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Abstract. We study Einstein warped product spaces. As a result, we prove
the following: if M is an Einstein warped product space with nonpositive scalar
curvature and compact base, then M is simply a Riemannian product space.

0. Introduction

Let B = (Bm, gB) and F = (F k, gF ) be two Riemannian manifolds. We denote
by π and σ the projections of B × F onto B and F , respectively. For a positive
smooth function f on B the warped product M = B×fF is the product M = B×F
furnished with the metric tensor g defined by g = π∗gB + f2σ∗gF , where * denotes
the pull back. The function f is referred to as the warping function. The notion of
warped product B×fF generalizes that of a surface of revolution. It was introduced
in [3] for studying manifolds of negative curvature.

A Riemannian manifold M is called Einstein if its Ricci tensor Ric is proportional
to the metric g, that is, Ric = λg, where λ is a constant on M . Obviously the
Riemannian product M = B×F is Einstein if B and F are Einstein with the same
scalar curvature. A warped product B ×f F with a constant warping function f
can be considered as a Riemannian product.

In search of a new compact Einstein space in [2] (p. 265), A. L. Besse asked the
following:

“Does there exist a compact Einstein warped product with nonconstant warping
function?”

In this article, we give a negative partial answer as follows (cf. [1]):

Theorem 1. Let M = B ×f F be an Einstein warped product space with base B a
compact space. If M has nonpositive scalar curvature, then the warped product is
simply a Riemannian product.
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1. Proofs

We denote by RicB,RicF the lifts to M of the Ricci curvatures of B and F,
respectively. Then we have the following ([6]):

Proposition 2. The Ricci curvature Ric of the warped product M = B ×f Fwith
k = dimF satisfies
(1) Ric(X,Y ) = RicB(X,Y )− k

fH
f (X,Y ),

(2) Ric(X,V ) = 0,
(3) Ric(V,W ) = RicF (V,W ) − g(V,W )f#, f# = −∆f

f + k−1
f2 gB(∇f,∇f) for any

horizontal vectors X, Y and any vertical vectors V , W , where Hf and ∆f denote
the Hessian of f and the Laplacian of f given by −tr(Hf ), respectively.

Hence the Einstein equations become

Corollary 3. The warped product M = B ×f F is Einstein with Ric = λg if and
only if
(1.1) RicB = λgB + k

fH
f ,

(1.2) (F, gF ) is Einstein with RicF = µgF ,
(1.3) −f∆f + (k − 1)|∇f |2 + λf2 = µ.

Now we prove a lemma.

Lemma 4. Let f be a smooth function on a Riemannian manifold B. Then for
any vector X, the divergence of the Hessian tensor Hf satisfies

(1.4) div(Hf )(X) = Ric(∇f,X)−∆(df)(X),

where ∆ = dδ + δd denotes the Laplacian on B acting on differential forms.

Proof. The well-known Ricci identity implies (cf. [5], p. 159)

(1.5) D2df(X,Y, Z)−D2df(Y,X,Z) = df(RXY Z)

for all vector fields X , Y , and Z where D2
XY = DXDY −DDXY denotes the second

order covariant differential operator and RXY = −DXDY +DYDX +D[X,Y ] is the
curvature tensor acting on tensors as a derivation. Since df is closed, it is easily
proved that

(1.6) D2df(X,Y, Z) = D2df(X,Z, Y )

for any vector fields X,Y and Z.
For a fixed p ∈ B we may choose a local orthonormal frame E1, E2, · · · , Em of

the space B such that DEiEj(p) = 0 for all i, j. Also, we may assume DEiY (p) = 0
for a vector field Y . Taking the trace with respect to X and Z in (1.5) and using
(1.6), we have ∑

i

(D2df)(Ei, Ei, Y ) = −d∆f(Y ) + Ric(Y,∇f)

at p. Since divHf (Y ) =
∑

i(D
2df)(Ei, Ei, Y ) is straightforward, (1.4) is proved.

�

Proposition 5. Let (Bm, gB) be a compact Riemannian manifold of dimension
m = 2. Suppose that f is a nonconstant smooth function on B satisfying (1.1) for
a constant λ ∈ R and a natural number k ∈ N . Then f satisfies (1.3) for a constant
µ ∈ R. Hence for a compact Einstein space (F, gF ) of dimension k with RicF =
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µgF , we can make a compact Einstein warped product space M = B ×f Fwith
Ric = λg.

Proof. By taking the trace of both sides of (1.1), we have

(1.7) S = mλ− k

f
∆f,

where S denotes scalar curvature of B given by tr(Ric). Note that the second
Bianchi identity implies ([6], p. 88)

(1.8) dS = 2div(Ric).

From (1.7) and (1.8), we obtain

(1.9) div Ric(X) =
k

2f2
{∆fdf − fd(∆f)}(X).

On the other hand, by definition we have

div(
1
f
Hf)(X) =

∑
i

(DEi(
1
f
Hf ))(Ei, X) = − 1

f2
Hf (∇f,X) +

1
f

divHf(X)

for any vector field X and an orthonormal frame E1, E2, · · · , Em of B. Since
Hf(X,∇f) = (DXdf)(∇f) = 1

2d(|∇f |2)(X), the last equation becomes

div(
1
f
Hf )(X) = − 1

2f2
d(|∇f |2)(X) +

1
f

divHf (X)

for a vector field X on B. Hence, from (1.1) and (1.4) it follows that

(1.10) div(
1
f
Hf ) =

1
2f2
{(k − 1)d(|∇f |2)− 2fd(∆f) + 2λfdf}.

But, (1.1) gives divRic = div( kfH
f ). Therefore, (1.9) and (1.10) imply that

d(−f∆f + (k − 1)|∇f |2 + λf2) = 0, that is, −f∆f + (k − 1)|∇f |2 + λf2 = µ for
some constant µ. Thus the first part of the proposition is proved. For a compact
Einstein manifold (F, gF ) of dimension k with RicF = µgF , we can construct a
compact Einstein warped product M = B ×f F by the sufficiencies of Corollary
3. �

Now we give the proof of Theorem 1. Note that (1.3) becomes

(1.11) div(f∇f) + (k − 2)|∇f |2 + λf2 = µ.

By integrating (1.11) over B we have

(1.12) µ =
k − 2
V (B)

∫
B

|∇f |2 +
λ

V (B)

∫
B

f2,

where V (B) denotes the volume of B.
1) Suppose k ≥ 3. Let p be a maximum point of f on B. Then, we have

f(p) > 0,∇f(p) = 0 and ∆f(p) ≥ 0. Hence from (1.3) and (1.12) we obtain the
following:

0 5 f(p)∆f(p)

= λf(p)2 − µ

=
2− k
V (B)

∫
B

|∇f |2 +
λ

V (B)

∫
B

(f(p)2 − f2)

5 0.
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The last inequality follows from the hypothesis on λ. Thus, f is constant.
2) When k = 1, 2, we choose q as a minimum point of f on B. Then, we have

f(q) > 0,∇f(q) = 0 and ∆f(q) ≤ 0. Hence we obtain from (1.3) and (1.12)

0 = f(q)∆f(q)

= λf(q)2 − µ

=
2− k
V (B)

∫
B

|∇f |2 +
λ

V (B)

∫
B

(f(q)2 − f2)

= 0.

(1.13)

As in case 1), the last inequality follows from the hypothesis on λ. If k = 1 or
λ < 0, then (1.13) shows that f is constant. If k = 2 and λ = 0, (1.11) and (1.12)
imply that f2 is harmonic on B, and hence f is constant. This completes the proof
of the theorem.

In a similar manner, we may prove the following (cf. [4]):

Remark 6. Let (M, g) be a compact Riemannian manifold. If the Ricci tensor
satisfies Ric = λg +Hf for a nonpositive constant λ ∈ R and a smooth function f
on M, then f is constant.
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