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Abstract— A novel nonlinear model order reduction method is
proposed for constructing one-port dynamic compact models of
nonlinear heat diffusion problems for ultra-thin chip stacking
technology. The method leads to models of small state-space
dimensions, which allow accurately reconstructing the whole
time evolution of the temperature field due to an arbitrary
power waveform of practical interest. The approach is also
efficient, since the computational time/memory requirements for
constructing each dynamic compact model is about one order of
magnitude lower than that corresponding to a single 3-D finite
element method transient simulation of a nonlinear problem.

Index Terms— Dynamic compact thermal model (DCTM),
nonlinear model order reduction (MOR), self-heating, thermal
impedance, ultra-thin chip stacking (UTCS).

I. INTRODUCTION

THERMAL management is becoming crucial for state-
of-the-art highly-integrated electronic systems, which

are adversely impacted by over-heating in both performance
and reliability. Unfortunately, the design of such systems
is typically supported by computationally onerous numerical
simulations relying on the finite difference or finite element
methods (FEM), since analytical solutions of the heat equation
are available only for over-simplified cases. Consequently,
in the last decades, a considerable effort has been made to
develop dynamic compact thermal models (DCTMs) which,
once constructed, allow determining the time evolution of the
temperatures of the electronic components at a much lower
cost than conventional numerical approaches [1]–[4].

Particularly attractive is the Model Order Reduction (MOR)
approach introduced by one of the authors in his Multi-
Point Moment Matching (MPMM) technique [5]–[9]. Such
method not only leads to accurate DCTMs of small state-
space dimensions for estimating the time evolution of the
temperatures of the electronic components, but, unlike other
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approaches, it also allows reconstructing the whole space-time
evolution of the temperature field. Moreover, differently from
other techniques, the construction of the DCTMs avoids long
transient simulations, since it involves only a limited number
of much faster frequency domain simulations of discretized
linear heat diffusion equations.

Almost all the proposed approaches for constructing
DCTMs apply only to linear thermal problems, in which the
thermal properties of materials are assumed to be temperature-
independent. However, for many heat diffusion problems in
electronic components, the temperature dependence of thermal
conductivities cannot be neglected [10]. A relevant case,
here considered, is that of electronic modules fabricated in
ultra-thin chip stacking (UTCS) technology [11]–[13]. The
commonly adopted approach for constructing DCTMs devised
for nonlinear thermal problems is based on the Kirchhoff’s
transformation [14], [15], by which the solution to the non-
linear heat diffusion problem is mapped onto the solution to
a linear problem. However, this approach in practice provides
exact results only under steady-state conditions and assuming
a single material for the whole geometrical domain, while
introducing large inaccuracies in most cases, like in UTCS
architectures.

In this paper, a novel MOR method inspired by previous
approaches [16]–[19] is proposed for constructing DCTMs
of nonlinear heat diffusion problems in UTCS technology.
It stems from a novel reformulation of the nonlinear heat diffu-
sion equations in a form the projection of which directly leads
to a nonlinear compact model. Such projection is performed
by preserving the nonlinear structure of the reformulated
heat diffusion equations [20], [21]. The projection space is
determined from a few moments of the Volterra’s [16]–[22]
series expansion of the solution to the nonlinear heat diffusion
problem. Although this approach can in principle be used to
solve the analytical nonlinear heat transfer equation, in this
paper it is actually applied to the FEM discretization of this
equation, which is crucial in industrial applications.

The method extends from the linear to the nonlinear case
most of the advantages of the MPMM approach in terms of
efficiency and accuracy, i.e., the extracted DCTMs are of small
state-space dimensions and, once constructed, allow dramat-
ically reducing the time/storage requirements in comparison
with classic numerical approaches. The construction of the



DCTMs is extremely fast since it requires the solution to a
limited number of discretized linear equations in the complex
frequency domain. The DCTMs are suited to determine the
whole space-time evolution of the temperature field for arbi-
trarily complex domains and power profiles.

As a first investigation, the analysis focuses on the case of
one-port DCTMs, variously analyzed in literature in the linear
case [23] because of its practical relevance, corresponding to
UTCS in which one independent power source is active. Such
one-port DCTM includes the chosen boundary conditions,
assumed of homogeneous Robin’s type, and considers initial
ambient temperature. The extension of the proposed approach
for constructing multi-port DCTMs suited to describe UTCS
in which multiple independent power sources are concurrently
active, as well as DCTMs independent of boundary and initial
conditions [2]–[4], is currently under investigation.

This paper is organized as follows. In Section II, after
discussing the limitations of the Kirchhoff’s transformation,
the nonlinear heat diffusion problem is reformulated in a novel
way. In Section III, it is shown how DCTMs can be derived
by projecting the reformulated heat diffusion equations in a
way that preserves their nonlinear structure. In Section IV,
the projection space is determined by computing the first
moments of the Volterra’s series expansions for the solution
to the nonlinear heat diffusion problem, leading to a DCTM
suited to evaluate the temperature rise in the whole physical
domain for an arbitrarily shaped power profile. In Section V,
the proposed procedure is applied to perform an extensive
analysis of the nonlinear heat diffusion problem in a highly-
integrated electronic UTCS system.

II. REFORMULATION OF THE NONLINEAR

HEAT DIFFUSION PROBLEM

A nonlinear heat diffusion problem, in the spatial domain �,
is ruled by

ρ(r, ϑ(r, t))c(r, ϑ(r, t))
∂ϑ

∂ t
(r, t) +

+∇ · [−k(r, ϑ(r, t))∇ϑ(r, t)] = q(r, t) (1)

in which the unknown ϑ(r, t), function of the position vector r

and of the time instant t , is the temperature rise with respect
to ambient temperature T0 = 300 K due to the power density
q(r, t). In general, the mass density ρ(r, ϑ(r, t)), the specific
heat c(r, ϑ(r, t)), and the thermal conductivity k(r, ϑ(r, t))

depend on the temperature rise ϑ(r, t). Robin conditions are
assumed on the boundary ∂� of �, in the form

−k(r, ϑ(r, t))
∂ϑ

∂n
(r, t) = h(r, ϑ(r, t))ϑ(r, t) (2)

in which n(r) is the outward normal unit vector, and
h(r, ϑ(r, t)) is the heat transfer coefficient, which in general is
temperature-dependent. Due to the difficulty in estimating the
heat transfer coefficients, often either Neumann or Dirichlet
homogeneous boundary conditions are preferred, which can
be obtained from (2) by taking the limits h(r) → 0 and
h(r) → ∞, respectively. Homogeneous initial conditions are
considered

ϑ(r, 0) = 0. (3)

A thermal model can be defined as usual [9]. Thus, for the
one-port case considered hereinafter, the power density q(r, t)

is written in the form

q(r, t) = g(r)P(t) (4)

in which P(t) is the power dissipated by the active heat source
and injected at the port of the thermal model, while

T (t) = T0 +

∫

�

g(r)ϑ(r, t) dr (5)

defines the average temperature of the active heat source,
measured at the port of the thermal model. It is noted that
the normalized thermal response to a dissipated power step P

is introduced as

ZTH(t) =
T (t) − T0

P
. (6)

Following a common practice, ZTH(t) is referred to as thermal

impedance and its steady-state value is denoted as thermal

resistance and indicated by RTH.
The most common approach for determining a DCTM for

a nonlinear heat diffusion problem exploits the Kirchhoff’s
transformation [24]. In such an approach, the thermal para-
meters are assumed to take the form

ρ(r, ϑ(r, t))c(r, ϑ(r, t)) = ρ(r, 0)c(r, 0) f (ϑ(r, t))

k(r, ϑ(r, t)) = k(r, 0) f (ϑ(r, t))

h(r, ϑ(r, t)) = h(r, 0)

∫ ϑ(r,t)

0
f (ϑ ′) dϑ ′

ϑ(r, t)

being f (·) a given positive function. In this case, by the change
of variable

u(r, t) =

∫ ϑ(r,t)

0
f (ϑ ′) dϑ ′ = F(ϑ(r, t)) (7)

the nonlinear heat diffusion problem is mapped onto the linear
heat diffusion equation

ρ(r, 0)c(r, 0)
∂u

∂ t
(r, t)+∇ · [−k(r, 0)∇u(r, t)]=q(r, t) (8)

with linear boundary conditions

−k(r, 0)
∂u

∂n
(r, t) = h(r, 0)u(r, t) (9)

and linear initial conditions

u(r, 0) = 0. (10)

From the solution to this linear heat diffusion problem, the
solution to the nonlinear problem is simply achieved by
inverting the Kirchhoff’s transformation (7). As a result, a
DCTM of the nonlinear heat diffusion problem (1), (2) is
obtained by determining a DCTM of the linear heat diffusion
problem (8), (9) by any suitable technique such as the MPMM
approach [6], and inverting (7).

However, when considering electronic modules fabricated in
UTCS technology, the thermal conductivity of the materials is
commonly assumed to depend on ϑ(r, t) according to

k(r, ϑ(r, t)) = k1(r)

(

1 +
ϑ(r, t)

T0

)m(r)

+ k2(r) (11)



in which parameters k1(r), k2(r), and m(r) have different
values in the individual layers. Besides, the specific heat
c(r), the mass density ρ(r), and the heat transfer coefficient
h(r) are commonly assumed to be temperature-independent.
In such a case, the Kirchhoff’s transformation approach does
not rigorously apply.

A practical widely-adopted solution is to assume a spatially
uniform temperature dependence for all material thermal para-
meters, of the form (11) with k2 = 0 and m considered inde-
pendent of the position vector r, and to apply the Kirchhoff’s
transformation approach. In this way, f (ϑ ′) = (1 + ϑ ′/T0)

m

so that Kirchhoff’s transformation is

u(r, t) = F(ϑ(r, t)) =
T0

m + 1

[

(

1 +
ϑ(r, t)

T0

)m+1

− 1

]

.

Its inverse

ϑ(r, t) = T0

[

(

1 +
m + 1

T0
u(r, t)

)
1

m+1

− 1

]

(12)

can thus be used for transforming the solution to the linear
heat diffusion equations (8)–(10) into an approximation of
the solutions to the nonlinear heat diffusion equations (1)–(3).
As an extension to this approach, the transformation proposed
by Batty et al. in [25]–[27] can be also used. In this method,
first, the transformed temperature rise v(r, τ ) is determined
as the solution to the linear heat diffusion equations obtained
from (8)–(10) by substituting t with τ and u(r, t) with v(r, τ ).
Second, the time variable t is reconstructed from τ by

t =

∫ τ

0

(

1 +
m + 1

T0
v(r, τ ′)

)− m
m+1

dτ ′

and the transformed temperature rise u(r, t) = v(r, τ ) is com-
puted. Last, the inverse Kirchhoff’s transformation (12) is used
to map u(r, t) into an approximation of the temperature rise
ϑ(r, t).

As numerically shown in Section V, in UTCS modules both
these transformations introduce large inaccuracies that cannot
be controlled. For this reason, a rigorous, alternative strategy to
dynamic compact thermal modeling of nonlinear heat diffusion
is highly desired.

In this paper, we propose a novel approach, which is not
based on the aforementioned transformations but in which
the nonlinear heat diffusion problem is reformulated in an
equivalent way. In particular, by introducing the additional
variable

λ(r, t) =

(

1 +
ϑ(r, t)

T0

)m(r)

− 1, (13)

equations (1) and (2) are rewritten in the form

ρ(r)c(r)
∂ϑ

∂ t
(r, t) + ∇ · [−(k0(r) + k1(r)λ(r, t))∇ϑ(r, t)]

= g(r)P(t) (14)

−(k0(r) + k1(r)λ(r, t))
∂ϑ

∂n
(r, t) = h(r)ϑ(r, t) (15)

being k0(r) = k1(r) + k2(r). Besides, by deriving (13) with
respect to time, it is obtained

(T0 + ϑ(r, t))
∂λ

∂ t
(r, t) = m(r)(1 + λ(r, t))

∂ϑ

∂ t
(r, t). (16)

Equation (16) is equivalent to (13), when the initial condition

λ(r, 0) = 0 (17)

is introduced. As a result, the nonlinear heat diffusion problem
(1)–(3) is reformulated by (3) and (14)–(17) in the following.
The thermal model is still defined by (4) and (5).

III. STRUCTURE-PRESERVING COMPACT MODELING

A DCTM is here achieved from the nonlinear heat diffusion
equations, as reformulated in Section II, by a novel projection
approach which preserves their nonlinear structure. To this
aim, ϑ(r, t) is approximated in the form

ϑ(r, t) =

n̂ϑ
∑

j=1

ϑ j (r) ϑ̂ j (t) (18)

in which ϑ j (r), with j = 1, . . . , n̂ϑ , are a small number
of basis functions, which will be determined in Section IV.
Likewise, λ(r, t) is approximated in the form

λ(r, t) =

n̂λ
∑

k=1

λk(r) λ̂k(t) (19)

in which λk(r), with k = 1, . . . , n̂λ, are a small number of
basis functions, which again will be determined in Section IV.
It is noted that the number n̂ϑ of the basis functions ϑ j (r) and
the number n̂λ of the basis functions λ j (r) are not necessarily
equal.

By multiplying (14) by ϑi (r), integrating over �, applying
the divergence theorem and recalling (15), (18), and (19), the
following equation is obtained:

n̂ϑ
∑

j=1

ĉ0
i j

dϑ̂ j

dt
(t) +

n̂ϑ
∑

j=1

k̂0
i j ϑ̂ j (t) +

n̂ϑ
∑

j=1

n̂λ
∑

k=1

k̂1
i j k ϑ̂ j (t)λ̂k(t)

= ĝi P(t) (20)

in which

ĉ0
i j =

∫

�

ρ(r)c(r)ϑi(r)ϑ j (r) dr (21)

k̂0
i j =

∫

�

k0(r)∇ϑi (r) · ∇ϑ j (r) dr +

∫

∂�

h(r)ϑi (r)ϑ j (r) dr

k̂1
i j k =

∫

�

k1(r)λk(r)∇ϑi (r) · ∇ϑ j (r) dr

ĝi =

∫

�

g(r)ϑi(r) dr. (22)

Similarly, multiplying (16) by λi (r), integrating over � and
recalling (18) and (19), it is found

T0

n̂λ
∑

k=1

γ̂ 0
ik

dλ̂k

dt
(t) +

n̂ϑ
∑

j=1

n̂λ
∑

k=1

γ̂ 1
i j k ϑ̂ j (t)

dλ̂k

dt
(t)

=

n̂ϑ
∑

j=1

µ̂0
i j

dϑ̂ j

dt
(t) +

n̂ϑ
∑

j=1

n̂λ
∑

k=1

µ̂1
i j k

dϑ̂ j

dt
(t)λ̂k(t) (23)



in which

γ̂ 0
ik =

∫

�

λi (r)λk(r) dr

γ̂ 1
i j k =

∫

�

λi (r)λk(r)ϑ j (r) dr

µ̂0
i j =

∫

�

m(r)λi (r)ϑ j (r) dr

µ̂1
i j k =

∫

�

m(r)λi (r)λk(r)ϑ j (r) dr.

Also, from (3) and (17), the initial conditions for the compact
model follow

ϑ̂i (t) = 0, i = 1, . . . , n̂ϑ

λ̂k(t) = 0, k = 1, . . . , m̂λ.

From (5) and (18), the DCTM defined by (20) and (23) leads
to an approximation of the temperature T (t) of the active heat
source given by

T̂ (t) = T0 +

n̂ϑ
∑

j=1

ĝ j ϑ̂ j (t) (24)

in which ĝi are defined by (22). As a post-processing, it allows
reconstructing the whole temperature rise evolution ϑ(r, t)

within � in the form

ϑ̂(r, t) =

n̂ϑ
∑

j=1

ϑ j (r) ϑ̂ j (t). (25)

It is noted that the novel projection method here adopted
preserves the nonlinear structure of the heat diffusion problem,
as reformulated in Section II. As a result, the nonlinear DCTM
is expected to match the qualitative properties of the nonlinear
heat diffusion problem. A quantitative match can be achieved
by choosing the basis functions ϑ j (r), with j = 1, . . . , n̂ϑ

and λ j (r), with j = 1, . . . , n̂λ as described in Section IV.

IV. BASIS FUNCTIONS FROM VOLTERRA’S

SERIES MOMENTS

As it is well known, for a single-input single-output time-
invariant nonlinear dynamic system, under proper regularity
conditions, the input u(t) and output y(t) are related by a
Volterra’s series expansion in the form

y(t)=

∞
∑

m=1

∫ +∞

0
· · ·

∫ +∞

0
hm(t1, t2, . . . , tm)u(t − t1)u(t − t2)

× · · · u(t − tm) dt1 dt2 . . . dtm

in which hm(t1, t2, . . . , tm) are the m-th-order Volterra ker-
nels, assumed to be symmetric with respect to t1, t2, . . . , tm .
By taking the multidimensional Laplace transforms of
hm(t1, t2, . . . , tm), it is obtained

Hm(s1, s2, . . . , sm) =

∫ +∞

0
· · ·

×

∫ +∞

0
hm(t1, t2, . . . , tm)e−(s1t1+s2t2+···+sm tm)dt1 dt2 . . . dtm .

The Laplace transforms U(s), Y (s) of u(t), y(t), respectively,
are then related by

Y (s) =

∞
∑

m=1

1

(2π i)m−1

∫ σ1+i∞

σ1−i∞

· · ·

×

∫ σm+i∞

σm−i∞

Ym(s−s1· · ·−sm−1, s1,. . . ,sm−1)ds1. . .dsm−1

in which

Ym(s1, s2, . . . , sm)= Hm(s1, s2, . . . , sm)U(s1)U(s2) · · ·U(sm).

As a result, the output variable y(t) can be recovered from
the Volterra’s series terms Ym(s1, s2, . . . , sm), which can be
assumed to be symmetric with respect to s1, s2, . . . , sm .

Such Volterra’s series terms are now considered for the
solution to the nonlinear heat diffusion problem. To this aim,
by introducing the additional variables ϕ(r, t), ω(r, t)

∂ϑ

∂ t
(r, t) = ϕ(r, t) (26)

∂λ

∂ t
(r, t) = ω(r, t) (27)

(14)–(16) are rewritten, respectively, in the form

ρ(r)c(r)ϕ(r, t) + ∇ · [−(k0(r) + k1(r)λ(r, t))∇ϑ(r, t)]

= g(r)P(t) (28)

−(k0(r) + k1(r)λ(r, t))
∂ϑ

∂n
(r, t) = h(r)ϑ(r, t) (29)

(T0 + ϑ(r, t))ω(r, t) = m(r)(1 + λ(r, t)) ϕ(r, t). (30)

Then, Volterra’s series expansion terms m(r, sm), �m(r, sm),
�m(r, sm), �m(r, sm) are computed for ϑ(r, t), ϕ(r, t),
λ(r, t), ω(r, t), respectively, in which the notation sm =

(s1, s2, . . . , sm) is adopted. Using well-known properties of the
theory of Volterra’s series expansion [22], [28], from (26)–(29)
it follows:

|sm | m(r, sm) = �m(r, sm) (31)

|sm | �m(r, sm) = �m(r, sm). (32)

and (33)–(35), as shown at the top of the next page.
In these expressions, pm is a vector of m elements equal

to either zero or one, | pm | indicates the sum of the elements
of vector pm , and p′

m is the vector obtained from pm by
exchanging all zeros with ones. Also, s

pm
m is the vector

obtained by selecting the elements of sm corresponding to
the ones of pm . The iterative solution of these equations, for
m = 1, 2, . . . determine all Volterra’s series expansion terms
m(r, sm), �m(r, sm), �m(r, sm), �m(r, sm).

Multidimensional Taylor series expansions of m(r, sm) can
be written around any chosen value σm of sm in the form

m(r, sm) =
∑

αm

m,αm (r, σm)(sm − σm)αm

in which αm are all multi-indexes of m elements and
m,αm (r, σm) are the moments of m(r, sm). Similar series
expansions around σm can be introduced for the other quan-
tities �m(r, sm), �m(r, sm) and �m(r, sm).

In order to determine the basis functions ϑ j (r), with
j = 1, . . . , n̂ϑ , and λ j (r), with j = 1, . . . , n̂λ, a set



ρ(r)c(r)�m(r, sm)+∇·[−k0(r)∇m(r, sm)]+

m−1
∑

k=1

∇·

⎡

⎣−k1(r)
∑

| pm |=k

�k

(

r, s
pm
m

)

∇m−k

(

r, s
p′

m
m

)

⎤

⎦

/(

m

k

)

=g(r)δm1 (33)

−k0(r)
∂m

∂n
(r, sm) −

m−1
∑

k=1

k1(r)
∑

| pm | = k

�k

(

r, s
pm
m

)∂m−k

∂n

(

r, s
p′

m
m

)

/(

m

k

)

= h(r)m(r, sm) (34)

�m(r, sm)+

m−1
∑

k=1

∑

| pm |=k

k

(

r, s
pm
m

)

�m−k

(

r, s
p′

m
m

)

/(

m

k

)

=

= m(r)�m(r, sm) + m(r)

m−1
∑

k=1

∑

| pm |=k

�k

(

r, s
pm
m

)

�m−k

(

r, s
p′

m
m

)

/(

m

k

)

. (35)

|σm | ρ(r)c(r)m,αm (r, σm) + ∇ · [−k0(r)∇m,αm (r, σm)] = −

m
∑

k=1

ρ(r)c(r)m,αm−em,k (r, σm) +

−

m−1
∑

k=1

∇ ·

[

− k1(r)
∑

| pm |=k

�
k,α

pm
m

(

r, σ
pm
m

)

∇
m−k,α

p′
m

m

(

r, σ
p′

m
m

)

]/(

m

k

)

+ g(r)δm1δαm0 (36)

−k0(r)
∂m,αm

∂n
(r, σm) − h(r)m,αm (r, σm) = −

m−1
∑

k=1

k1(r)
∑

| pm |=k

�
k,α

pm
m

(r, σ
pm
m )

∂
m−k,α

p′
m

m

∂n
(r, σ

p′
m

m )

/(

m

k

)

(37)

�m,αm (r, σm) = −

m−1
∑

k=1

∑

| pm |=k


k,α

pm
m

(r, σ
pm
m )�

m−k,α
p′

m
m

(r, σ
p′

m
m )

/(

m

k

)

+

+ m(r)�m,αm (r, σm) + m(r)

m−1
∑

k=1

∑

| pm |=k

�
k,α

pm
m

(r, σ
pm
m )�

m−k,α
p′

m
m

(r, σ
p′

m
m )

/(

m

k

)

(39)

of expansion points σm and expansion orders qm is now
chosen with m = 1, 2, . . . , r . By proceeding iteratively
with |αm | = 0, 1, . . . , qm and m = 1, 2, . . . , r , as a con-
sequence of (31)–(35), moments m,αm (r, σm) are deter-
mined by solving the linear heat diffusion problems in the
frequency domain (36) and (37), as shown at the top of
the page, in which the right hand sides (RHSs) are known
from previous iterations. Moments �m,αm (r, σm) are explicitly
determined as

�m,αm (r, σm) = |σm | m,αm (r, σm) +

+

m
∑

k=1

m,αm−em,k (r, σm) (38)

in which the RHS is known. Moments �m,αm (r, σm) are
evaluated as (39), as shown at the top of the page, in which the
RHS is known. Lastly, moments �m,αm (r, σm) are obtained
from

�m,αm (r, σm)

=

(

�m,αm (r, σm) −

m
∑

k=1

�m,αm−em,k (r, σm)

)

/|σm | (40)

in which again the RHS is known. The basis functions
ϑ j (r), with j = 1, . . . , n̂ϑ and λ j (r), with j = 1, . . . , n̂λ,
are then determined as any linear combinations of the
moments m,αm (r, σm) and �m,αm (r, σm), respectively, with
|αm | ≤ qm and m = 1, 2, . . . , r . It is noted that the
chosen basis functions are not related to particular choices

of the dissipated power P(t), but to the local expansion of
the solution to the nonlinear heat diffusion equation in the
neighborhood of power P(t) = 0. Despite the locality of this
expansion, the resulting DCTMs turn out to be accurate up
to values of the power P(t) far above the largest significant
levels, as verified by numerical experiments in Section V.

The following remarks can be made.

1) Only in exceptional situations, in which the geometries
and material parameters are over-simplified, the linear
heat diffusion equations (36) and (37) can be solved in
closed form. This difficulty is overcome by numerically
solving (36) and (37) through a discretization method.
An efficient and accurate discretization method here
used is FEM with second-order spatial approximation
of the temperature rise m,αm (r, σm) over a tetrahedral
mesh. The resulting linear systems of equations, having
symmetric, positive definite coefficient matrices, can be
solved by various iterative solvers. The algorithm here
used is the conjugate gradient algorithm with incomplete
Choleski preconditioning. It is noted that the compu-
tational complexity of the entire approach is almost
entirely due to the computational complexity of such
iterative solver.

By introducing second-order spatial approximations
also for the quantities �m,αm (r, σm), �m,αm (r, σm), and
�m,αm (r, σm), the solutions to (38)–(40) are simply
achieved by evaluating (38)–(40) for the values of the
position vector r at which the degrees of freedom



TABLE I

VALUES OF THE EXPANSION POINTS σm AND MULTI-INDEXES αm

(DoFs) of m,αm (r, σm), �m,αm (r, σm), �m,αm (r, σm),
and �m,αm (r, σm) are set.

It is noted that the resulting equations for
iteratively determining the discretizations of moments
m,αm (r, σm), �m,αm (r, σm), �m,αm (r, σm), and
�m,αm (r, σm) are constructed at a much lower
computational cost with respect to previous nonlinear
MOR approaches using Volterra’s series [16], [18],
[19], in which computationally expensive Kronecker’s
tensor products have to be computed.

2) There is no strict prescription for choosing the expansion
points σm and matching orders qm , with m = 1, . . . , r .
An effective strategy is here adopted which extends the
choice of expansion points used for linear heat diffusion
problems in the MPMM approach. In MPMM, a set of
l real expansion points β1 < β2 < · · · βl is introduced
as detailed in [6]. Such expansion points are used for
defining the set of expansion points σ m and multi-
indexes αm , with m = 1, . . . , r shown in Table I. As a
result, in this way, lr moments are determined by solving
lr linear systems. As verified by numerical experiments
in Section V, in order to get accurate approximations
of the space-time evolution of temperature, l not larger
than 15 and r not larger than 4 can be assumed. As
a result, the determination of a DCTM avoids long 3-D
FEM transient simulations particularly demanding in the
nonlinear case, while involving only a limited number
of much faster simulations of 3-D FEM linear heat
diffusion equations in the complex frequency domain.

3) In order to avoid ill conditioning of the DCTM, among
all linear combinations of moments m,αm (r, σm), with

|αm | ≤ qm and m = 1, . . . , r , the basis functions ϑ j (r),
with j = 1, . . . , n̂ϑ , are chosen as a set of orthonormal
functions, so that

∫

�

ϑi (r)ϑ j (r) dr = δi j

in which δi j is Kronecker’s delta symbol. Such basis
functions are here determined by applying the Singular
Value Decomposition (SVD) algorithm as follows. Let
vi (r), with i = 1, . . . , n̂ be any sort of the chosen
moments m,αm (r, σm), with |αm | ≤ qm and m =

1, . . . , r , and let M = [mi j ] be the matrix of order n̂

given by

mi j =

∫

�

vi (r)v j (r) dr.

Since M is real, symmetric, positive definite, it can be
written in the form

M = UT DU

in which U = [ui j ] is a real orthogonal matrix of
order n̂ and D is a diagonal matrix with positive diagonal
elements d1 ≤ d2 ≤ · · · dn̂ . The set of orthonormal
basis functions ϑ j (r), with j = 1, . . . , n̂, is then
determined as

ϑ j (r) =

n̂
∑

i=1

vi (r)ui j /
√

d j .

Each basis functions ϑ j (r), with j = 1, . . . , n̂ is
associated to a singular value

√

d j . As a consequence
of the characteristics of the SVD decomposition, for a
sufficiently small value of the parameter ε, the basis
functions ϑ j (r) associated to the singular values

√

d j

such that
√

d j/d1 < ε, can be disregarded, with-
out sacrificing the accuracy in the approximation (18).
As verified by numerical experiments in Section V,
values of ε larger that 10−6 can be assumed. In this way,
the number of basis functions is further reduced from n̂

to n̂ϑ . Analogous considerations can be repeated for con-
structing the basis functions λ j (r), with j = 1, . . . , n̂λ.
As verified by numerical experiments in Section V, in
order to get accurate approximations of the space-time
evolution of temperature, n̂ϑ and n̂λ not larger than 25
can be assumed. As a result, DCTMs of small state-
space dimensions are achieved. The simulation of such
DCTMs hence implies negligible computational cost
with respect to a conventional FEM approach.

V. CASE STUDIES IN UTCS TECHNOLOGY

Emerging multichip technologies provide an opportunity to
increase the integration density of semiconductor systems so
as to yield smaller, lighter, and cheaper products. Nowadays,
extremely dense modules are fabricated in UTCS technology,
which exploits the recent advances in wafer thinning, as well
as in attachment, bonding, and interconnection. In UTCS
systems, multiple silicon chips thinned down to 10 µm are
vertically integrated on a single (inactive) host silicon sub-
strate, being the electrical insulation among them ensured by



Fig. 1. Cross-section of the stacked two-chip UTCS module under test
(not to scale).

layers of benzocyclobutene (BCB), a photosensitive polymer
with good planarization properties [11], [12], [29], [30]; the
resulting stack provides larger circuitry integration than in
2-D ICs. Unfortunately, UTCS architectures may be subject
to exacerbated thermal effects dictated by (i) the high power
density and (ii) the low thermal conductivity of BCB (about
800 times lower than that of silicon), which inhibits the down-
ward heat propagation from the power-dissipating regions to
the board [11], [12], [30]. As a consequence, the potential
benefits of stacked architectures can in principle be achieved
only by resorting to thermal-aware design techniques based on
reliable simulations. An extensive numerical analysis of the
thermal behavior of typical UTCS modules has been recently
carried out [13], [31]; among other results, the detrimental
impact of the BCB on the vertical heat flow was quantified.

The procedure addressed in previous sections for determin-
ing one-port DCTMs is here applied to an UTCS structure
containing two 10-µm-thick silicon chips, as shown in Fig. 1.
The upper (2nd-level) chip is vertically insulated from the
buried (1st-level) one by a BCB planarization layer; the lower
chip is attached to the host silicon substrate by an adhesive
BCB layer. The power-dissipating circuitries (i.e., the heat
sources) lie on the top of the chips. The substrate backside
is soldered to the AlN package header by a Pb/Sn conductive
grease. The through-silicon vias (TSVs) needed to ensure
the vertical interconnectivity between chips [29] were not
accounted for in the analysis due to their small size that
only slightly favor the downward heat flow [11]. In addition,
heat spreading solutions like the adoption of nonsignal TSVs
[30], as well as of a copper grid or plate [11], have not been
considered with the aim of modeling a test chip significantly
suffering from thermal effects. The header is assumed to
be in close contact with the board at ambient temperature
(Tboard = T0). The horizontal and vertical dimensions of the
module are reported in Table II. The analysis was performed
by assuming adiabatic top and lateral faces of the domain,
which is reasonable due to the small influence of natural
convection [13]. It is noted that only one quarter of the
structure was simulated, the missing portion being virtually

TABLE II

VALUES OF THE GEOMETRICAL PARAMETERS INDICATED IN FIG. 1

TABLE III

VALUES OF THE MATERIAL PARAMETERS

recreated by applying adiabatic boundary conditions over the
planes of symmetry.

Table III gives the material parameters adopted for the
analysis. Two cases were analyzed: 1) case A, in which
the thermal conductivity of BCB was considered to be
temperature-insensitive, as assumed in [11], and 2) case B, in
which it was modeled as linearly increasing with temperature
on the basis of the experimental data shown in [32]. Both cases
are nonlinear since the temperature dependences of the thermal
conductivities of Si, Pb/Sn, and AlN are accounted for. The
dissipated power density was assumed uniform within each
heat source.

A 3-D tetrahedral mesh of the structure was built by
the software package COMSOL [39]. Such a mesh, shown
in Fig. 2, was rather cumbersome to generate due to the
presence of layers with thickness much lower than horizontal
dimensions and than thicknesses of other layers; it was created
with smart selective refinement strategies—available in the
recent software releases—and includes more than 1 million
elements (tetrahedra). This COMSOL mesh is used for the



Fig. 2. Detail of the COMSOL mesh corresponding to the analyzed UTCS
structure.

second-order FEM discretization of the linear heat diffusion
problems (36) and (37), by means of about 1.5 million DoFs.

First, the case in which only the 2nd-level circuitry is
active was considered. The expansion points σm and multi-
indexes αm , with m = 1, . . . , r , were chosen as described
in Section IV, with l = 10 and r = 3. As a result,
lr = 30 discretized linear heat diffusion problems in the
frequency domain were solved by the conjugate gradient
algorithm with incomplete Choleski preconditioning. This took
less than 1 h 15 min and less than 1 GB of RAM storage on a
2.3 Ghz Intel Core i7. By applying the SVD algorithm, with
ε = 10−5, a DCTM with n̂ϑ = n̂λ = 12 was obtained.

The resulting model can be exploited for determining the
thermal behavior for any waveform of power P(t). Here, the
case of a constantly dissipated power density q = 5 µW/µm3

(i.e., P ≈ 45 W) is analyzed by comparing the results provided
by the DCTM with those calculated by COMSOL. The numer-
ical solution of the DCTM by means of the ode15s MATLAB
solver requires less than 2 s, to be compared with about 11 h
needed by COMSOL. This means that the computational time
for constructing and solving a DCTM is about one order of
magnitude lower than that elapsed for a single 3-D FEM
transient simulation. It is noted that the 3-D FEM simulation
had to be carried out with low tolerances in order to guarantee
the same accuracy provided by the DCTM, and required about
10 GB of memory storage. Fig. 3(a) shows the resulting
thermal impedances ZTH(t) for the fully linear case (i.e., that
obtained by disregarding all the temperature dependences of
the thermal conductivities), for the modified linear solution
through the Kirchhoff and Batty et al.’s transformations, and
for the nonlinear cases A and B. Fig. 3(b) depicts the profile
of the temperature rise along the vertical axis crossing the
center of the module. These figures illustrate that the DCTM
is suited to describe not only the thermal impedance ZTH(t),
but also the whole space-time evolution of the temperature
rise with great accuracy, the discrepancy with respect to
3-D FEM data being lower than 0.2%. From these results,
various observations are in order.

1) The thermal resistances RTH are equal to 3.77, 3.88,
and 2.90 K/W for the linear and the nonlinear
cases A and B, respectively. In spite of the low BCB

Fig. 3. Case of activation of the circuitry lying on the upper silicon chip.
(a) Thermal impedance against time for the linear and nonlinear cases, as
simulated by COMSOL (dotted lines) and obtained through the compact
model (solid), along with the evolution determined by the mere application
of the Kirchhoff’s (dashed) and Batty et al.’s (short-dashed) transformations
with the temperature dependence of Si. (b) Vertical profile of the temperature
rise along the module for the nonlinear case B, as computed by COMSOL
(dotted lines) and the compact model (solid) at five time instants.

conductivity, the values are not high due to the large
heat source area.

2) It can be easily inferred that the BCB dominates
the thermal behavior. In case B, kBCB linearly grows
from 1.8 × 10−7 W/µmK at T = 300 K to
3.25 × 10−7 W/µmK at T = 425 K, thus leading
to a cooling action high enough to prevail over the
heating mechanism induced by the reduction in thermal
conductivity of other materials; as a result, the thermal
behavior of the module improves compared with the
linear case. The large discrepancies between the results
corresponding to the two cases A and B suggest that care
must be taken in modeling the temperature dependence
of the thermal conductivities of all materials belonging
to the structure under test.

3) An inspection of the figure reveals the dramatic inac-
curacy obtained by merely applying the Kirchhoff’s



Fig. 4. Case of activation of the circuitry located on the buried silicon chip.
(a) Thermal impedance versus time for the linear and nonlinear cases, as
simulated by COMSOL (dotted lines) and determined through the compact
model (solid), along with the evolution obtained by applying the Kirchhoff’s
(dashed) and Batty et al.’s (short-dashed) transformations based on the
temperature dependence of the thermal conductivity of Si. (b) Horizontal
profile of the temperature rise along the module for the nonlinear case B,
as evaluated by COMSOL (dotted lines) and the compact model (solid) at
five time instants.

transformation based on the law relating the thermal
conductivity of Si to temperature, i.e., by using (12)
with m = −1.33; in particular, RTH differs by ∼50%
and ∼100% from the exact values associated to the
nonlinear cases A and B. Including the further time
variable transformation by Batty et al. only a marginal
improvement is gained for medium times, while the
steady-state results remain unchanged.

A similar analysis was repeated by activating only the
circuitry (the heat source) embedded in the 1st-level chip.
Fig. 4(a) shows that in this case the self-heating is considerably
mitigated since the buried chip is closer to the board kept
at ambient temperature. In particular, it is found that the
thermal resistances RTH amount to 1.21, 1.23, and 1.10 K/W
for the linear and nonlinear cases A and B, respectively.
It is worth noting that the plain reduction in the curve slope

Fig. 5. (Left) Average temperature rises over the upper and buried silicon
chips induced by (right) three profiles of power dissipated by the circuitry
located on the 2nd-level chip (dashed lines), as determined through COMSOL
(dotted) and the compact model (solid) for the nonlinear case B.

triggered by the heat reaching the silicon substrate takes place
earlier than in the case with the 2nd-level circuitry activated.
All the findings reported above concerning the accuracy of the
compact model and the required CPU times and RAM storage
still hold true in this case. This is evidenced in Fig. 4(b), which
depicts the profile of the temperature rise along a horizontal
axis crossing the center of the module, as computed by both
COMSOL and the DCTM.

Fig. 5 witnesses that the DCTM approach allows accu-
rately following the temperature evolutions induced by short
activations of the circuitry located on the chips—which are
inherently cumbersome to be simulated at the edges of the
square-wave power profiles (i.e., when the heat source turns
ON and OFF) if exploiting conventional 3-D FEM tools.
In particular, three power pulses dissipated by the upper chip
are considered, which are characterized by different levels
and durations so as to keep constant the pulse area. The
figure shows the transient behavior of the temperature rise
averaged over both the circuitries, as evaluated by the DCTM
and COMSOL for the nonlinear case B. Consistently with
the previous analyses, it is found that the approaches provide
almost identical results, although for each power profile the
DCTM simulation lasts less than 2 s while COMSOL requires
more than 20 h mainly due to the aforementioned issue.

VI. CONCLUSION

In this paper, a novel approach has been proposed for
constructing DCTMs of nonlinear heat diffusion problems.
The method leads to compact models of small state-space
dimensions. The whole space-time evolution of the temper-
ature field can be accurately determined regardless of the
geometrical complexity of the domain, as well as of the power
waveform. The method has been adopted to gain precious
information on the thermal behavior of state-of-the-art UTCS
modules, which are composed by individual layers with highly
different (i) thermal conductivities and (ii) thermal conductiv-
ity dependences on temperature. It has been found that the



computational time to construct each DCTM is one order
of magnitude lower than the one elapsed for a conventional
transient 3-D FEM simulation. It can be concluded that this
approach can be successfully used as a viable alternative to
commercial numerical tools to support the thermal design of
electronic structures where nonlinear thermal effects play an
important role.
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