efficient

backward generation of the roundkeys.

Thereafter the counter is reset to 0, and the 10 de-

cryption rounds are executed one after the other. Each

round consists of the following ordered sequence of op-

erations:

14 Subhadeep Banik et al.

Atomic-AES (2605 GE) Atomic-AES v2.0 (2227 GE)

Key Register - 734 GE

State Register - 732 GE

Mixcolumn - 323 GE

S-box - 253 GE

Mux/Xor/And - 455 GE

Control System - 108 GE

Key Register - 641 GE

State Register - 579 GE

Mixcolumn - 192 GE

S-box - 253 GE

Mux/Xor/And - 415 GE

Control System - 147 GE

28.2%

28.1% 12.4%

9.7%

17.5%

4.1%

28.8%

26%
8.6%

11.4%

18.6%

6.6%

Fig. 8: Area requirements of the individual components (using the STM 90nm logic process)

Cycles 0 to 14: Now, the state registers execute Inverse

Mixcolumn during 0 to 11, and then Inverse Shiftrow

during 12 to 14. The key registers are frozen during

0 to 2 and again from 7 to 14. In the 4 cycles in

between, (i.e. during 3 to 6) the non-linear function

F is computed exactly as explained in the previous

section.

Cycles 15 to 30: The bytes are driven serially out of

“00” from both the state and key side, the Inverse

S-box is applied on the state bytes after which the

add roundkey is performed and the resultant signal,

and the key bytes are driven serially back into the

state/key registers respectively. The SELED signal

is again set to 1 in cycles 18, 22, 26, 30 to enable

efficient backward generation of the next roundkey.

The decryption function thus takes 31× 10 + 16 = 326

cycles to complete. The flow has also been explained

diagrammatically in Fig 7.

4.4 Control System

All control signals are generated using a maximal length

31 cycle LFSR. Some additional logic is used to sense

the clock cycle 6 in the encryption cycle and transition

to cycle 15.

5 Performance Evaluation

In order to perform a fair performance evaluation, we

implemented the circuit using VHDL. Thereafter the

following design flow was adhered to for all the circuits:

a functional verification at the RTL level was first done

using Mentor Graphics Modelsim software. The designs

were synthesized using the standard cell library of the

following logic processes

1. STM 90 nm logic process(CORE90GPHVT v 2.1.a),

2. STM 65 nm logic process(CORE65LPLVT v 5.1),

3. UMC 90 nm low leakage logic process,

4. TSMC 90 nm logic process,

with the Synopsys Design Compiler, with the compiler

being specifically instructed to optimize the circuit for

area. A timing simulation was done on the synthesized

netlist to confirm the correctness of the design, by com-

paring the output of the timing simulation with known

test vectors. The switching activity of each gate of the

circuit was collected while running post-synthesis simu-

lation. The average power was obtained using Synopsys

Power Compiler, using the back annotated switching

activity. The results are tabulated in Table 3.

We outline some of the essential lightweight metrics

of known implementations of encryption/decryption ar-

chitectures of AES and compare it with the two archi-

tectures proposed here. Energy consumption was listed

rather than power as it is a measure of the total electri-

cal work done during one encryption/decryption. Since

the circuits in Table 3 are implemented using differ-

ent CMOS logic processes, there are most likely to be

wide variations in energy consumption and maximum

throughput. For example the throughput of [23] is quite

high as it is implemented using the standard cell li-

brary of the 22nm CMOS logic process which is faster

Compact Circuits for Combined AES Encryption/Decryption 15

Architecture Type Library Area Latency Energy TPmax

(GE) (cycles) (nJ) (Mbps)
1 8-bit Serial [25] E UMC 180nm 2400 226 8.4 -
2 Grain of Sand [17] ED Philips 350nm 3400 1032/1165 46.4/52.4 9.9/8.8
3 8-bit Serial [23] ED 22nm 4037 336/216 3.9/2.5 432/671
4 32-bit Serial [26] ED 110nm 5400 54/54 - 311
5 Atomic-AES ED STM 90nm 2605 226/226 3.3 93.8

STM 65nm 2931 2.2 58.4
UMC 90nm 3413 3.2 82.2
TSMC 90nm 3007 2.5 67.0

6 Atomic-AES v2.0 ED STM 90nm 2227 246/326 3.2/4.3 88.4/66.7
STM 65nm 2678 1.9/2.5 54.4/41.1
UMC 90nm 2700 2.6/3.4 79.3/59.9
TSMC 90nm 2569 2.2/2.9 65.0/49.1

Table 3: Performance Comparison of Atomic-AES with previous architectures in literature (Figures separated by

‘/’ indicate corresponding figures for encryption/decryption, E: Encryption only, ED: ENC/DEC)

than the other logic processes listed in the table. The

throughput of [26] is also high as it is a 32-bit serial

circuit and thus has considerably lower latency.

In Figure 8, we present a componentwise breakdown

of the circuit sizes of the two architectures. We use clock

gating to generate the clock for the State/Key regis-

ters, since the data movement has to be frozen for a

few clock cycles. For the Atomic-AES architecture, apart

from the multiplexers included in the implementation

of the combined Forward and Inverse S-box, Mixcol-

umn and Round Constants, a quick glance at Figure 2,

tells us that we need

1. Six 8-bit multiplexers around the state register, one

32-bit multiplexer to bypass the Mixcolumn circuit,

one 8-bit multiplexer after the S-box, and two 8-bit

multiplexers to filter the raw key/plaintext (cipher-

text) and the roundkey/state byte respectively.

2. Apart from this six 8-bit xors around the key regis-

ters and two 8-bit xors during state-key addition.

3. One input of 7 out of the 8 xor gates is controlled

by an and gate.

This adds up to around 455 GE for the multiplexers,

xor, and gates in the circuit. The LSFR based control

system and the round constants take around 108 GE.

This leads to 2605 GE for the entire circuit.

For the Atomic-AES v2.0 architecture, the modifi-

cations introduced imply that we need the following

overhead (see Figure 6)

1. Two multiplexers less around the State registers,

because we use two extra cycles to perform For-

ward/Inverse Shiftrow.

2. Considerable savings in the implementation of the

state and key registers (due to 21 byte size scan

registers being replaced by ordinary flip-flops).

3. Savings due to Combined Mixcolumn circuit being

replaced by a Forward Mixcolumn circuit.

4. Slightly more logic to design the LFSR based control

system, Round Constants and timing signals.

This implies that we need 415 GE for the multiplexers,

xor, and gates in the circuit. The LSFR based control

system, the round constants and the logic for clock-

gating take around 147 GE. Adding up the componen-

twise area figures as shown in Figure 8, this leads to

2227 GE for the entire circuit.

6 Conclusion

In this work, we present two compact architectures for

AES: Atomic-AES and Atomic-AES v2.0 that perform

the dual function of encryption and decryption. The cir-

cuits can be synthesized using 2605 and 2227 GE area

respectively, using the standard cell library of the STM

90nm CMOS logic process. While Atomic-AES uses 226

cycles for both encryption and decryption, Atomic-AES
v2.0 has an encryption/decryption latency of 246/326

cycles respectively. This is a substantial improvement

over the Grain of sand implementation that has an area

of 3400 GE but a latency of over 1000 cycles for both

encryption and decryption.

References

1. F. Abed, S. Fluhrer, J. Foley, C. Forler, E. List, S.
Lucks, D. Mcgrew, J. Wenzel. The POET Family of
On-Line Authenticated Encryption Schemes. Submis-
sion to the CAESAR competition. Available at https:

//competitions.cr.yp.to/round1/poetv101.pdf.
2. E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink,

E. Tischhauser, K. Yasuda. AES-COPA v.1. Submis-
sion to the Caesar Compedition. Available at http://

competitions.cr.yp.to/round1/aescopav1.pdf.

https://competitions.cr.yp.to/round1/poetv101.pdf
https://competitions.cr.yp.to/round1/poetv101.pdf
http://competitions.cr.yp.to/round1/aescopav1.pdf
http://competitions.cr.yp.to/round1/aescopav1.pdf

16 Subhadeep Banik et al.

3. S. Banik, A. Bogdanov, F. Regazzoni. Exploring Energy
Efficiency of Lightweight Block Ciphers. In SAC 2015,
LNCS, vol. 9566, pp. 178-194, 2015.

4. S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hi-
watari, T. Akishita, F. Regazzoni. Midori: A Block Ci-
pher for Low Energy. In ASIACRYPT 2015, LNCS, vol.
9453, pp. 411-436, 2015.

5. S. Banik, A. Bogdanov, F. Regazzoni, T. Isobe, H. Hi-
watari, T. Akishita. Round gating for low energy block
ciphers. In IEEE Hardware Oriented Security and Trust
(HOST), pp. 55-60, 2016.

6. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark,
B. Weeks, L. Wingers. The Simon and Speck Families
of Lightweight Block Ciphers. In IACR eprint archive.
Available at https://eprint.iacr.org/2013/404.pdf.

7. A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A.
Poschmann, M. Robshaw, Y. Seurin, C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In
CHES 2007, LNCS, vol. 4727, pp. 450-466, 2007.

8. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M.
Knežević, L. R. Knudsen, G. Leander, V. Nikov, C. Paar,
C. Rechberger, P. Rombouts, S. S. Thomsen, T. Yalçin.
PRINCE - A Low-Latency Block Cipher for Pervasive
Computing Applications - Extended Abstract. In Asi-
acrypt 2012, LNCS, vol. 7658, pages 208-225, 2012.

9. J. Boyar, P. Matthews, R. Peralta. Logic Minimization
Techniques with Applications to Cryptology. In J. Cryp-
tology, vol. 26, pp. 28–312, 2013.

10. P. Chodowiec, K. Gaj. Very Compact FPGA Implemen-
tation of the AES Algorithm. In CHES 2003, LNCS, vol.
2779, pp. 319-333, 2003.

11. C. De Cannière, O. Dunkelman, M. Knežević. KATAN
and KTANTAN - a family of small and efficient
hardware-oriented block ciphers. In CHES 2009, LNCS,
vol. 5747, pp. 272-288, 2009.

12. D. Canright. A very compact S-Box for AES. In CHES
2005, LNCS, vol. 3659, pp. 441-455, 2005.

13. J. Daemen, M. Peeters, G. V. Assche, V. Rijmen.
Nessie Proposal: NOEKEON. Available at http://gro.

noekeon.org/Noekeon-spec.pdf.
14. J. Daemen, V. Rijmen. The design of Rijndael: AES - the

Advanced Encryption Standard. Springer-Verlag, 2002.
15. N. Datta and M. Nandi. ELmD v1.0. Submission

to the Caesar compedition. Available at https://

competitions.cr.yp.to/round1/elmdv10.pdf.
16. M. Dworkin. Recommendation for Block Cipher Modes

of Operation. NIST Special Publication 800-38A. Avail-
able at http://csrc.nist.gov/publications/nistpubs/
800-38a/sp800-38a.pdf.

17. M. Feldhofer, J. Wolkerstorfer, V. Rijmen. AES Imple-
mentation on a Grain of Sand. In IEEE Proceedings of
Information Security, vol. 152(1), pages 13-20, 2005.

18. Z. Gong, S. Nikova, Y.W. Law. KLEIN: a new family of
lightweight block ciphers. In RFIDSec 2011, LNCS, vol.
7055, pp. 1-18, 2011.

19. J. Guo, T. Peyrin, A. Poschmann, M. J. B. Robshaw. The
LED Block Cipher. In CHES 2011, LNCS, vol. 6917, pp.
326-341, 2011.

20. P. Hämäläinen, T. Alho, M. Hännikäinen, and T. D.
Hämäläinen. Design and Implementation of Low-Area
and Low-Power AES Encryption Hardware Core. In
DSD, pages 577-583, 2006.

21. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Ko, C. Lee,
D. Chang, J. Lee, K. Jeong, H. Kim, J. Kim, S. Chee.
HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In CHES 2006, LNCS, vol. 4249, pp. 46-59, 2006.

22. A. Lutz, J. Treichler, F. Gürkaynak, H. Kaeslin, G.
Basler, A. Erni, S. Reichmuth, P. Rommens, S. Oetiker,
W. Fichtner. 2Gbit/s hardware realizations of RIJN-
DAEL and SERPENT: A comparative analysis. In CHES
2002, LNCS, vol. 2523, pp. 144158, 2002.

23. S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul,
A. Agarwal, S. Hsu, G. Chen, R.K. Krishnamurthy.
340 mV–1.1V, 289 Gbps/W, 2090-gate nanoAES hard-
ware accelerator with area-optimized encrypt/decrypt
GF(24)2 polynomials in 22 nm tri-gate CMOS. In IEEE
Journal of Solid-State Circuits, vol. 50, pp. 1048–1058,
2015.

24. N. Mentens, L. Batina, B. Preneel and I. Verbauwhede. A
Systematic Evaluation of Compact Hardware Implemen-
tations for the Rijndael S-Box. In CT-RSA 2005, LNCS,
vol. 3376, pp. 323–333, 2005.

25. A. Moradi, A. Poschmann, S. Ling, C. Paar, H. Wang.
Pushing the Limits: A Very Compact and a Threshold
Implementation of AES. In Eurocrypt 2011, LNCS, vol.
6632, pp. 69-88, 2011.

26. A. Satoh, S. Morioka, K. Takano, S. Munetoh. A Com-
pact Rijndael Hardware Architecture with S-Box Opti-
mization. In Asiacrypt 2001, LNCS, vol. 2248, pp. 239-
254, 2001.

27. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Ak-
ishita, T. Shirai. Piccolo: An Ultra-Lightweight Blockci-
pher. In CHES 2011, LNCS, vol. 6917, pp. 342-357, 2011.

28. T. Suzaki, K. Minematsu, S. Morioka, E. Kobayashi.
TWINE: A Lightweight Block Cipher for Multiple Plat-
forms. In SAC 2012, LNCS, vol. 7707, pp. 339-354, 2012.

29. R. Ueno, S. Morioka, N. Homma, T. Aoki. A High
Throughput/Gate AES Hardware Architecture by Com-
pressing Encryption and Decryption Datapaths - Toward
Efficient CBC-Mode Implementation. In CHES 2016,
LNCS, vol. 9813, pp. 538-558, 2016.

30. R. Ueno, N. Homma, Y. Sugawara, Y. Nogami, and T.
Aoki. Highly Efficient GF(28) Inversion Circuit Based on
Redundant GF Arithmetic and Its Application to AES
Design. In CHES 2015, LNCS, vol. 9293, pp. 63–80, 2015.

https://eprint.iacr.org/2013/404.pdf
http://gro.noekeon.org/Noekeon-spec.pdf
http://gro.noekeon.org/Noekeon-spec.pdf
https://competitions.cr.yp.to/round1/elmdv10.pdf
https://competitions.cr.yp.to/round1/elmdv10.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

	Introduction
	Background and Preliminaries
	Atomic-AES: Architecture and Dataflow
	Atomic-AES v2.0: Architecture and Dataflow
	Performance Evaluation
	Conclusion

