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Abstract. Roughly speaking, a conformai space is a differentiable manifold M" in
which the notion of angle of tangent vectors at a point p e M" makes sense and
varies differentiably with p; two such spaces are (locally) equivalent if they are
related by an angle-preserving (local) diffeomorphism. A conformally flat space is a
conformai space locally equivalent to the euclidean space R". A submanifold of a
conformally flat space is said to be conformally flat if so its induced conformai
structure; in particular, if the codimension is one, it is called a conformally flat
hypersurface.

The aim of this paper is to give a description of compact conformally flat
hypersurfaces of a conformally flat space. For simplicity, assume the ambient space
to be R"+l. Then, if n > 4, a conformally flat hypersurface M" c R" + i can be
described as follows. Diffeomorphically, M" is a sphere S" with bl(M) handles
attached, where bx(M) is the first Betti number of M. Geometrically, it is made up
by (perhaps infinitely many) nonumbilic submanifolds of R" + l that are foliated by
complete round (n - l)-spheres and are joined through their boundaries to the
following three types of umbilic submanifolds of R" + 1: (a) an open piece of an
//-sphere or an «-plane bounded by round (n - l)-sphere, (b) a round (n - l)-sphere,
(c) a point.

1. Introduction.
1.1. The aim of this paper is to present a rather complete description of compact

conformally flat hypersurfaces of a simply-connected, (n + l)-dimensional space
form, for n > 4. Before stating our results, we will recall some known facts and
definitions, mainly in order to fix our notation.

Manifolds are C°° and boundaryless. A Riemannian manifold M" is (locally)
conformally flat if for each point p G M" there exists an open neighborhood V of p
in M and a conformai diffeomorphism of V onto an open set of R" (superscripts will
denote dimensions and will be dropped when clear from the context). An immersion
x: M" -* M" + k of a differentiable manifold into a Riemannian manifold M" + k is
a conformally flat immersion if M" is conformally flat with respect to the induced
metric; if k = 1, we will say that x is a conformally flat hypersurface.

1.2. The following notation will be used throughout the paper.
Let M" be a differentiable manifold and x: M" —> M" + k an immersion into a

Riemannian manifold M" + k. We will denote by v the Riemannian connection on
M and by V the induced connection on M. Let X and Y be local tangent vector
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fields along x; then

a(X,Y)= vxY- VXY

will denote the second fundamental form of x. By fixing a point p G M and a local
unit normal vector field N along x in a neighborhood of p, a determines a selfadjoint
linear map AN: TpM -» TpM of the tangent space TpM of M at p, namely,

(^(*),y> = <a(*,r),./v).

We will call ^4^ the Weingarten operator of x relative to N. When k = 1, we will call
iV a /oca/ orientation at p. Given a local orientation A/, we will denote by A,,... ,Xn
the eigenvalues of /l^. We will use M(c) to denote a Riemannian manifold with
constant curvature c; when such a manifold is, in addition, complete and simply-
connected, it will be denoted by M(c).

For n ^ 4 it is well known that x: M" -» M" + l(c) is conformally flat if and only
if, after a possible re-enumeration, A, = A2 = • • • = A„_, (see Cartan [1] or, for a
simple proof, see e.g. [7]); notice that this condition does not depend on the choice
of a local orientation. For convenience, we will set A, = A, A„ = p and will denote
by U = {p g M; A = p} the set of umbilic points of M. We will denote by (a, b)
an open interval of the real line.

1.3. In §2 we will prove our first main result which describes the geometric
structure of a compact conformally flat hypersurface x: M" -* M"+1(c), n > 4. To
simplify the statement, let us call a compact submanifold 2* c M" a k-sphere if the
restriction x|2*: 2A —> M" + l(c) is a totally umbilic immersion.

1.4 Theorem. Let x: M" -» M" + 1(c) be an immersed conformally flat hypersurface,
n > 4, M" compact and connected. Assume that U + 0. Then:

(i) Each connected component D of the set of nonumbilic points admits a codimen-
sion one foliation by (n — l)-spheres; in particular D is diffeomorphic to S"~l X (a, b).
Furthermore, the boundary of D has at most two connected components and each such
component is either a point, an (n — l)-sphere or two (n — l)-spheres with a common
point.

(ii) Each connected component of U is a point, an (n — l)-sphere, or an n-dimen-
sional umbilic set bounded by points or by a union of (n — l)-spheres such that two such
spheres have at most a common point.

A more precise description of the possible shapes of the boundary of D is as
follows (see Figure 1): It consists of two points (the closure D of D is then
diffeomorphic to an «-sphere, Figure 1(a)), or one round (n - l)-sphere (D is
diffeomorphic to S"~x X Sl—Figure 1(b)—or to a generalized Klein bottle), or one
point and one round (n — l)-sphere (D is diffeomorphic to an «-ball, Figure 1(d)),
or two round (n — l)-spheres that either are disjoint (Figure 1(e)) or have one
common point (Figure 1(c)). Thus we can think of a compact conformally flat
hypersurface as nonumbilic "conformally flat handles" that are foliated by (n — 1)-
spheres and are used to join points, (n — l)-spheres, and pieces of umbilic «-sub-
manifolds of M(c). A typical picture is given in Figure 2.
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COMPACT CONFORMALLY FLAT HYPERSURFACES 191

Figure 1. Possible shapes of a connected component of M - U, U =£ 0 .

Figure 2. A typical compact conformally flat hypersurface of R" + 1, n > 4.

1.5 Remark. Since metric completeness is not a conformai invariant, compactness
is the simplest global condition that can be imposed on a conformally flat manifold.
A notion of "conformai completeness" was considered in Kuiper [5] but it turned
out to be equivalent to compactness.

1.6 Remark. Some attempts towards a classification of conformally flat hyper-
surfaces have appeared in the literature: [6, 7], and [3, Theorem 4.4, p. 165]. They
are, however, incomplete.

1.7 Remark. Theorem 1.4 confirms essentially a conjecture by N. Kuiper (per-
sonal communication). We want to thank him for discussions that lead us to a better
understanding of the subject.
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1.8. In §3 we describe a method (essentially, although not explicitly, given in E.
Cartan [1]; cf. Remark 3.20) that yields a large number of examples of conformally
flat hypersurfaces. This is again used in §4 to show that we can perform "conformai
surgeries" in the nonumbilic "conformally flat handles" that appear in (i) of
Theorem 1.4 (cf. Figure 2). By a conformai surgery we mean that we cut off a small
nonumbilic "conformally flat handle" and fill in the resulting spherical holes in such
a way that the hypersurface thus obtained is still conformally flat. In §5, the
conformai surgery is used to prove our second main result, namely a necessary and
sufficient condition for a compact orientable differentiable manifold to admit
immersion as a conformally flat hypersurface of M" + l(c), « > 4 (see Theorem 1.10).

1.9. For later use, we describe here the construction of attaching a handle to a
differentiable manifold. Let rB" c R" denote an open ball of radius r in R" and
identify B" - \B" = (f, 1) X S"'1; here B" denotes the closure of B". Let /,, f2:
B" —> M" be two embeddings (if M" is oriented, one is orientation-preserving and
the other orientation-reversing; otherwise, they are both orientation-preserving) with
fx(B")Df2(B") = 0. LetM/)/= (/,,/2), be obtained from

M-{fx(\B")KJf2(\B"))

by the identification

/i(**W2((i-0*),     te{\,\),xes-\
It is well known that if g = (gx, g2) is another pair of embeddings as above, Mg is
diffeomorphic to My. We will say that M, is obtained from M by attaching a handle.
We will denote by 5fc" a manifold obtained from the standard sphere S" by attaching
b handles.

1.10 Theorem. Let M" be a compact, connected, differentiable manifold of dimen-
sion « > 4. Then M" can be immersed as a conformally flat hypersurface x: M" —>
M" + 1(c) if and only if M is diffeomorphic to S¡¡.

1.11 Remark. A notation of "intrinsic" conformai surgery was introduced by
Kulkarni [6] who was able to show that a connected sum of two conformally flat
manifolds can be defined to be conformally flat.

1.12 Remark. It should be remarked that Theorem 1.10 is the exact analogue of
the classification theorem for compact surfaces (which are, of course, conformally
flat). To the best of our knowledge, the case « = 3 is still open.

1.13 Remark. A theorem weaker than Theorem 1.10, namely, that if x: M" -*
M" + 1 is conformally flat, M" compact, « > 4, then M" is homeomorphic to S'¿ can be
proved without conformai surgery, and does not depend on the material of §§3 and
4. This will be clear in §5.

1.14 Remark. After this paper had been written, we received a manuscript of U.
Pinkall who has obtained, independently, a result that is essentially equivalent to
Theorem 1.10.

We want to thank the referee for valuable comments in the first version of this
paper, especially in §3.
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2. The geometric structure; proof of Theorem 1.4.
2.1. Since x(M") c M"+1(c) is compact, we can by a convenient conformai

transformation, assume that x is a conformally flat hypersurface of the euclidean
space R" + l. We will use this assumption in the rest of the paper.

The following lemma is essentially the first part of (i) of Theorem 1.4.

2.2. Lemma. Let M" be compact, « > 4, and let x: M" -» R" + 1 be a conformally flat
hypersurface. Then the set M — U of nonumbilic points has a codimension one foliation
so that the image x(H) c R" + 1 of each leaf 2 is a complete (« — l)-sphere; in
particular, an open connected component of M — U is diffeomorphic to Sn~l X (a, b).

Proof. Choose a local orientation, say N, around each point of M - U. Let Dx
(resp. D ) be the distributions defined by taking at each point of M - U the
eigenspace of AN corresponding to the eigenvalue A (resp. p); these distributions do
not depend on the local orientation and are thus defined in the entire M — U. It is
well known [9, p. 372] that such distributions are differentiable, involutive , and that
the eigenvalue A is constant along each leaf 2X of D x.

From the above we see that local coordinates (ux,...,un_x, t) can be so chosen
around p that the coordinate vectors 3/3«, = V¡, 3/3í = T satisfy

¿Mi) = XV, = -VVN,       AN(T) = pT= -vTN,
where V denotes the canonical connection of R" + l. Thus, since R" + l is flat,

0 = -VTVVN + VvyTN =(X- a)vTV, + T(X)V, - V^T,

hence, since A # p,

VTV¡ = -t-Vi + t-T;
X - ft X - fi

here and elsewhere, a prime denotes derivative in t.
Now consider a leaf 2A c M and denote by z: 2X -» M its inclusion map. Then,

by setting ||T|| = 1/a, and denoting by ÄN and ÄaT the Weingarten operators of x ° i
relative to N and aT, respectively, we obtain

(2-3) ÄN(Vi) = XV„       ÄaT(Vi) = y^jVi.

It follows from (2.3) that the leaf 2X is umbilic relative to the immersion x ° i:
2X -» R" + 1. Thus we can find an orthonormal pair of vectors f, f-1, in the plane
{T,N}, such that the corresponding Weingarten operators of x°z: ?,X->R" + Ï
satisfy

Ä^(V,) = 0,   Äi(V,) = ßV„       i=l,...,n-l,
where ß2 is the (constant) sectional curvature of 2X. In fact, it is easily checked that,
if ß * 0,
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Thus through each point of M - U there passes a leaf 2X, where x(1x) c R" + l is
either a piece of an (« - l)-plane (if ß = 0) or of an (« - l)-sphere (if ß + 0). By a
theorem of Reckziegel [8, Theorem 1 (iv)], a limit point of a geodesic of 2X still
belongs to M - U. Thus the completion of 2X is contained in M — U. Since M is
compact, x(2x) is an (« — l)-sphere, i.e., ß i= 0. This completes the proof.

2.6 Corollary of the lemma. A compact conformally flat hypersurface x: M" ->
R"+l without umbilic points is either homeomorphic to S"'1 X Sl (if M is orientable)
or to a "generalized Klein bottle" (if M is nonorientable).

This follows from the classification of sphere bundles over S1 (cf. Steenrod [10, p.
134]).

The following lemma proves the second part of Theorem 1.4(i).

2.7 Lemma. Let U =t 0 and let D c M be a connected component of M — U. Then
the boundary Bd D of D has at most two connected components and each such
component is either a point, an (n — l)-sphere, or the union of two (« — l)-spheres
with a common point.

Proof. Let p g Bd D and let {pn} be a sequence of points with pn G D and
{Pn) ~* P- Since pn G M — U, there exists, by Lemma 2.2, an (« — l)-sphere
2„ c M passing through pn. We can choose the sequence {pn) in such a way that
2„ ¥= 2m, for m ¥= n. We can also assume that, for all n,pn G V, where V c M is a
neighborhood ofp such that the restriction x\ V is an embedding.

Let us denote by T„ the tangent space of x(2„) at pn, by Rn the radius of x(2„)
and by £„ a unit normal vector to x(2„) c R"+1 at pn in the affine hyperplane of
R" + l containing x(2„). Since M is compact, { Rn) is a bounded sequence. Again, by
an argument of compactness, there exists a subsequence {nk) of {«} such that the
subsequences {R„ }, {Tn } and {£„ } converge to, say, R, T and £, respectively. It
follows that a subsequence {2„ } of {2,,} converges to an (« — l)-sphere 2 c M
passing through p. Since p g U, the same holds for all points of 2, by Lemma 2.2,
and 2 c Bd D. We notice that if R = 0, 2 reduces to a single point.

We now observe that D is not compact; otherwise, D = M and U = 0, contrary
to the hypothesis. Thus, by Lemma 2.2, D is homeomorphic to S"~l X (-1,1), and
the homeomorphism maps each slice 5" X {/}, t G (-1,1), onto a leaf 2, of the
foliation of D. By what we have just proved, Bd D is the nonvoid union of (perhaps
degenerate) ( « — l)-spheres.

We claim that as t / 1, 2, converges to a unique (perhaps degenerate) sphere 2,.
Assume that the contrary holds. Then there exist sequences 2,, 2,' converging to 2j
and 2,', respectively, and 2, # 2{. Let p g 2,, p G 2(, and let F be a connected
neighborhood ofp. If V is sufficiently small, V intersects all 2, and misses all 2,' ,
for m and « sufficiently large. Since each leaf of the foliation disconnects D, V is not
connected. This contradiction proves our claim.

It follows that Bd D = 2, U 2.,, where 2_, is the unique sphere obtained as
t \ -1. If 2[ reduces to a point, this point is an isolated connected component of
Bd D. This follows from the fact that if a neighborhood V of p = 2, is sufficiently
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small, then, for all / sufficiently near to 1, 2, c V; thus no point q g Bd D can be
joined to p by a continuous curve of boundary points. The same argument shows
that if either 2, or 2_, (or both) are degenerate, then 2, n 2_, = 0.

Therefore we can assume that both 2, and 2_, are nondegenerate. If they
intersect transversally, two leaves of the foliation of D would intersect, which is
impossible. Thus, either 2, and 2_, are tangent, in which case Bd D = 2, U 2_,, or
2, n 2_! = 0 in which case 2, and 2_, are the two connected components of
Bd D. This completes the proof of Lemma 2.7.

Part (ii) of Theorem 1.4 is proved along the same lines of the above lemma. We
omit the details and restrict ourselves to making a couple of observations.

2.8 Remark. If D is a connected component of M — U such that the limit spheres
2, and 2_, are nondegenerate and 2, = 2_,, then M = D and, exactly as in
Corollary 2.6, M is homeomorphic to either S"^1 X S1 (in the orientable case), or to
a "generalized Klein bottle" (in the nonorientable case).

2.9 Remark. The tangent spheres that make up a connected component of Bd U
may belong to the boundaries of distinct components of M — U.

3. Nonumbilic conformally flat hypersurfaces.
3.1. Let x: M" -» R" + 1, « > 4, be a conformally flat hypersurface that contains

no umbilics and let p g M. As we saw in the proof of Lemma 2.2, we have in a
neighborhood W of p a coordinate system (ux,.. -,un_x, t) adapted to the distribu-
tions Dx, D^ and a local orientation N. Let V¡ = 3/3«,, T = 3/3/ be the coordinate
fields in W and choose the local orientation N so that {ANV¡,V¡) = X\\V¡\\2 < 0.
Now assume that A + 0, set c(u, t) = x + X~lN and observe that 3c/3w, = 0,
z = 1,...,«- 1. This means that c = c(t) depends on t alone. Since the same holds
for A, we obtain a curve c(t) and a one-parameter family of «-spheres 2" given by
\y — c(t)\2 = X2 such that, for each t, the sphere 2" is tangent to the hypersurface
x(M). Thus the hypersurface x is locally the envelope of a one-parameter family of
spheres with centers c(t) and radii -A~'(0- Notice that if A = 0, the sphere of the
family becomes a tangent hyperplane (which, from the viewpoint of conformai
geometry, is indistinguishable from a sphere), and we can say that a nonumbilic
conformally flat hypersurface is locally the envelope of a one-parameter family of
umbilics.

Now suppose that at a point p g M we have A = 0. Let H be the tangent
hyperplane of x(M) at x(p) and choose a point q g R"+l so that q € H,q G x(M).
By making an inversion t in R" + 1 with center q, we obtain that r(H) is a sphere,
hence the value of A at p in the transformed (nonumbilic) hypersurface t ° x:
M" -* R"+1 is nonzero. Thus we can assume that, modulo a conformai transforma-
tion of the ambient space, A is nonzero in a neighborhood of p.

The nonumbilic conformally flat hypersurfaces can be explicitly given by the
following construction which merely describes an envelope of a one-parameter
family of spheres.

3.2. Let c: (a, b) ç R -> R" + l be an immersed curve and let r: (a, b) -> R be a
positive real differentiable function with \r'(t)\ < [|c'(r)||, / g (a, b). Set

S = rr'/\\c(,        R = r(l-((rf/\\cf))1/2.
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For each t, consider the affine hyperplane of R" + l orthogonal to c'(t) and passing
through

(3.3) y(t) = c(t)-S(t)c'(t);

in this hyperplane, consider an (« - l)-sphere 2""1 with radius R(t) and center
y(t). As / runs in (a, b), 2""1 describes a set that is the image set of the map y:
(a,b) X S"'1 -> R" + l given by

(3.4) y(t,q) = c- Sc'(t) + R<p(t,q),       t g (a, b), q g S"'1.

Here S"~l is a fixed unit (« — l)-sphere in a euclidean «-space, and <p: (a, b) X
5"'_1 —> R" + 1 is any differentiable map which, for a fixed t, is an immersion $, of
5""1 in R" + l that satisfies (<f>,,c'(?)) =0, <pj = 1. It is clear that for any <f>
satisfying the above conditions, the image of y will remain the same.

It is easily seen that if we change the parameter t of the curve c to t = r(t) (with
dr/dt # 0), this does not affect either the condition |r'| < ||c'|| or the image set of v.
We will see in a short while the conditions that y must satisfy to be an immersed
hypersurface (an example where y presents singularities is given in Remark 3.19).

3.5 Proposition. Assume that in (3.4) y is an immersed hypersurface. Then y is a
conformally flat hypersurface without umbilics, and X =t= 0 everywhere. Conversely, any
conformally flat hypersurface x: M" -» R" + 1, « ^ 4, without umbilics and with A # 0
everywhere is locally of the form y ; furthermore, if M is orientable, x(M) is contained
in the image of a hypersurface of the form y.

Proof. We will first prove the converse. By the considerations in the beginning of
this section, we obtain in a neighborhood W of a point p g M a curve c(t) = x +
X~lN and a positive function r = -A-1. By differentiating c = x + X'lN in /, we
obtain

/-, ^ ,      3JC       1  dN      A' „      1   „,      A' Ar(3.6) c' = — + t- —--N = T - TnT--N' dt       X   dt        A2 Ar        A2

A(A - n)T- X'N
X2

since dx/dt = T and dN/dt = ¡iT. Thus, by setting a = HTH"1, we conclude that

(3.7) ||c'||2 = (A-p)2/«2A2+(r')2,

hence, since A - p + 0, \c'\2 > (r')2. Thus the curve c and the positive function r
satisfy the required condition.

Next, we observe that the compactness of M was used in the proof of Lemma 2.2
only to guarantee that ß + 0, where ß2 is the curvature of the leaves of the foliation
of M by the distribution Dx. Since in the present case A # 0, we can use the same
argument as in Lemma 2.2 to conclude that M is foliated by (perhaps incomplete)
spheres 2 with radii

/       2t\'\2 \"1/2 / '2    \1/2

l(A-p)2       / I      lk'll2j
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Now, notice that c' belongs to the plane spanned by T and N, and because of (2.4),
(c',f) =0. By the above equation, the distance from c(t) to the center of 2 is
zr'/||c'||2. It follows that the restriction x|Wis obtained from c(t) and r(t) exactly as
in (3.4). Thus x is locally of the formy.

Notice that if M is orientable, the curve c and the function r > 0 are defined for
the entire M. By taking the arc length as a parameter for c, we obtain a hypersurface
y such that, locally, the image of x is contained in the image of v. Thus the same is
true globally, and this completes the first part of the proof.

Now assume that y is an immersed hypersurface. Since (<£, c') = 0, we obtain
\\y — c\\2 = r2. Choose orthogonal coordinates (ux,...,un_x) for S"1 and differen-
tiate \\y — c\\2 = r2 in t and in u¡, i = 1,...,« — 1, to obtain

(3v/3h,, y - c) = 0,        (dy/dt - c',y- c) = rr'.

From the above and the fact that (y- c,c') = -rr', we obtain that (dy/dt, y - c)
= 0. It follows that N given by
(3.8) y - c = -rN

is a unit normal vector to y. Since dy/du, = -rdN/du¡, we conclude that y is a
conformally flat hypersurface with A = -1/r + 0 as the eigenvalue of AN with
multiplicity at least « — 1. It remains to prove that y is nonumbilic.

To see this we observe that the image of y is naturally foliated by spheres; thus we
can choose locally an orthogonal coordinate system (ux,... ,w„_,, t) for j> adapted to
this foliation. By what we have seen in the first part of the proof, this gives rise to a
curve c(t) = y + X~lN, which by (3.8) agrees with c(t). Thus (u1,...,u„_l, t) are
orthogonal coordinates, and by (3.7) we have that A + p, since ||c'||2 > (r)2. This
completes the proof of Proposition 3.5.

3.9. Given a nonumbilic conformally flat immersion, it will be convenient to say
that M is saturated by the foliation Dx if together with p g M it contains the
completion of the leaf passing through p.

3.10 Corollary. Let x: M" -* Än+1, « > 4, be a nonumbilic conformally flat
immersion and assume that M is saturated by the foliation Dx. Let H be a saturated
neighborhood of a leaf of Dx and assume that X + 0 and that H is homeomorphic to
S"~l X (a, b). Then there exits an immersion y: H -» R" + l of the form (3.4) such that
x(H)=y(H).

This follows from the fact that H is simply-connected, hence orientable.
3.11. Now we want to determine the singular points of y. Let (t. q) g (a, b) X

5"_1, and choose orthogonal coordinates («i,...,hb_i) around q g S""1. As we
have seen in the proof of the last proposition,

(3v/3w„ y - c) = 0,       (3v/3/, y - c) = 0,       y - c * 0.

Thus (t, q) is a singular point for >> if and only if dy/dt = 0. The conditions below
can be checked to be independent of the parametrization of c, and describe therefore
singularities of the image of y.
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3.12 Proposition. Let y be given as in (3.4). A point (t, q) is singular for y if and
only if both conditions below are satisfied:

(i)     l-S' = --]-i{R(<P,c")+S(c',c")),
Ik II

(ii)     R' = S(c",<p).

Condition (i) implies condition (ii), and if S + 0 (i.e. if r' # 0), condition (ii) implies
condition (i). Furthermore (i) can be written as

(3.13) ||c'||2 - r'2 - rr" + S(c', c") = R(<¡>, c").

Proof.  We use the coordinates (ux,...,un_x,t)  introduced in  the proof of
Proposition 3.5 and notice that they are orthogonal parameters for y. Then

y' = c' - S'c' - Sc" + R'<t> + R<t>' = (1 - S')c' - Sc" + R^>' + R'cb.

Since (dy/dUj, y) = 0, we obtain (3<|>/3m,, y') = 0, hence
(3.14)

0 = (V, 9</>/3m(.) = -S(c",3<í>/3h,) + R(d<j>/du,,<¡>'),       i = 1,...,« - 1,
since (3<í)/3zy,, c') = 0, (3<í>/3h,, d,) = 0. It follows from (3.14) that R<p' - Sc" is
orthogonal to d<p/dui for all i. Thus R<b' — Sc" belongs to the plane generated by <£
and c' and it is easily computed that

R<b' - Sc" = (-R4, - Sc', c"/lk'||)c7||c'|| - S(c", <b)<b.
It follows that

y' = (l-S'- R(4>,c")/\\c'\\2-S(c',c")/\\c'\\2)c' +(R' - S(c",4>))<P,

and this shows that y ' = 0 if and only if both (i) and (ii) hold.
Now a simple computation shows that the derivatives of R and S satisfy

(3.15) R' = S[\\c'\\2 - r'2 - rr" + S(c', c"))r-\

(3.16) ^S>=\WW2-r'2-rr" + _S_
Ik'll2 Ik'll2

Thus

RR' = S{(1 - 5')||c'||2- (c',c")S

It follows that if (i) holds, then RR' = SR((p, c"), that is, (ii) holds. Furthermore, if
S =£ 0 and (ii) holds, then (i) also holds. Finally, we obtain from (3.16) that (i) can be
written as

||c'||2 - r'2 - rr" + S(c',c") = R(<t>,c").

We leave it to the reader to check that conditions (i) and (ii) are independent of the
parametrization of the curve c(t). This completes the proof of Proposition 3.12.

3.17 Remark. The first part of Proposition 3.5 together with Proposition 3.12 can
be used to construct a large number of examples of conformally flat hypersurfaces.
For instance, if c is a straight line, so is the curve y(t) = c — Sc' and we obtain a
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rotation hypersurface. On the other hand, if r is a small constant, then c(t) = y(t)
and we obtain a tube around c, i.e., the total space of a normal sphere bundle of c
with radius r. We can also obtain conformally flat hypersurfaces that are neither
tubes nor rotation hypersurfaces, as the example below shows.

3.18 Example. Let (xx,.. -,xn) be cartesian coordinates in R"+1. In the plane xxx2
choose a circle c(s) centered at the origin and with radius L > 1. Assume that
||c'|| = 1 and let r: R -* R be given by

r(s) = ß^sin^/L) + 1,

where ß > 1 is a real number. It is easily checked that if L is sufficiently large, the
hypersurface given by y in (3.4) is an embedded compact conformally flat hyper-
surface without umbilics. A restricted class of examples of conformally flat hyper-
surfaces were found in [6,7,2].

3.19 Remark. A simple example where y presents á singular set is given by a
nonumbilic rotation hypersurface with r(t) chosen in such a way that R' changes
sign along a leaf where r' i= 0. Then y looks like two rotation hypersurfaces meeting
along an "5"_1-edge".

3.20 Remark. Proposition 3.5 is essentially contained in Cartan [1, p. 88], where
he proves with his own methods that a conformally flat hypersurface of Mn + X(c) is
locally an envelope of a one-parameter family of umbilic submanifolds of M"+1(c).
Cartan only consider such envelopes that are immersed hypersurfaces and does not
go into the question of singularities treated in Proposition 3.12. Thus he does not
describe explicitly the above method of construction of conformally flat hyper-
surfaces.

4. Conformai surgery.
4.1. Let x: M" -» R" + l be a compact conformally flat hypersurface and letp g M

be a nonumbilic point with A(p) =£ 0. By Corollary 3.10 the image of a small
saturated neighborhood H of the spherical leaf that passes through p can be written
asy(//), where y: H -» R" + 1 is in the form (3.4). We will say that H is a conformai
handle around p. The aim of this section is to show that we can cut off a small
conformai handle H' c H around p and fill in the resulting spherical holes in such a
way that we still obtain a conformally flat hypersurface. This process will be called a
conformai surgery along the leaf of p.

Let H be a conformai handle and assume that the curve c(t) in the expression
(3.4) is parametrized proportionally to the arc length, i.e., ||c'(OII = const. Let p
belong to the leaf corresponding to t = t0 and let us omit from H the handle
corresponding to the interval (t0 - 2e, t0 + 2e), where e > 0 is small. In (t0 - 2e, t0
- e), keep the values of r(t) and ||c'(/)|| and change the curve c so that it becomes a
straight line in the interval (t0 — e, t0). This can be done without introducing
singularities, since the condition (3.13) becomes

\\c'f - r'2- rr" = R(<j>,c"),

and the process can be made so that the second member goes monotonically to zero.
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We want to show that we can let R approach zero as t approaches t0 without
introducing singularities and keeping it conformally flat. Since y is a rotation
hypersurface near t0, we must make sure, in addition, that R' approaches -oo as
t -» i0. This will be taken care of by the following.

4.2 Lemma. As t -> t0, let \\c'\\ -> a > 0, ||c'||' -* y < 0, r' -> ±a, r -> ß > 0 and
r" -» 8. Then R = r(l - r'2/||c'||2)1/2 -» 0, and

(i) if r' —> a and -8 < \y\, then R' -» -oo,
(ii) if r' —» -a and 8 < \y\, then R' -* -oo.

Proof. The first statement is obvious. To prove (i) and (ii), we write R' in the
form

H-áH-áná-SáHa)
and notice that, as t -» /0,

where the minus sign corresponds to the case (i) and the plus sign corresponds to the
case (ii). The lemma follows immediately.

4.3 Lemma. Let y be given in the interval (t0 — e, t0) by

y = c(t) - Sc'(t) + R(¡>,

where c(t) is a straight line with ||c'(f )|| = const. Then we can change r(t) and ||c'(r)||
so that R —> 0 as t -* t0, the resulting hypersurface is conformally flat, and no
singularities are introduced.

Proof. The delicate point is to control the occurrence of singularities that, in this
case, are determined by

1 rr'
(4.4) llc'ir - r'2 - rr" + —77- llc'll = 0.Ik II
Notice that as long as we keep ||c'|| = const, the above condition reduces to

(4.5) A =\\c'\\2 - r'2 - rr" = 0.

The proof will follow by analyzing various cases (see Figure 3):
Case 1. r' > 0, r" > 0, ||c'||2 - r'2 > rr". Thus A > 0.
We will derive the interval (/0 — e, t0) into four (not necessarily equal) parts: I, II,

III and IV.
In I we decrease monotonically (r')2 and r" so that r" = 0 at the right endpoint

of I. Clearly A > 0 throughout I. By (4.5), no singularities are introduced.
In II we decrease (r')2 until it becomes zero, keep r" and r '" negative, and let

r '" —> 0 at the right endpoint of II. Notice that

(4.6) A' = ~3r'r" - rr '".
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Figure 3
It follows that A' > 0, hence A is positive in II and no singularities appear. Notice
also that at the right endpoint of II, we have that A = \\c'\\2 + r\r"\.

In III we change r' from zero to a constant negative value by keeping r" < 0 and
changing the sign of r '" to r '" > 0. By (4.6), we see that A increases in III from
A = ||c'||2 + r\r"\ >0toA= \\c'\\2 - (r')2 > 0. Thus A > 0 throughout the interval
III, and no singularities appear.

So far we have kept ||c'|| = const. In IV, however, we keep r' = const = -a and
let ||c'|| approach aasi^ t0. By Lemma 4.2 we see that no singularity will appear at
t = t0. For the rest of the interval, we observe that, since r" = 0 in IV, we must
show that

-r- + —\\cr = A

does not vanish in IV. Notice that in a small interval around the left endpoint of IV,
A > 0. A computation gives that

A' = 2\\c'\\z + r'2
c'y -

rr
Ik7!

where we can assume that ||c'||" < 0 and ||c'||' < 0. By adjusting the length of IV, we
can make ||c'||' sufficiently large so that the absolute value of the second term of the
above sum is larger than the first term. Since r' < 0, A' will then be positive, hence A
will not vanish in IV.

Case 2. r' > 0, r" > 0, \\c'\\2 - r'2 < rr". Thus A < 0.
Assume that r '" > 0. By (4.6) we see that A' < 0. By letting r' -h> |c'| = const as

t -* t0 and keeping r', r", r '" positive, we easily see that the lemma holds. If
r '" < 0, we let r '" -> 0 by changing very little r' and r" (so that A remains
negative); we then change the sign of r '" and proceed as above.

All the other cases are similar (or can be reduced) to the previous cases, and we
leave them to the reader. This concludes the proof of Lemma 4.3.
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4.7 Proposition. Let x: M" -» R"+l, « > 4, be a compact conformally flat
hypersurface and let p g M be a nunumbilic point with X(p) # 0. Then a conformai
surgery can be performed along the leaf of p.

This follows immediately from the considerations in the beginning of this section,
Lemma 4.2 and Lemma 4.3.

5. The differentiable structure; proof of Theorem 1.10.
5.1. Clearly any manifold diffeomorphic to S¿ can be immersed as a conformally

flat hypersurface of R" + l by joining a convenient number of «-spheres in R" + 1
through general conformai handles.

To prove the converse, let M" be compact, orientable, « ^ 4, and let x: M" —> R"+1
be a conformally flat hypersurface. Let £ g R"+l, ||£|| = 1, be a regular value of the
Gauss map of x and denote by «^ = (x, £,) the height function of x relative to £. At
a critical point of «^ £ is normal to x(M) and the second fundamental form of x is
the hessian of «¿. Since there exists an eigenvalue A of the second fundamental form
with multiplicity at least « - 1, «¿ has only critical points of indices 0,1, « - 1, «.

If M is homeomorphic to a sphere, then by a theorem of N. Kuiper [4] the metric
induced by the conformally flat immersion x: M" -* R" + 1 is conformally equivalent
to the standard metric in S". Thus M" is diffeomorphic to a standard «-sphere.

A crucial point in the proof of Theorem 1.10 is the following simple observation.
Assume that M is not homeomorphic to a sphere. Then there exists at least one
critical point p of «^ with index 1 or « — 1. Thus p is a nonumbilic point with
A( p) # 0 and there exists a conformai handle around p.

Assume that M is not homeomorphic to a sphere and let />,,... ,pk he the critical
points of «£ with indices 1 or « — 1. Let H-,j = l,...,p, be a conformai handle
around pr By cutting off a sufficiently small handle Hj c Hj around py, we can fill
in smoothly the resulting spherical holes in M by «-disks in such a way that we
elliminate the critical pointpy and add perhaps maxima or minima to «¿.

We claim that for at least one y = l,...,k, the above process does not disconnect
M. Otherwise, we would end up with k + 1 connected components M,. Since on
each M,, «£ has only maxima and minima, M, is homeomorphic to a sphere. On the
other hand, since each Hj disconnects M, the two connected components of the
boundary of Hj are in distinct connected components of UM,, hence M is a
connected sum of spheres, hence homeomorphic to a sphere, a contradiction to the
hypothesis.

Now let H,,...,h, he the handles whose omission, in a given order, do not
disconnect M, and apply the above process to such handles. We obtain a manifold
M which by the above argument is homeomorphic to a sphere.

We want to show that M admits a conformally flat immersion in R" + 1. For that,
we need the conformai surgery described in §4. By applying conformai surgeries at
the points p ,...,p , we obtain a conformally flat immersion x: M -» R" + l. It
follows, by Kuiper's theorem quoted above, that M is diffeomorphic to a standard
«-sphere.

Thus either M is diffeomorphic to S¿' or M is obtained from S0" by b steps, each of
which starts from the pair of disks we used to fill in the holes in the conformai
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surgery and proceeds in exactly the same way as in the construction of attaching
handles. Thus M is diffeomorphic to S¡¡. Since the fundamental group of S¡¡ is a free
group with b generators, the number b of handles is the first Betti number of M and
does not depend on the above ordering. This completes the proof of Theorem 1.10.
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