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Let X be a compact complex manifold of dimension n ^ 2. An open
subset N of X is called a spherical shell, if N is biholomorphic to

Se = { z e C * : l - ε < | | z | | < 1 + ε}

for some ε, 0 < ε < 1, where \\z\\ denotes the standard complex Euclidean
norm of a vector z = (sy) in the ^-dimensional complex vector space Cn,
i.e., II^H2 = Σ?=i |ZjΊ2 Nis called a global spherical shell (abbrev., GSS),
if X — N is connected. In [4], we have proved that a compact complex
manifold containing a GSS is biholomorphic to a deformation of a
modification of a primary Hopf manifold at finitely many points. In
this paper we restrict ourselves to the case of surfaces, i.e., n = 2, and
consider compact complex surfaces containing (real analytic) global strongly
pseudoconvex hypersurfaces (GSPH) which bound Stein domains possibly
with finitely many isolated singular points. Then we can determine all
such surfaces (Theorem).

Here we shall use the definitions and some results in Rossi [5, 6].
Let Σ be B, compact real analytic CR-hy per surf ace with dim* Σ = 3. It
is known that Σ admits a realization as a real hypersurface in a com-
plex manifold of (complex) dimension 2. Namely, there exist a complex
manifold M of dimension 2 and a CR-injection j : Σ —» M such that the
CR-structure on Σ coincides with the CR-structure induced from M.
Moreover, if j \ : Σ —> Mi (i = 1, 2) are two realizations of Σ, then j2 o j - 1

extends to a biholomorphic mapping between small neighborhoods of jt(Σ)
([6]). This implies that the realization of Σ is unique as a germ.

We say that Σ bounds a Stein domain, if there exist a (reduced
irreducible) complex space M, a subdomain M of M which is free from
singular points, and a realization j : Σ —> M of Σ, such that j(Σ) bounds
a relatively compact Stein open subset D of M. Note that D may have
finitely many isolated singular points. We remark that there exist
strongly pseudoconvex hypersurfaces Σ with dim* Σ = 3 such that Σ do
not bound any Stein domains ([5]).

Let S be a compact complex manifold of dimension 2, which will be
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called a surface. Let Σ be a real analytic submanifold of (real) dimen-
sion 3 in S. Then Σ admits the real analytic CR-structure induced from
S. Suppose that Σ is strongly pseudoconvex.

DEFINITION 1. Σ is called a global strongly pseudoconvex hyper sur-
face (GSPH) in S, if S - Σ is connected.

LEMMA 1 ([5]). Let Σ be a strongly pseudoconvex hypersurface
realized in a complex manifold M. Then there are a neighborhood N
of Σ and a strongly plurisubharmonic function φ defined on N such
that Σ = {xeN:φ(x) = 0}.

Now we shall prove the following

THEOREM. Let S be a compact complex manifold of dimension 2.
Then S contains a real analytic GSPH which bounds a Stein domain
possibly with finitely many isolated singular points, if and only if S
is one of the following:

( i ) S contains a GSS,
(ii) S is biholomorphic to a modification of a surface of Class VI0,

an elliptic surface of Class VΠ0, or a non-primary Hopf surface.

REMARK 1. Primary Hopf surfaces belong to (i). Generally, S
satisfying the assumption of the theorem belongs to (i), if and only if
the fundamental group of S is infinite cyclic.

REMARK 2. The "if part" of the theorem is clear, since surfaces
without exceptional curves of the first kind which belong to (ii) of the
theorem are biholomorphic to submanifolds of Hopf manifolds, and since
any submanifold of Hopf manifolds contains real analytic GSPH's [2, 3].
Therefore the rest of the paper is devoted to the proof of the "only if
part" of the theorem.

We shall repeat the argument of §1 [4]. Consider the following
homology exact sequence with Z-coefficients:

(1) >H1(S~Σ)-* HAS) -> H^S, S-Σ)

-> H0(S - J?) — H0(S) -> H0(S, S - Σ) -* 0 .

By the duality theorem, we have

HJβ, S - Σ) = H\Σ) = Z, and H0(S, S - Σ) = H\Σ) = 0 .

Since both S and S — Σ are connected by assumption, we have

Therefore (1) is reduced to
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( 2 ) > H^S - Σ) -> H^S) -^ Z-> 0 .

Let h : π^S) —> H^S) be the Hurewicz homomorphism. Put

j = poh: π^S) -> Z .

Take the infinite cyclic covering

ώ : S -> S

of S such that π^S) is equal to the kernel of j . Denote by g the holo-
morphic automorphism of S such that the orbit space S/(g} is equal to
S. Let

be the inclusion and

i* : TΓ^S - 2") -> π^S)

the induced homomorphism. From (2),

ί^π^S — Σ) c ker i

follows. Hence there is a lifting

Ϊ:S- Σ->S

of i and we obtain the commutative diagram

S

s- yZJ

i

Let ί7 = ϊ(S — Σ). Let iV' be a sufficiently small tubular neighborhood
of Σ in S. By Lemma 1, we can assume that there is a strongly pluri-
subharmonic function φ on N' such that

Σ = {xeN': φ(x) = 0} .

Take a small ε > 0 such that

N(e) = {xeN':\φ(x)\ < ε}

is relatively compact in N'. Put

N+(ε) = {xeN' O^ φ{x) < ε} , and

N~(ε) = {x e N': - e < φ(α) ̂  0} .

There are exactly two connected components N^ε), N2(ε) of ώ~\N(ε)) such
that N&) Γ\ F Φ 0 (i = 1, 2). Suppose that ώ(N2(ε) n f ) = iV+(ε). Then.
ώ(iV2(e) Π F) Π N~(e) - ώ(iSΓx(ε) n f ) Π N+(ε) = 0 and ώ(2Vi(e) Π F) = ^"(ε).
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Taking g'1 instead of g if necessary, we can assume that g(N&)) = N2(έ).
We put

E(e) = me) U f U N2(ε) .

Let Σt be a connected component of ώ~\Σ) contained in Nt(ε). By as-
sumption Σ2 bounds a Stein domain. Hence, by the uniqueness of the
realization of Σ, there is a Stein space B and a compact subset K' such
that B—K' is biholomorphic to N2(δ0) for a sufficiently small δOf O<δo<ε.
Let 77: B—Kf -> -W2(δo) be the holomorphic mapping. Identifying x e B—K'
with 37(05) 6 N2(<50), we obtain a complex space

Z{ε) = B[j (N2(δ0) U F

For any ε19 0 < ε1 <* ε, Z(εJ can be regarded naturally as a subdomain
of Z(β). Since E(e) is non-singular, all singular points of Z(ε) are
contained in Kf and they are isolated. Moreover we can assume that
Z(ε) is normal. Let 0 < δ < δ0. Since Z(ε) is strongly pseudoconvex and
B is a normal Stein space, the holomorphic mapping

induced by g extends to a holomorphic mapping

by a theorem of Hartogs. It is easily checked that g(Z(δ)) = D(δ),
where we put D(δ) = K\J N2(δ), and K - β - F.

LEMMA 2. There exists a point 0* 6 if

n
The proof is the same as that of Lemma 1 [4].

Let A be the union of all 1-dimensional compact subvarieties in Z(β).
Then A is called the maximal compact analytic subset in Z(δ). We see
easily that, for 0 < δ1 < δ, the maximal compact analytic subset in Z{δ^
coincides with A provided that δ — δλ is sufficiently small.

In the following, we shall consider two cases (a) 0* g A, and (/3) 0* 6 A,
separately.

(α) Case O*£A (including the case A = 0) .

PROPOSITION 1. // 0* <g A, ί/tew S is a modification of a surface of
Class VI0, an elliptic surface of Class VΠ0, or a Hopf surface.

PROOF. By using the same method as in [4, §2] and [3, p. 560], we
can construct a proper holomorphic mapping of degree 1 onto a sub-



COMPACT COMPLEX SURFACES 541

variety of a higher dimensional Hopf manifold. It is easy to see that
the singularities of the image variety must be isolated. Hence we infer
that the image is non-singular, since no positive dimensional sub varieties
of a Hopf manifold admit isolated singularities (cf. [2]). It is shown in
[2] that a 2-dimensional submanifold is one of the above. q.e.d.

REMARK 3. If O * ί 4 and if 0* is a non-singular point, then S is a
modification of a primary Hopf surface. If 0* g A and if 0* is a singular
point, then S is a modification of a surface of Class VI0, an elliptic
surface of Class VII0, or a non-primary Hopf surface.

GS) Case 0* e A.
Let

λ : Z*(δ) -> Z(δ)

be the simultaneous minimal resolutions of all singular points of Z(δ).
Then g : Z(δ) —> Z(δ) induces a holomorphic mapping

g*:Z*(δ)-*Z*(δ)

such that

o ) Ai o Q — (7 o A» .

Let Ao be the connected component of A containing O*. We put A* =
X-\AO) and £* = λ^O*).

LEMMA 3. There exists a positive integer v0 such that g*\A*) is a
point for all v ^ v0.

PROOF. Since g(A0) = 0*, it is clear that

(4) g*\A*)dB*

for all v ^ l . Put Bf = ΓUi0*TB*). Then obviously we have g*(Bf) =
J5X*. Suppose that JB* contains irreducible curves Cl9 « ,C r . Since
£*(£*) = JBf, we can classify C/s into the orbits of 0*. Let
(Ci0, , C5r._^ (j = 1, 2, , s) be the orbits, where we can assume that

(5) 1 *V ~ 'P ~ ''"'r'
Since A* is connected, there exists an orbit, say (C10, •• ,C l ro_1), such
that Cί3 intersects a curve C which contracts to a point by 0*. We can
assume that C^ = C10. Then we have

(6) C 1 0

2 < C n

2 .

On the other hand, by (5), we have
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10 ^ ^11 ^ ^12 ^ ' * ^ ° l r o - l = °10 >

which contradicts (6). Hence we infer that Bt consists of points. Since
g*(B*) c £* and B* is connected, we conclude that there is a positive
integer v0 such that g*\B*) consists of a point for all v^v0 Since g*\A*) =
g*\B*) for all v ^ v0, we obtain the lemma. q.e.d.

Denote by 0** the point of Lemma 3:

g*\A*) = {0**} ( l ^ » 0 ) .

Obviously 0** is a point on 2?*.

LEMMA 4. ΓUi<7*v(^*(δ)) - {0**}.

PROOF. Put

AT* = Π ff*

By Lemma 2 and (3), we have M*CL\-\0*) = B*aA*. Then, from
M* = g*(M*) and Lemma 3, it follows that

{0**} c l * = n g*\M*) c Γl 9*\A*) = {0**} .

q.e.d.

For a pair of topological spaces (X, Y), we shall mean by I c Γ
that X is a relatively compact subset of Y.

LEMMA 5. There exists a strongly plurίsubharmonic function ψ on
an open neighborhood W of 0** and a positive constant c0 satisfying
the following conditions: Put Dc = {ze W:φ(z) < c}. Then, for any c,
0 < c ^ cQ,

( i ) D.cW,
(ii) D.cg*-ΪDβ),
(iii) g* : g*"\Dc - {0**}) ->ΌC- {0**} is biholomorphic, and
(iv) Dc is biholomorphic to an open ball in C2.

PROOF. Let (WQ, (wl9 w2)) be a system of local coordinates such that
wx(0**) = w2(0**) - 0. Take a small neighborhood W of 0** in Wo such
that g*\W)(Z Wo for all large integers v. This is possible by Lemma
4. In terms of the coordinates (wl9 w2), we express g* locally by the
Taylor series:

[ = aιιwι + anw2 + hn(w) + hlz(w) + •
(7)

(w£ + a22w2

where ai5 e C, and hjk(w) denotes the homogeneous A -th term of the i-th
component of g*. We put



COMPACT COMPLEX SURFACES 543

τ = /»11 «12

LEMMA 6. The absolute value of all eigenvalues of T are less than
1.

PROOF. Since {g*v} is uniformly bounded, there is a subsequence {g**ά}
which converges to 0 uniformly on a relatively compact neighborhood
W1 of O** in W. This implies that lim^+ 0 0 T"' = 0. Then the lemma
follows easily.

LEMMA 7. // the absolute values of all eigenvalues of T are less
than 1, then there are a positive definite 2 x 2 hermitian matrix H
and a positive constant ε such that

(1 - ε){w, Hw) ^ (Tw, HTw)

for every w e C2, where (w, z) = W& + w2z2f w = (wl9 w2), z = (zlf z2).

The proof is easy.
In (7), we put

Fj(w) = ±hjk(w) ( i = l , 2 )

and

F(w) = \F\w\ F\w)) .

SCHWARZ'S LEMMA. On a small neighborhood WΊ of 0**,

for some positive constants Kό (j = 1, 2).

For a proof, see [1].

LEMMA 8. Let H be as in Lemma 7. Then there exist positive
numbers c0 and ε such that the equality

(1 - ε)(w, Hw) ^ (g*(w), Hg*(w))

holds for any c with 0 ^ c ^ c0, and any w with (w, Hw) <Ξ c.

PROOF. By the equality g*(w) = Tw + F(w), we have

(ff*(w), Hg*(w)) = (Tw + F(w), H(Tw + F(w)))

^ (Γw, fίT^) + (F(w), HF(w)) + 2|(F(tι;), ίfT^)|

£ (1 - β)(w, flw) + (F(w), ί f ί 7 ^)) + 2|(F(w), HTw)\ .

By Schwarz's Lemma, there are a positive constant M and a small
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neighborhood W2 of 0** such that

\(F(w),HF(w))\^M\\w\\*,

and

2\(F(w), HT{w))\ ^ Λf|| w | | 3

for all w e W2. Put

Db = {weW: (w, Hw) < b} .

If we choose cx > 0 to be sufficiently small, then DCί c W2f and, for
weDCl, we have

This implies that, for any c, 0 ^ c ̂  clf and for any w e Dc, the equality

(g*(w), Hg*(w)) £ (1 - e/2)(w, Hw)

holds. Thus the proof of Lemma 8 is complete.

Now we go back to the proof of Lemma 5. Put φ{w) — (w, Hw).
Then (i) and (iv) are clear. Note that #* : Z*(δ) -> D*(δ) = \'\D{δ)) is
proper and bimeromorphic. Since dim Z*(δ) = 2, there is a finite number
of points al9 , a8 in D*(δ) such that

g* : Z*(δ) - g*~\{a» , α.}) -> D*(8) - {au - -f α.}

is biholomorphic. Hence we can choose cx so that (iii) holds for all c
with 0 < c <: cλ. Since (iii) holds, g*~ι\D0 is biholomorphic near the strong-
ly pseudoconvex boundary dDc. Therefore to prove (ii), it is sufficient
to show that g*(dDc)c:Dc. Take any point w e dDc. Since w Φ 0, we have

(g*(w), Hg*(w)) ^ {w, Hw) - ε(w, Hw) < (w, Hw) = c

by Lemma 8. Hence g*(w) e Dc. q.e.d.

We fix positive numbers a and β such that 0 < a < β < c0. We
consider the following subsets in Z*(δ):

Da = {weW: φ{w) < a} ,

Dβ = {w e W: ?>(w) < β} ,

Q - {we W:a <φ{w) < β} ,

G = g*~\Dβ) , and

P = g*~\Q).

Here β — a is assumed to be small enough so that Q Γ\ P = 0 . Note
that # * | P : P - » Q is biholomorphic by Lemma 5 (iii). Hence, taking



COMPACT COMPLEX SURFACES 545

infinitly many copies (G — Da)jf j e Z, of G — Da, we can form a complex
manifold
/ Q \ O* I I SfΊ TΛ \

3

by identifying each point x e P3 with g*(x)e Q3_lf where P3 and Q3 denote
the subsets of (G — Da)3 corresponding to P and Q, respectively. We
define a holomorphic automorphism g* of S* by

(G - Da)s -> (G - 5 β ) i + 1 .

Then the orbit space

s* = S*/<r>
is obviously a surface with a GSS by Lemma 5 (iv).

LEMMA 9. There exists a bimeromorphic holomorphic mapping of
S onto S*.

PROOF. We define a holomorphic mapping
( 9 ) σ : S -> S*

as follows. For any point p e S , there is an integer ι> such that g%p) e
E(δ). Since E(δ) has no singular points, λ : X~\E(δ)) -> E(δ) is biholo-
morphic. Hence X~logXp) is a point in Z*(δ). We find a non-negative
integer μ such that #*Λoλ"1 og\p) eG ~ Da. Let % : G - 5 α ->(G - 5 α ) 0 c
S* be the natural inclusion. Now we define

As we see by this definition of σ, σ is holomorphic provided that σ is
well-defined. Suppose that ψ\p)eE{δ) and g^Όχ^oψ\p)eG - Da. It
suffices to show

(10) §r*-"'-v' o i o g*μ' o λ"1 o ψ\p) = §r*"""v o ΪΌ g*μ o λ" 1 o gr-(p) .

First we suppose that v' = u and ^ ' > μ. Then (10) is reduced to

(11) ?oflf*β(ϊ) = r β o ? ( ί ) ,

where it - μr — μ and q = g*μoX^og^eG — Da. Since both <? and
Sf*̂ )̂ are in G — 5 α , we have yc = 1. Then (11) follows from the definition
of g*. Next we suppose that vf > v. Since both ψ'(p) and g\p) are in
£?(δ), we have vf — v + 1. Hence (10) is reduced to

(12) g*~μ'~ιoϊog*'"o\-iog(q) = g*~μ°ϊ°g*μ°X~\q) ,
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where q = g\p) and g{q) are in E(β). Since both g*μt o λ"1 o #(#) and fir**1*)
λ"x(g) are in G — Da and since g*μf °X~log(q) = ^*//'+1°λ~1(g), we have
μ = μ\ μ = μ' + 1, or μ = μ' + 2. lί μ = μ\ then (12) is reduced to

which follows from the definition of g*. If μ = μ' + 1, (12) holds
trivially. If μ = μ' + 2, then (12) is reduced to

g* o i(T) = ϊog*(r) , r = g*"'1 o X'\q) ,

which follows also from the definition of g*. Hence (10) is proved.
Consequently, σ is well-defined. It is not difficult to see that σ is
generally one-to-one and satisfies σog = g*off. Hence σ defines a
bimeromorphic holomorphic mapping

σ:S = S/(g) — S* = S*/<Γ> . q.e.d.

Since S* contains a GSS and S is a modification of S* by Lemma 9,
S itself has a GSS. Therefore we have the following.

PROPOSITION 2. // O * e 4 , then S contains a GSS.

PROOF OF THEOREM. The "if part" of the theorem is explained in
Remark 2. The "only if part" of the theorem is clear by Propositions
1 and 2. q.e.d.
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