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ABSTRACT

We present a detailed analysis of four of the most widely used radio source-finding packages

in radio astronomy, and a program being developed for the Australian Square Kilometer Array

Pathfinder telescope. The four packages: SEXTRACTOR, SFIND, IMSAD and SELAVY are shown to

produce source catalogues with high completeness and reliability. In this paper we analyse

the small fraction (∼1 per cent) of cases in which these packages do not perform well.

This small fraction of sources will be of concern for the next generation of radio surveys

which will produce many thousands of sources on a daily basis, in particular for blind radio

transients surveys. From our analysis we identify the ways in which the underlying source-

finding algorithms fail. We demonstrate a new source-finding algorithm AEGEAN, based on the

application of a Laplacian kernel, which can avoid these problems and can produce complete

and reliable source catalogues for the next generation of radio surveys.

Key words: techniques: image processing – catalogues – surveys.

1 IN T RO D U C T I O N

Source finding in radio astronomy is the process of finding and char-

acterizing objects in radio images. The properties of these objects

are then extracted from the image to form a survey catalogue. The

aim of large-scale radio imaging surveys is to provide an unbiased

census of the radio sky, and hence the ideal source finder is both

complete (finds all sources present in the image) and reliable (all

sources found and extracted are real).

Most of the standard source-finding algorithms that have been

developed over the last few decades are highly complete and reli-

able, missing only a small fraction of sources. These problem cases

are generally dealt with in pre- or post-processing, or manually

corrected in the source catalogue.

Next generation radio surveys such as the Evolutionary Map of

the Universe (EMU; Norris et al. 2011) and the Australian Square

Kilometer Array Pathfinder (ASKAP) Survey for Variables and

Slow Transients (VAST; Chatterjee et al. 2010) planned for the

ASKAP (Johnston et al. 2008) telescope will produce large area,

sensitive maps of the sky at high cadence, resulting in many times

more data than previous surveys. Data processing will need to be

fully automated, with limited scope for manual intervention and cor-

rection. Hence the small number of missing or incorrectly identified

sources produced by current source finders will pose a substantial

problem. In particular, in blind surveys for radio transients, missed

⋆E-mail: Paul.Hancock@sydney.edu.au

sources and false positives in an epoch will cause the transient

detection algorithms to trigger on false ‘events’. VAST will need

to extract thousands of sources from survey images at a cadence

of ∼5 s. A source-finding algorithm which is 99 per cent complete

and reliable at a signal-to-noise ratio (SNR) of 5 will be produc-

ing ∼10 000 false sources, and missing ∼10 000 real sources per

day. Whilst it is possible to remove false sources from a catalogue,

the missing real sources are lost forever. The large data rates of

telescopes like ASKAP will make it impossible to store each obser-

vation, and thus no reprocessing of the data will be possible.

The way in which a source-finding algorithm fails to detect a real

source is often assumed to be related to noise, and that it is random.

In this paper we test this assumption and show that whilst many

sources are missed due to random noise related effects, there is

also a component that is deterministic and related to the underlying

algorithm. By analysing the source-finding algorithms and their

modes of failure we identify ways in which the algorithms could be

improved and use this knowledge to build an algorithm which can

produce catalogues that are more complete and more reliable than

those currently available.

In this paper we discuss the problem of source finding for Stokes

I continuum radio emission in the context of next generation ra-

dio imaging surveys. We will not deal directly with the additional

complications introduced by spectral line data, polarization data or

extended sources and diffuse emission. The focus of this paper is on

upcoming surveys for ASKAP, however, the results will be equally

applicable to future radio surveys on other Square Kilometer Ar-

ray (SKA) pathfinder instruments such as the Murchison Widefield
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Compact continuum source finding 1813

Array (MWA; Lonsdale et al. 2009) and SKA Molonglo Prototype

(SKAMP; Adams, Bunton & Kesteven 2004), and of course the

SKA itself.

In Section 2 we outline the main approaches to source finding in

radio astronomy, and then in Section 3 describe four of most widely

used source-finding packages. Section 3.7 gives some examples of

the way that source-finding packages are used to create catalogues

for large surveys and transient studies. Section 4 describes the test

data that were used in the analysis of the source-finding algorithms,

and Section 5 describes the evaluation process. The instances in

which the source-finding algorithms fail to find or properly char-

acterize sources are described in Section 6. Section 7 describes a

new source-finding algorithm, AEGEAN, which has been designed to

overcome many of the problems suffered by existing source-finding

packages. We summarize our conclusion in Section 8.

2 SO U R C E F I N D I N G I N R A D I O A S T RO N O M Y

In a broad sense, source finding in radio images involves finding

pixels that contain information about an astronomical source. Most

approaches to source finding in radio astronomy follow a similar

method: (i) background estimation and subtraction; (ii) source iden-

tification; (iii) source characterization and (iv) cataloguing. In this

section we outline the standard method taken in each of these steps.

In the discussion that follows we consider a source to be a signal of

astronomical importance that can be well modelled by an elliptical

Gaussian. By this definition a radio galaxy with a typical core/jet

morphology would be made up of three sources, one for the jet and

each of the lobes. The grouping of multiple sources into a single

object of interest (like a core/jet radio galaxy) is not in the realm of

source finding or classification as it relies on contextual information

to make such an association.

2.1 Background estimation and subtraction

The first step in source finding is determining which parts of the

image belong to sources and which belong to the background (e.g.

Huynh et al. 2011). The most common way in which this separation

is achieved is to set a flux threshold that divides pixels in to back-

ground or source pixels. This process is referred to as thresholding.

A straightforward case would involve a background that is dom-

inated by thermal noise, which is without structure and is constant

across the entire image. In such a case a single threshold value can

be chosen that will result in all sources above that threshold being

detected, and some small number of false detections. A varying

background can be accounted for by calculating the mean and rms

noise in local subregions, which is then used to normalize the im-

age before applying a uniform threshold in SNR. The selection of

a threshold limit is often a balance between detecting as many real

sources as possible and minimizing the number of false detections.

Typically a 5σ threshold limit is used in a blind survey, with higher

or lower limits chosen for larger or smaller regions of sky.

False detection rate (FDR) analysis (Hopkins et al. 2002) de-

termines the threshold limit that will result in a number of falsely

detected pixels that is lower than some user defined limit.

In cases where the background has structure, an image filter

must be used to remove the background structure before the source-

finding stage. The way in which the background structure is removed

depends on the cause and type of structure that is present. A common

example is diffuse emission in the galactic plane, with compact

sources embedded within. A discussion of background filtering

techniques is beyond the scope of this paper, and in our analysis

we assume the images have been pre-processed and are free of

background structure. For an evaluation of background estimation

see Huynh et al. (2011).

2.2 Source identification

Source identification is the process by which pixels that are above a

given threshold are grouped into contiguous groups called islands.

Each island corresponds to one or more sources of interest. The

process of finding sources is complete at this stage. The format of

the catalogue is just a list of pixels that belong to each of the islands,

which is not of general astronomical utility. Source characterization

is required to convert these islands of pixels into a more useful form.

2.3 Source characterization

Source characterization involves measuring the properties of each

source, for example the total flux and angular size. The best source

characterization method is strongly dependent on the nature of the

sources that are to be studied. Point sources, by definition, have the

shape of the point spread function (PSF) of an image, making the

PSF shape important in the characterization process. Images that are

produced from radio synthesis observations have been deconvolved

and the complicated PSF of the instrument has been replaced with

an appropriately scaled Gaussian. Observations with sufficient u, v

coverage will do not need to be deconvolved as they have a PSF that

is already nearly a Gaussian. In either case, compact sources will

appear as Gaussian, and so an island of pixels can be characterized

by a set of Gaussian components.

In lower resolution radio surveys such as the NRAO VLA Sky

Survey (NVSS, 45 arcsec2; Condon et al. 1998) and Sydney Uni-

versity Molonglo Sky Survey (SUMSS, 45 × 45cosec|δ| arcsec2;

Mauch et al. 2003) a majority of objects are unresolved and can

be characterized by a single Gaussian. However, in higher reso-

lution surveys such as Faint Images of the Radio Sky at Twenty-

Centimeters (FIRST, 5 arcsec2; Becker, White & Helfand 1995) a

significant fraction of the sources are partially extended or have

multiple components, and so multiple Gaussians are required to

represent them.

Fitting a number of Gaussian components to an island of pix-

els is straightforward (Condon 1997), but is highly sensitive to the

choice of initial parameters. Gaussian fitting can converge to unre-

alistic or non-optimal parameters due to the many local minima in

the difference function. Effective multiple Gaussian fitting requires

two things: an intelligent estimate of the starting parameters, and

sensible constraints on these parameters. None of the widely used

source-finding packages has an algorithm for robustly estimating

initial parameters for a multiple Gaussian fit.

Two approaches have been developed which try to address the

difficulty of obtaining accurate initial parameters for multiple Gaus-

sian fitting: de-blending and iterative fitting. A de-blending-based

approach breaks an island into multiple sub-islands, each of which

is fit with a single component. In an iterative fitting approach, the

difference between the image data and the fitted model (the fitting

residual) is evaluated in order to determine whether an extra com-

ponent is required. This analysis will repeat until an acceptable fit is

achieved, or a limit on the number of components has been reached.

De-blending and iterative fitting are both susceptible to source frag-

mentation, whereby a single true source is erroneously represented

by multiple components.

Once each island of pixels has been characterized the fitting

parameters are catalogued.
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1814 P. J. Hancock et al.

2.4 Cataloguing

The final stage in source finding is extracting the source parameters

and forming a catalogue of objects in the field.

A catalogue should contain an appropriate listing of every param-

eter that was fit, along with the associated uncertainties. In addition

to the fitted parameters, a source-finding algorithm should report

instances where the source characterization stage was inadequate

or failed. By reporting sources that were not well fit, a catalogue can

remain complete despite having measured some source parameters

incorrectly. Poorly fit sources can easily be remeasured, whereas ex-

cluded sources are missed forever. If it is not possible to construct

a reasonable facsimile of the true sky using only the information

provided in the source catalogue then the source-finding process

has not been successful.

3 SO U R C E - F I N D I N G PAC K AG E S A N D T H E I R

A L G O R I T H M S

Most of the major source-finding packages in astronomy are based

on a few common algorithms. In this section we outline the features

of these packages.

Source-finding packages that rely on wavelet analysis were not

considered in this work as none of the most widely used source-

finding packages relies on wavelet analysis.

3.1 SEXTRACTOR

SEXTRACTOR (SE; Bertin & Arnouts 1996) was developed for use

on optical images from scanned plates. The speed and ease of use

of SEXTRACTOR has made it a popular choice for radio astronomy

despite its optical astronomy origins. SEXTRACTOR is a stand alone

package for UNIX-like operating systems.

The source finding and characterization process that SEXTRACTOR

follows can be modified via an extensive parameter file. For this

work the following parameters were used:

DETECT_MINAREA 5

THRESH_TYPE ABSOLUTE

DETECT_THRESH 125e-6

ANALYSIS_THRESH 75e-6

MASK_TYPE CORRECT

BACK_SIZE 400

BACK_FILTERSIZE 3

The first four parameters instruct SEXTRACTOR to detect all sources

with a peak pixel brighter than 5σ = 125 µJy beam−1. The source

characterization is then carried out on islands of pixels that are

brighter than 3σ = 75 µJy beam−1 that contain at least 5 pixels.

The final three parameters ensure that the measured flux of a source

is corrected for the effects of nearby sources, and that the back-

ground is estimated using a box of 3 × 400 pixels on a side. This

large background size results in a background that is less than 1 µJy

for each of the tested images. The parameters DEBLEND_NTHRESH and

DEBLEND_MINCONT are used by SEXTRACTOR in the source characteri-

zation stage, when deciding how many components are contained

within an island of pixels. The ability of SEXTRACTOR to character-

ize sources was found to be insensitive to these parameters for the

simulated images used in this work.

3.2 IMSAD

Image Search and Destroy (IMSAD) is an image-based source-finding

algorithm in MIRIAD (Sault, Teuben & Wright 1995). The threshold

is user specified either as an absolute flux level or as a SNR with

the background noise determined from a histogram of pixel values.

Only pixels that are brighter than the threshold are used in the fitting

process. For the analysis presented in this work we specify a thresh-

old of 5σ = 125 µJy beam−1. IMSAD performs a single Gaussian fit

to each island of pixels.

3.3 SELAVY

SELAVY is the source-finding package that is being developed by

ASKAPsoft as part of the data processing pipeline for ASKAP.

SELAVY is a source-finding package that is able to work with spectral

cubes and continuum images, and includes a number of different

algorithms and approaches to source finding. SELAVY is related to

the publicly available DUCHAMP software (Whiting 2012).1 SELAVY is

a version of the DUCHAMP software that has been integrated into the

ASKAPsoft architecture to run on a highly parallel system with dis-

tributed resources. In the context of compact continuum source find-

ing the only difference between SELAVY and DUCHAMP is that SELAVY

is able to parametrize and island of pixels with multiple Gaussian

components. SELAVY was given a threshold of 5σ = 125 µJy beam−1

for source detection.

3.4 SFIND

SFIND (Hopkins et al. 2002) is implemented in MIRIAD and uses FDR

analysis to set the detection threshold. Source characterization is

performed using the same Gaussian fitting subroutine as that use by

the MIRIAD task IMFIT.

A varying background is calculated by SFIND by dividing the im-

age into subregions of (user defined) size, and measuring the mean

and rms of each region. In an image which contains a high density

of sources, or subregions which contain a particularly bright or ex-

tended source, the calculated mean and rms will be contaminated

by the sources. For subregions where this occurs the result is a mean

and rms value that is significantly different from the adjacent subre-

gions, which can cause sources on the boundaries to be normalized

such that their shape and flux distribution are not preserved. For an

image which is constructed to have a zero mean and constant rms,

these contamination effects can be largely removed by setting the

size of the subregions to be larger than the given image.

The rejection of sources which fail to be fit with a Gaussian

rejects many instances of sources that have very few pixels. This

has the effect of further decreasing the FDR for the catalogue, since

a false positive source needs to have many contiguous false positive

pixels in order to be fit properly.

In this work we selected the subregions to be larger than the given

image, and adjusted the FDR parameter until the automatically

selected threshold was at 5σ = 125 µJy beam−1.

3.5 FLOODFILL

FLOODFILL is an algorithm which performs the second stage of

source finding, separating the foreground from the background

pixels, and grouping them into islands that are then passed on to

1 http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp
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Compact continuum source finding 1815

Figure 1. A demonstration of the operation of the FLOODFILL algorithm.

The small ‘image’ has pixel values that are in units of the background noise.

The seed threshold is σ s = 5 and the flood threshold σ f = 4. The orange

pixels are those that have been assigned to an island, green pixels are those

that are being considered, grey pixels have been rejected and white pixels

are yet to be considered. In panel (A) the brightest pixels is used to seed

an island. Pixels adjacent to the island are then inspected (coloured green).

In panel (B) the pixels under consideration are brighter than the flooding

threshold and are added to the island. The process is repeated in panels (C)

and (D). In panel (E) there are no more pixels adjacent to the island that

have not been inspected. In panel (F) all pixels have either been assigned to

an island (orange) or are labelled as background (grey).

the source characterization stage. We describe FLOODFILL as im-

plemented in the new source-finding algorithm, AEGEAN, which is

described in Section 7. Although used by Murphy et al. (2007), the

details of the algorithm have not been described in the astronomical

literature (although see Roerdink & Meijster 2001).

FLOODFILL takes an image and two thresholds (σ s and σ f , with

σ s ≥ σ f). Pixels that are above the seed threshold σ s are used to

seed an island, whilst pixels that are above the flood threshold σ f

are used to grow an island. Given a single pixel above σ s, FLOODFILL

considers all the adjacent pixels. Adjacent pixels that are above σ f

are added to the island and pixels adjacent to these are then con-

sidered. This iterative process is continued until all adjacent pixels

have been considered. The operation of FLOODFILL is demonstrated

on a simplistic ‘image’ in Fig. 1. In panel (A) the brightest pixel

in the image has been chosen to seed the island, and is coloured

yellow. The adjacent pixels are coloured cyan. In panel (B) the pix-

els that are adjacent to the seeding pixel are added to the island as

they are brighter than σ f = 4. Pixels adjacent to the island are now

considered. The process is repeated in panel (C). In panel (D) some

of the adjacent pixels are now below σ f and are thus not added to

the island, and are flagged as background pixels. In panel (E) there

are no longer any pixels adjacent to the island which have not been

rejected so the search for new pixels halts. In panel (E) there are no

longer any pixels above the seeding limit of σ s = 5 so all remaining

pixels are flagged as background pixels (panel F).

The operation of FLOODFILL is invariant to changes in the order

in which the seed pixels are chosen. The output of FLOODFILL is

a disjoint list of islands, each of which contains contiguous pixels

that are above the σ f limit. FLOODFILL does not perform any source

characterization, although it is able to report the flux of an island

of pixels by summing the pixel intensities. The fluxes that are re-

ported by FLOODFILL have a positive bias which can be corrected as

described by Hales et al. (in preparation).

3.6 AEGEAN

FLOODFILL forms the basis for two new source-finding algorithms:

BLOBCAT (Hales et al., in preparation) and AEGEAN. Both algorithms

begin with a set of islands identified by FLOODFILL but characterize

these islands differently. The BLOBCAT program characterizes each

island of pixels without assuming a particular source structure,

where as AEGEAN assumes a compact source structure in order to

fit multiple components to each island. Here we outline the AEGEAN

algorithm, with a detailed description differed to Section 7.

The AEGEAN algorithm has been implemented in PYTHON and uses

FLOODFILL to create a list of islands of pixels. AEGEAN was set to

use a single background threshold of 5σ to seed the islands, and a

flood threshold of 4σ to grow the islands. This threshold was set

to 5σ = 125 µJy beam−1 so that we are detecting sources above an

SNR of 5.

AEGEAN uses a curvature map to decide how many Gaussian com-

ponents should be fit to each island of pixels, and the initial param-

eters for each component. A PYTHON implementation of the MPFIT

library2 is used to fit the Gaussian components with appropriate

constraints. Each island of pixels is thus characterized by at least

one Gaussian component.

3.7 Source finding in radio surveys

The process of creating a catalogue of sources from survey images

involves more than running one of the source-finding packages de-

scribed in Section 3. Since the observing strategy, hardware and

data reduction techniques can vary widely between surveys, stan-

dard source-finding packages are typically used only as a starting

point for the creation of a source catalogue. The time required to

carry out the observations for a large area sky survey is typically

spread over multiple years. This prolonged observing schedule is

usually accompanied by multiple iterations of calibration, data re-

duction and source detection, so that by the time the final observa-

tions are complete it is possible to produce a survey catalogue using

a source-finding pipeline that has been refined over many years.

The NVSS (Condon et al. 1998), drew upon observations from

1993 to 1996, during which time the AIPS source-finding routine

SAD was modified to create VSAD. The survey strategy for the NVSS

was devised to give noise and sidelobe characteristics that were

both low, and consistent across the sky. The configuration of the

Very Large Array (VLA) was varied across the sky to ensure a

consistent resolution throughout the survey. The survey strategy was

thus designed to produce images that were nearly uniform across

the sky, making the task of source finding as easy as possible. The

completeness and reliability of the NVSS catalogue was improved

in the years subsequent to the completion of the survey with the

final stable release in 2002.

The SUMSS (Mauch et al. 2003) and Molonglo Galactic Plane

Survey 2 (MGPS-2; Murphy et al. 2007) both used the source-

finding package VSAD, however, the single purely east–west con-

figuration of the telescope meant that the resolution varied with

declination, and the regularly spaced feeds produced many image

artefacts. The changing resolution and image artefacts meant that

the source-finding algorithm produced many false detections. The

2 http://code.google.com/p/agpy/source/browse/trunk/mpfit/?r=399
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1816 P. J. Hancock et al.

image artefacts appeared as radial spokes or arcs around bright

sources. In order to rid the source catalogue of falsely detected

sources, a machine learning algorithm was implemented (Mauch

et al. 2003; Murphy et al. 2007). The machine learning algorithm

was able to discriminate between real and false sources, but required

substantial training to achieve high completeness and reliability.

An archival transients survey has recently been completed using

the data from the SUMSS (Bannister et al. 2011). In an archival

search spanning 20 yr of observations, the need for a fast source

detection pipeline is not important, as fast transients will not be

detected, and slow transients will remain visible for years to come.

In the Bannister et al. (2011) survey, regions of sky with multiple

observations were extracted from the archival SUMSS data. These

regions of sky were analysed for sources which either changed

significantly in flux, or which were detected in only a subset of

the images. The SFIND package was used to detect sources, which

were then remeasured using the MIRIAD routine IMFIT. A complication

that was encountered in the analysis of the SUMSS data, was the

contamination of candidate source lists due to source-finding errors.

False positive detections and missed real sources both appear as

sources which are only detected in a subset of all the images, and

thus appear to be transient sources. The light curve of each transient

event therefore needed to be double checked in order to remove

such occurrences.

A similar transient detection project was carried out with new

observations from the Allen Telescope Array (ATA), in the ATA

Transients Survey (ATATS; Croft et al. 2011). Sidelobe contami-

nation in the ATA images is much lower than that in the SUMSS

images used in the Bannister et al. (2011) study, however, falsely

detected sources in the individual images still resulted in false tran-

sient detections and required further processing to remove.

The process of finding sources and creating a catalogue extends

beyond the operation of a source-finding package and has previously

required substantial manual intervention. The next generation of

telescopes, particularly the dedicated survey instruments, will be

able to complete observations on a much shorter time-scale than

current generation telescopes, and thus the time spent creating the

refining the source catalogue will become a larger fraction of the

total effective survey time. Source-finding packages that are able

to produce more accurate, complete and reliable catalogues will

provide a better starting point for the final version of the survey

catalogue.

4 TEST DATA

We used a simulated data set to evaluate the source-finding algo-

rithms described in Section 3. A simulated data set has the advantage

that we are able to control the image properties (such as rms noise)

and that we know the input catalogue.

Matching recovered sources with a true list of expected sources

is an important part of the analysis presented in this paper. With any

real data set, the list of expected sources comes with some degree

of uncertainty, in that these lists are recovered from incomplete and

noisy reconstructions of the radio sky. To avoid such uncertainties

we generated a master catalogue of sources, which was then used

to create a simulated image of the sky. With absolute control over

the input catalogue and image characteristics, we are able to make

more definitive statements about the quality of the catalogues that

are produced.

The master source catalogue was generated with the following

constraints.

(i) Fluxes: the source peak flux is distributed as N(S) ∝ S−2.3, and

within the range (25 µJy, 10 Jy).

(ii) Positions: sources were randomly distributed in space within

one of 10 regions of sky similar to that in Fig. 2. Source clustering

was not considered.

(iii) Morphologies: the major and minor axes of each source were

randomly distributed in the range 0–52 arcsec with position angles

in the range ( −90◦, +90◦).

A simulated sky image was created, which contained each of the

sources in the input catalogue. The image has a 30-arcsec synthe-

sized beam, and a 25 µJy beam−1 rms Gaussian background noise.

The sources were injected with a peak flux and morphology as listed

in the catalogue. The size of the image is 4801 × 4801 pixels with a

scale of 6 arcsec pixel−1, resulting in a synthesized beam sampling

of 5 pixels beam−1. Regions of sky exterior to the catalogue contain

noise but no sources.

The simulated data set can be found online at

www.physics.usyd.edu.au/hancock/simulations.

5 SO U R C E - F I N D I N G E VA L UAT I O N

The source-finding packages described in Section 3 were used to

generate a catalogue of sources from the simulated images. Each

source-finding package was run with a 5σ threshold. In the case of

SFIND, the FDR was chosen so that the resulting threshold was equal

to 5σ .

The source-finding algorithms were evaluated by comparing

these catalogues with the input source catalogue. Three standard

metrics that have been used in the comparison of catalogues, and

hence source finders, are the completeness, reliability and flux dis-

tribution, as defined and discussed in Sections 5.2–5.5.

5.1 Cross-matching of catalogues

Much of the analysis that will be discussed in Sections 5.2–5.5 re-

lies on the cross–identification of sources from two catalogues. A

common criterion for accepting cross–identifications between cata-

logues is to choose the association with the smallest sky separation,

up to a maximum matching radius. To decrease the chances of false

associations we also consider the flux of the source when choosing

between multiple matches within a matching radius of 30 arcsec.

The distance in phase space, D, is given by

− log(D) =
(α1 − α2)2

σ 2
α

+
(δ1 − δ2)2

σ 2
δ

+
(S1 − S2)2

σ 2
S

, (1)

where (α, δ) are (RA, Dec.), S is the flux, and σ α = σ δ = 30 arcsec

is the size of the convolving beam and σS = 25 µJy beam−1 is the

image rms noise.

5.2 Flux distribution

The analysis of the flux distribution of a catalogue does not require

catalogues to be cross-matched. Since the input source catalogue

was constructed with a particular flux distribution, we should expect

to see this distribution replicated in the output catalogues. Fig. 3

shows the flux distribution for each of the source finders compared

to the input distribution. Except for SELAVY, each of the catalogues

have a flux distribution that is consistent with the input catalogue.

An excess of sources can be a sign of spurious detections, whilst

a lack of sources can be due to incompleteness. If a source-finding

algorithm has a flux distribution that deviates from the ideal case,
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Compact continuum source finding 1817

Figure 2. Simulated image of the sky. The black line delineates the region of sky containing the injected sources. The colour bar ranges from −5σ to 33σ .

it indicates that something is wrong, however, the cause of the

problem cannot be identified from this graph alone. SELAVY has

around double the number of sources at all flux levels as it suffers

from source fragmentation. Since the fragmented components are

close to the true position of the original source, the completeness

and reliability of SELAVY are only partly compromised.

5.3 Completeness

The completeness of a catalogue at a flux S0 is often defined as

the fraction of real sources with true flux S ≥ S0 that are contained

within the catalogue. In practice the completeness is measured as the

number of sources with a measured flux S ≥ S0 that are contained

within the catalogue. The two measures are comparable at large

SNR, but when the SNR is ∼5 the flux of a source can be in

error by ∼20 per cent. The completeness relative to the measured

source fluxes is also effected by Eddington (1913) bias, whereas the

completeness relative to the true source fluxes is not.

The completeness of a source finder was determined by matching

the simulated catalogue with each of the source-finding catalogues.

The completeness of a catalogue at a flux S0 is then the fraction of

real sources of flux greater than S0 which are contained within the

given catalogue. Fig. 4 shows completeness as a function of injected

SNR for each of the source finders. Plotted alongside each of the

completeness curves is a theoretical expectation of completeness

for comparison. The expected completeness has been determined

by taking each of the sources in the input catalogue and calculating

the probability that it will be seen at a particular flux level, given the

C© 2012 The Authors, MNRAS 422, 1812–1824

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
2
/2

/1
8
1
2
/1

0
4
1
8
7
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



1818 P. J. Hancock et al.

Figure 3. The source count distribution of the catalogued sources. The

true source count distribution is shown as a dotted line. SELAVY consistently

reports twice the true number of sources.

Figure 4. The completeness of each catalogue as compared to the input

catalogue. The coloured curves represent the completeness of the named

source finders. The black dotted curve represents the expected completeness

of an ideal source finder as calculated by equations (2) and (3).

known rms in the image. The expected completeness is calculated

as

C(S0) =
∑

S P (S > S0)
∑

S>S0
N (S)

, (2)

P (S > S0) =
1

σ

√

4 log 2

π

∫ ∞

S0

e−4 log 2((S′−S)/σ)
2

dS ′

=
1

2
Erfc

(√
4 log 2(S0 − S)

σ

)

, (3)

where P(S > S0) is the probability that a source of flux S will

be seen at a flux greater than S0 after noise has been included,

and N(S) dS is the number of sources with flux between S and S

+ dS. Erfc is the complementary error function. At SNR > 6 all

of the source-finding packages produce catalogues that are greater

than 99 per cent complete. The high completeness is due to, and

Figure 5. The FDR for each of the source-finding algorithms. The FDR

is entirely a function of the source-finding algorithm. No falsely detected

sources are expected above an SNR of 5 for the area of sky simulated.

Table 1. The completeness and reliability of each of the source-finding

algorithms. The ‘ideal’ case has been included for comparison.

Package Completeness (per cent) Reliability (per cent)

5σ 10σ 50σ 5σ 10σ 50σ

IMSAD 93.44 99.50 99.49 97.17 97.75 99.66

SELAVY 91.20 99.92 99.87 96.96 97.65 99.93

SEXTRACTOR 88.31 99.77 99.62 98.68 99.11 100.0

SFIND 82.48 99.81 99.75 96.09 99.79 100.0

AEGEAN 93.87 99.91 99.87 98.69 100.0 100.0

Ideal 94.51 100.0 100.0 100.0 100.0 100.0

responsible for, the wide-spread use of the given source finders. The

different levels of completeness shown in Fig. 4 is a direct result of

the source-finding algorithms implemented by each of the packages.

The performance of SFIND is comparable to the other source finders

above an SNR of 7, but less complete below this SNR. The lower

completeness is a result of SFIND’s focus on minimizing the FDR,

as is shown in Fig. 5. SELAVY and AEGEAN are the most complete

source-finding packages at all SNRs, however, SELAVY achieves this

at a cost of an increased FDR (see Section 5.4 and Fig. 4). AEGEAN

is able to achieve high completeness and low FDR at all SNRs. The

completeness of each of the source-finding packages is summarized

in Table 1.

5.4 False detection rate

The FDR of a source-finding package at a flux S0, is defined as the

fraction of catalogued sources with S ≥ S0 which are not identified

with a real source. The FDR of a source finder was determined by

matching the resulting catalogue with the simulated source list. Cat-

alogued sources which are not within 30 arcsec of a true sources are

considered false detections. The FDR of a source-finding algorithm

is related to the commonly used metric of reliability by

FDR + Reliability = 100 per cent. (4)

In Fig. 5 the FDR is plotted as a function of SNR for each of the

source-finding packages. Substituting a flux of S = 0 µJy into equa-
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Compact continuum source finding 1819

tion (3) and considering the area of sky covered by the simulated

images we expect that there is less than one false detection due to

random chance. Thus an ideal source-finding algorithm should have

an FDR of zero. The >1 per cent FDR peaks shown in Fig. 5 (espe-

cially for IMSAD) are due to islands of multiple sources that have not

been properly characterized. SEXTRACTOR, IMSAD and SELAVY have a

higher FDR than SFIND and AEGEAN, as the former are not able to

accurately characterize islands of pixels.

The single sources that are fragmented into multiple sources

by SELAVY often have positions that are close enough to the true

position that they are not considered false detections, and thus do

not significantly impact the FDR. However at low SNRs, SELAVY

breaks single sources into three or even four components, and one

or more of these components have a position distant enough from

the true source that they are registered as false detections. This is

evident in Fig. 5.

IMSAD suffers from the reverse problem to SELAVY, in that it will

never break islands into multiple components even when they con-

tain multiple sources. The position that is reported by IMSAD in such

situations can be sufficiently far from the true position that these

islands are registered as false detections. All of the false detections

for IMSAD above an SNR of 20 in Fig. 5 are due to this flaw.

The reliability of each of the source-finding packages is summa-

rized in Table 1.

5.5 Measured parameter correctness

For all measured catalogue sources that were identified with a true

source it is possible to compare the measured parameters to the

known true values.

Fig. 6 shows the median absolute deviation (MAD) in position,

as a function of SNR, for each of the source-finding algorithms.

The MAD is calculated for each SNR bin and is not a cumulative

measure. An ideal source-finding algorithm will have a typical error

in position that is proportional to C/SNR2, where C is a constant

that depends on the morphology of the source and the convolving

beam (see Condon 1997 for detailed a calculation). The MAD in

position of an ideal source-finding algorithm is calculated semi-

analytically by assuming that each source in the input catalogue has

measurement error of C/SNR2. This ideal curve is plotted in Fig. 6.

Figure 6. The accuracy with which each of the source-finding packages

determines the position of sources. The dotted grey curve is the expected

accuracy for an ideal elliptical Gaussian fit.

Figure 7. The accuracy with which each of the source-finding packages

measures the flux of sources as a function of the reported flux. The dotted

grey line is the expected accuracy for an ideal elliptical Gaussian fit.

As is expected, the accuracy with which a source position can

be measured increases with flux, and is in agreement with the per-

formance of an ideal Gaussian fitting routine, which is shown as

a dotted curve in Fig. 6. The deviations from ideal behaviour that

can be seen in Fig. 6 for the various source finders at high SNR are

artefacts of the reporting accuracy of the packages. For example,

IMSAD reports positions to a resolution of 0.1 arcsec and therefore

cannot achieve a median absolute deviation in position better than

∼0.1 arcsec. SFIND has similar problems at an SNR of �3000. The

median absolute position deviation for AEGEAN and SELAVY will also

deviate from ideal, but at an SNR in excess of the 40 000 reported

in Fig. 6. SEXTRACTOR does not use Gaussian fitting to characterize

source positions and therefore does not perform as well as the ideal

at SNR greater than 50. At an SNR of <100 SELAVY has a median

absolute position deviation that is higher than the ideal. This is

because of source fragmentation.

Fig. 7 shows the MAD in flux as a fraction of total flux, as a

function of SNR. Again the ideal behaviour of a Gaussian fitter has

been shown by a dashed curve. Overall the source-finding packages

report fluxes that are consistent with the expected ideal Gaussian fit,

the exceptions being SEXTRACTOR above an SNR of 50, and SELAVY

at an SNR below 50. SEXTRACTOR deviates from the ideal and has

a plateau at 1 per cent flux accuracy. In this work we use the cor-

rected isophotal fluxes (FLUX_ISOCOR) from SEXTRACTOR. Of all

the methods that are available for measuring fluxes in radio syn-

thesis images, the corrected isophotal fluxes was found to be the

most accurate. SELAVY deviates from the ideal case and has a flux

accuracy of about 1/2 of ideal. The cause of this deviation is source

fragmentation in which each component has only a fraction of the

total true flux (see Section 5.2 and Fig. 3).

5.6 Initial evaluation summary

Each of the source-finding algorithms conforms to a high standard

of completeness and reliability, and is able to produce a robust

catalogue of a statistically large number of sources, with accurate

measurements of position and flux. The completeness of the AEGEAN

source-finding package is as good as or better than any of the other

packages, and has been achieved without sacrificing reliability. In

the context of next generation radio surveys, we are interested in
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1820 P. J. Hancock et al.

the small differences between each of these source finders, and

in how to optimize the approach to avoid even the residual small

level of incompleteness and FDR. In surveys such as EMU (Norris

et al. 2011), with an expected 70 million sources, an FDR of even

1 per cent translates into 700 000 false sources. This clearly has an

impact on the study of rare or unusual behaviour. In particular we

are interested in how the source-finding algorithm affects the final

output catalogue at a level that is far more detailed than previously

explored. With this in mind we now delve into specific cases in

which existing source-finding packages fail.

6 MISSED SOURCES

We are now at the stage where we can consider the real sources that

were missed by the source-finding packages, as well as the false

detections that these programs generate. There are two populations

of sources that are missed by one or more of the source-finding

packages as will be discussed in Sections 6.1 and 6.2.

6.1 Isolated faint sources

In the simulated image, for which no clustering was taken into

account, 99.5 per cent of the islands contained a single source.

The first population of sources that was not well detected by the

source-finding algorithms are isolated faint sources. These sources

have a true flux greater than the threshold, but have few or no pixels

above the threshold due to the addition of noise. SFIND and SEXTRAC-

TOR require an island to have more than some minimum number of

pixels for it to be considered a candidate source. IMSAD, SELAVY and

AEGEAN have no such requirement. The number of sources that are

not seen in a catalogue due to the effects of noise can be calcu-

lated directly and is essentially the inverse problem to that of false

detections. A correction can be applied to any statistical measure

extracted from the catalogue in order to account for these missed

sources. The only way to recover all sources with a true flux above

a given limit is to have a threshold that is well below this limit,

either by producing a more sensitive image or by accepting a larger

number of false detections. Since this noise affected population of

sources cannot be reduced by an improved source-finding algo-

rithm, and can be accounted for in a statistically robust way, we will

consider this population to be non-problematic.

6.2 Islands with multiple sources

The second population of sources that is not well detected by the

source-finding packages are the sources that are within an island of

pixels that contains multiple components. Examples of such islands

are shown in Figs 8–10. If a source-finding algorithm is unable to

correctly characterize multiple sources within an island, some or all

of these sources will be missed. There are two approaches used by

the tested algorithms to extract multiple sources from an island of

pixels – iterative fitting and de-blending. Each of these approaches

can fail to characterize an island of sources for different reasons,

and will now be discussed in detail.

6.2.1 Iterative fitting

The first approach to characterizing an island of multiple com-

ponents is an iterative one which relies on the notion of a fitting

residual. The fitting residual is the difference between the data and

the model fit. In the iterative approach a single Gaussian is fit to

Figure 8. Top left: a section of the simulated image. Remainder: the fitting

residual for each of the source-finding algorithms. AEGEAN was the only

algorithm to fit all three sources, over both islands.

the island and the fitting residual is inspected. If the fitting residual

meets some criterion then the fit is considered to be ‘good’ and

a single source is reported. If the residual is ‘poor’ then the fit is

redone with an extra component. Once either the fitting residual is

found to be ‘good’ or some maximum number of components has

been fit, the iteration stops and the extracted sources are reported. A

disadvantage of this method is that if the number of allowed Gaus-

sians (n) is poorly chosen, islands containing single faint sources

can have a ‘better’ fitting residual when fit by multiple components,

and source fragmentation occurs. When a source is fragmented it is

difficult to extract the overall source parameters from the multiple

Gaussians that were used in the fitting of the source. In particular

the source flux is not simply the sum of the flux of the fragments. If

the chosen value of n is too small then not all of the sources within

an island will be characterized. These uncharacterized sources will

contaminate the fitting of the previously identified sources resulting

in a poor characterization of the island.

When the flux ratio of components within an island of pixels

becomes very large, an iterative fitting approach can fail. The cause

of this failure is related to the performance of an ideal Gaussian

fitting routine. Fig. 7 shows the fractional error in measuring the

amplitude of a Gaussian. For high SNR sources, the absolute flux

error can be orders of magnitude below the rms image noise, so

it may be expected that the maximum flux in the fitting residual

should also be at or below the rms image noise. However, the

main contribution to the flux seen in the fitting residual is not from

C© 2012 The Authors, MNRAS 422, 1812–1824
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Compact continuum source finding 1821

Figure 9. Top left: a section of the simulated image. Remainder: the fitting

residual for each of the source-finding algorithms. AEGEAN and SFIND were

able to correctly identify and characterize the two components but others

were not.

Figure 10. Left: an island of pixels from the simulated image containing

both a 9 Jy source and a 1.7 mJy source. Right: the fitting residual formed

by subtracting a (AEGEAN) fitted model of the 9 Jy source from the data. The

pixel scale is −3σ (white) to +5σ (black) with contours at an SNR of ±5, ±
50, ± 500 and ±5000 in contrasting tones. The flux of the source and its

major axis have both been measured to within 0.05 per cent of the true value

and yet the fitting residual has peaks at an SNR of over 500.

amplitude errors but from errors in estimating the full width at

half-maximum (FWHM) of the source.

The amplitude difference between a (1D) Gaussian of amplitude

A and FHWM of θ (= 2
√

2 log 2σ ) and a second Gaussian of

identical amplitude A and FWHM of θ ′ = θ + �θ is given by F(x):

F (x) = A
(

e−(x24 ln 2)/θ2 − e−(x24 ln 2)/θ ′2
)

, (5)

which has maxima at

x2
0 =

ln(θ/θ ′)

2 ln 2

(

θ ′2θ2

θ ′2 − θ2

)

. (6)

As a fraction of the true flux, the maximum residual is then

F (x0)

A
=

(

2�θ

θ

) (

1 +
2�θ

θ

)(θ/2�θ )

. (7)

The typical error in the measurement of θ is (Condon 1997)

�θ

θ
=

μ(θ )

θ
≃

σ

A
, (8)

so that a source with an SNR of A/σ will have a fitting residual with

an SNR of

F (x0)

σ
= 2

(

1 +
2σ

A

)A/2σ

. (9)

From equation (9) it is clear that in an island whose brightest source

has an SNR of A/σ , sources below an SNR of F(x0)/σ will not be

detected by an iterative fitting method. The fitting residual exceeds

5σ at an SNR as low as 11. Therefore, even an ideal Gaussian fitting

routine will miss 5σ sources that are within the same island as a

source of ≥11σ if an iterative approach is taken. If two Gaussian

components are fit to an island of pixels such as that shown in

Fig. 10, and the positions are left unconstrained, the fainter compo-

nent will migrate towards one of the maxima in the fitting residual.

The brighter source will then be characterized by two Gaussians,

and the fainter source by none. The final result is that neither of

the sources will be well characterized. It is therefore essential that

a source-finding algorithm has some method for determining the

number of Gaussian components within an island, as well as a way

to stop the fitting process from mischaracterizing the two sources.

A process called sectioning or de-blending is a common method.

6.2.2 Sectioning or de-blending

A second approach to characterizing islands with multiple sources

is to use the distribution of flux within the island to determine the

number of components to be fit, and then fit the components. This

approach relies on some a priori knowledge of what a source looks

like to break an island into components. SFIND, SEXTRACTOR and

AEGEAN all use a form of sectioning to generate an initial estimate of

the number of sources to be fit, as well as the starting parameters.

It is possible to create a statistical measure that will account for the

number of sources that are missed because there are multiple sources

within an island of pixels. This would, however, require detailed

knowledge of the source-finding algorithm, the flux distribution of

the source population, and the flux dependent two-point correlation

function. The complexity of this calculation means that it is never

computed and sometimes not even considered. Since many variable

phenomena appear in or near known sources (e.g. radio supernovae

in galaxies, extreme scattering events within our own Galaxy and

more), an inability to accurately characterize this population of

sources will make it difficult or impossible to reliably detect and

characterize many variable events.

7 T H E N E W SO U R C E - F I N D I N G P RO G R A M :

AEGEAN

With an understanding of how the underlying algorithms affect a

source finder’s ability to find and accurately characterize islands of

pixels, we have created a new source-finding algorithm. The goal

C© 2012 The Authors, MNRAS 422, 1812–1824
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1822 P. J. Hancock et al.

of the new algorithm is to incorporate the reliability and complete-

ness performance of the packages studied in Sections 3–6, whilst

improving on their ability to characterize islands of pixels. The

source-finding algorithm is called AEGEAN, as it deals with many

islands.

As background estimation and subtraction are not part of the focus

of this work, AEGEAN has been designed with only a simple back-

ground estimation algorithm. For the analysis presented, AEGEAN

was run with a detection threshold of 125 µJy beam−1. AEGEAN uses

the FLOODFILL algorithm described in Section 3.5 to create islands

of pixels. The operation of Aegean is demonstrated in Fig. 11.

AEGEAN makes use of the notion of a single curvature map to

characterize an island of pixels. The curvature κ of a function f (x)

is given by

κ =
f ′′

(1 + f ′2 )3/2
(10)

Figure 11. A demonstration of the operation of AEGEAN, using a single

multiple component island as example. The input image is used to create a

curvature map from which the curvature noise σ curve is calculated. FLOODFILL

is used to break the image into islands of pixels. The number of components

in an island is estimated using a combination of the curvature mask and

threshold mask. An elliptical Gaussian is fit to each of the components in

the island simultaneously.

(Reilly 1982). For a Gaussian with a FHWM of k pixels,

f ′(x) =
−16x ln 2

k2
e−(x28 ln 2)/k2

, (11)

so that f ′2 has a maxima at x = k/
√

2, and

f ′2 ≤
1

k2

(ln 2)2

29
. (12)

For a Gaussian with k ≥ 1, f ′2 ≪ 1 and we can approximate

κ ≃ f ′′. (13)

The curvature of a surface in a particular direction can be defined

using equation (13), where the differentiation is along a unit vector

in the chosen direction. Molinari et al. (2011) calculate the curva-

ture of their input image in four image directions in order assist their

source finding and characterization. We combine these four curva-

ture measurements to calculate the mean curvature of an image.

For an image convolved with a Gaussian with a FWHM of k pixels,

the (mean) curvature, κ̄ is equal to the mean of κ calculated in any

two orthogonal directions (Reilly 1982). The discrete 2D Laplacian

kernel,

L2
xy =

⎡

⎢

⎢

⎣

1 1 1

1 −8 1

1 1 1

⎤

⎥

⎥

⎦

, (14)

calculates the sum of the second derivatives in four directions. Con-

volving the input image with L2
xy will therefore produce a map of

2κ̄ – a single curvature map.

Islands of pixels are fit with multiple Gaussian components. The

number of components to be fit is determined from a curvature map.

The curvature map will be negative around local maxima. Groups

of contiguous pixels that have negative curvature and fluxes above

the threshold are called summits. An island of pixels will contain

one or more summits. AEGEAN fits one component per summit, with

the parameters of each of the components are taken from the corre-

sponding summit. The position and flux are initially set to be equal

to the brightest pixel within a summit, and the shape parameters

(major/minor axis and position angle) are set to be the same as the

convolving beam. Fig. 12 shows an example of two islands that

contain multiple sources with the island boundaries and regions

of negative curvature delimited. In the example in the left-hand

panel of Fig. 12 there are three regions of negative curvature that

are completely within the green island. This island is fit with three

Gaussians. In the example in the right-hand panel of Fig. 12 there

Figure 12. Two examples of the curvature analysis scheme. The grey-scale

represents the flux density map and ranges from −3σ (white) to +10σ

(black). The green contour is at 5σ and represents the island boundary. The

red contours are where the curvature map changes from positive to negative.

Regions surrounded by a red contour have negative curvature and are the

local maxima.
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Compact continuum source finding 1823

are two regions of negative curvature that overlap with the island

of pixels. One component is contained entirely within the island,

whilst the other is only partly within the island. Only the region of

negative curvature that is within the green island is considered when

estimating the initial parameters of the components. Both of the is-

lands depicted in Fig. 12 contains a source that is bright enough

that the expected fitting residual would be brighter than any of the

other components within the island, and therefore an iterative fit-

ting approach would only fit a single component (see Section 6.2.1).

Since the island of pixels in the right-hand panel of Fig. 12 has two

summits, AEGEAN is able to accurately detect and characterize both

components. Islands of pixels that contain only a single source have

only a single summit and are fit with a single component.

To avoid faint components migrating to the fitting residual of

brighter components, the position of each of the components is

constrained to be within the corresponding summit. The flux of

each component must be greater than 5σ . For low SNR sources,

the true flux can be significantly different from the intensity of the

brightest pixel in the summit, Smax. For high SNR sources such noise

variations are less important and beam sampling effects become

more important.

For an image with a sampling rate of k pixels per beam a source

of flux S which is located at the intersection of four pixels will ef-

fectively be sampled
√

2(θ/2k) pixels from the centre of the source.

The intensity of the peak pixel is therefore given by

Smax = S exp

⎛

⎜

⎝
−

(√
2θ/2k

)2

4 ln 2

θ2

⎞

⎟

⎠
(15)

= S 2−(2/k2), (16)

where θ is the FWHM of the source. The flux of each component

is therefore constrained to be less than Smax 22/k2 + 3σ .

A Gaussian function has negative curvature from the peak out to

±FWHM/
√

2. The size of a summit is therefore used to constrain

the component size. The major and minor axes of a component must

be larger than the synthesized beam, and must remain smaller than√
2 times the width of the summit. Beam sampling effects again

play a role here, and so in AEGEAN, we increase the limits on the

major and minor axes each by two pixels to account for this. If the

summit is smaller than the synthesized beam then the component is

fit with the PSF.

The performance of AEGEAN has been presented in Sections 5 and

6 along with the other source-finding algorithms under study.

8 C O N C L U S I O N S

Using a simulated data set, we have assessed the performance of

some widely used source-finding packages, along with the ASKAP-

soft source-finding program SELAVY. These source-finding packages

are found to produce complete and reliable catalogues of isolated

compact sources. We identify two populations of sources that are

not well detected by the source-finding packages. The first popula-

tion being faint sources close to the detection limit, and the second

being sources which are within an island of pixels containing mul-

tiple components. Islands of pixels with multiple components are

found to be poorly characterized by source-finding packages that

take an iterative fitting approach to characterization. Source-finding

packages that estimate the number of components in an island prior

to fitting are less likely to mischaracterize the island. We have de-

veloped a new source-finding package, AEGEAN, which is able to

characterize the number of components within an island of pixels

more accurately than any of the other packages tested.

AEGEAN makes use of a curvature image which is derived from

the input image with a Laplacian transform. Using the curvature

image AEGEAN is able to accurately determine the number of compact

components within an island of pixels and produce a set of initial

parameters and limits for a constrained fit of multiple elliptical

Gaussians.

AEGEAN has been shown to produce catalogues with a 5σ com-

pleteness that is better than our estimation of an ideal source finder.

This completeness has been achieved without sacrificing reliability,

and AEGEAN is the most reliable of the tested algorithms. The next

generation of radio surveys will be sensitive enough that ∼5 per cent

of the islands in the image will contain multiple components and

therefore the ability to characterize such islands is of critical im-

portance. AEGEAN is able to accurately characterize islands of pixels

which contain multiple compact components.

We have shown that in order to improve the reliability and com-

pleteness of source catalogues it is necessary to perform constrained

multiple Gaussian fitting. An accurate estimation of initial parame-

ters and sensible constraints are both critical when multiple compo-

nent Gaussian fitting is performed. We have demonstrated a method

for estimating and constraining the fitting parameters which is based

on the curvature of the image. We anticipate that by adopting the

AEGEAN algorithm, the next generation of radio continuum surveys

will be able to achieve more complete, reliable and accurate cata-

logues without relying on significant manual intervention.
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