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Abstract
The purpose of this paper is twofold: first we study an eigenvalue problem for the frac-
tional p-sub-Laplacian over the fractional Folland–Stein–Sobolev spaces on stratified
Lie groups. We apply variational methods to investigate the eigenvalue problems. We
conclude the positivity of the first eigenfunction via the strong minimum principle
for the fractional p-sub-Laplacian. Moreover, we deduce that the first eigenvalue is
simple and isolated. Secondly, utilising established properties, we prove the existence
of at least two weak solutions via the Nehari manifold technique to a class of subel-
liptic singular problems associated with the fractional p-sub-Laplacian on stratified
Lie groups. We also investigate the boundedness of positive weak solutions to the
considered problem via the Moser iteration technique. The results obtained here are
also new even for the case p = 2 with G being the Heisenberg group.
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1 Introduction

The study of nonlocal elliptic partial differential equations (PDEs) and developments
of the corresponding tools have been well explored in the Euclidean setting during
the last few decades. Apart from the mathematical point of view, the theory of PDEs
associated with nonlocal (or fractional) operators witnessed vast applications in dif-
ferent fields of applied sciences. We list a few (in fact a tiny fraction of them) of such
applications involving fractional models like the Lévy processes in probability the-
ory, in finance, image processing, in anomalous equations, porous medium equations,
Cahn–Hilliard equations and Allen-Cahn equations, etc. Interested readers may refer
to [4, 7, 73, 95] and the references therein. These models have been one of the primary
context to study nonlocal PDEs both theoretically and numerically.

One of themost important tools to study PDEs over bounded domains is the embed-
dings of Sobolev spaces into Lebesgue spaces. It says, “If � ⊂ R

N is open, then for
0 < s < 1 < p < ∞ with N > ps, the fractional Sobolev space Ws,p(�) is
continuously embedded into Lq(�) for all q ∈ [1, Np/(N − ps)]. In addition, if
� is bounded and is an extension domain, then the embedding is compact for all
q ∈ [1, Np/(N − ps)).” The compact embedding plays a crucial role for obtaining
the existence of solutions of some PDEs. We refer the readers to see [79] for a well
presented study of the fractional Sobolev spaces and the properties of the fractional
p-Laplacian and its applications to PDEs. One can also consult [19, 39] for the theory
and tools developed for the classical Sobolev spaces.

The Sobolev spaces (also known as Folland-Stein spaces) on stratified Lie groups
were first considered by Folland [46] and then several further properties have been
obtained in the book by Folland and Stein [48]. The reader may refer to several mono-
graphs devoted to the study of such spaces and the corresponding subelliptic operators
[14, 45, 88]. For Sobolev embeddings of Folland-Stein spaces over bounded domains
of stratified Lie groups, we refer to [23]. Recently, the fractional Sobolev type inequal-
ity and the corresponding Sobolev embeddings were investigated in [1] for weighted
fractional Sobolev spaces on the Heisenberg group H

N , whereas in [65], the authors
established the fractional Sobolev type inequalities on stratified Lie groups (or homo-
geneous Carnot groups). In [1], the authors established the compact embeddings of
Sobolev spaces Ws,p,α

0 (�) into Lebesgue spaces L p(�) over a bounded extension
domain � ⊂ H

N . We recall here the definition of an extension domain: A domain
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� ⊂ G is said to be an extension domain of Ws,p
0 (�) (see Sect. 2 for the defini-

tion) if for every f ∈ Ws,p
0 (�) there exist a f̃ ∈ Ws,p

0 (G) such that f̃ |� = f and
‖ f̃ ‖Ws,p

0 (G) ≤ CQ,s,p,�‖ f ‖Ws,p
0 (�), where CQ,s,p,� is a positive constant depending

only on Q, s, p,�. The extension property of a domain plays a crucial role in estab-
lishing such compact embeddings of the Sobolev spaces into Lebesgue spaces (cf.
Theorem 2.4, Lemma 5.1 in [79]). Recently, Zhou [102] studied the characterizations
of (s, p)-extension domains and embedding domains for the fractional Sobolev space
on R

N . To the best of our knowledge, we do not have such characterization for an
arbitrary bounded domain in the case of stratified Lie groups. In fact, because of the
existence of characteristic points, the problem of finding classes of extension domains
in stratified Lie groups is highly non-trival and there are essentially no examples for
step 3 and higher (see [24]). Thus, to overcome this issue, we will work with the
fractional Sobolev space Xs,p

0 (�) with vanishing trace (See Sect. 2 for the definition).
We first state the following embedding result for the fractional Sobolev space

Xs,p
0 (�).

Theorem 1 Let G be a stratified Lie group of homogeneous dimension Q. Let 0 <

s < 1 ≤ p < ∞ and Q > sp. Let � ⊂ G be an open subset. Then the fractional
Sobolev space Xs,p

0 (�) is continuously embedded in Lr (�) for p ≤ r ≤ p∗
s , where

p∗
s := Qp

Q−sp , that is, there exists a positive constant C = C(Q, s, p,�) such that for

all u ∈ Xs,p
0 (�), we have

‖u‖Lr (�) ≤ C‖u‖Xs,p
0 (�).

Moreover, if � is bounded, then the embedding

Xs,p
0 (�) ↪→ Lr (�) (1.1)

is continuous for all r ∈ [1, p∗
s ] and is compact for all r ∈ [1, p∗

s ).

It was pointed out to us by the referee of this paper that there may be a relation
between Theorem 1 and the results in the recent paper [12] combinedwith [68] dealing
the fractional Sobolev spaces defined on metric measure spaces satisfying various
conditions (typically, but not always, a Poincaré inequality and doubling condition),
see also [57] and [56]. One such example of a metric measure space is a stratified Lie
group. However, it is not completely clear how the result in [12] applies to our spaces
Xs,p
0 since the definition of this space is different. Therefore, for the benefit of readers,

we include a simple and direct proof of embedding theorems in Appendix A (Sect. 1)
which makes use of group structures such as the group translation and regularisation
process via group convolution and dilations for this particular setting of stratified Lie
groups.We follow the ideas of [79] to establish the continuous embedding whereas the
compact embedding will be proved based on the idea originated by [52]. We also refer
[2, 5] for embedding results on function spaces defined on spaces of homogeneous
type.

In this paper, we now aim to apply Theorem 1 to study the nonlinear Dirichlet
eigenvalue problem on stratified Lie groups. The earliest known study of Dirichlet
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eigenvalue problems involving the p-Laplacian onRN is due to Lindqvist [72], where
the author investigated the simplicity and isolatedness of the first eigenvalue of the
following problem:

�pu + ν|u|p−2u = 0, in �,

u = 0 on ∂�. (1.2)

Lindqvist further showed that the first eigenfunction of the problem (1.2) is strictly
positive on any arbitrary bounded domain �. This study is directly related to the
corresponding Rayleigh quotient of the energy given by the following expression:

R(u) :=
∫
�

|∇u|pdx
∫
�

|u(x)|pdx, u ∈ C∞
c (�). (1.3)

The nonlocal counterpart of the above problem (1.2) was explored by Lindgren and
Lindqvist [71], and Franzina and Palatucci [50]. After that, this topic received an
extensive attention. For instance, we cite [3, 17, 50, 70, 71] just to mention a few of
names toward the development of the eigenvalue problem.

As per our knowledge, the study of eigenvalue problems for the subelliptic setting
is very limited in the literature. The earliest traces of such studies are due to [42,
77]. Thereafter, there has been some progress in this direction involving the p-sub-
Laplacian on the Heisenberg group, for instance, see [59, 99]. Recently, there is an
elevation of interest in the study of eigenvalue problems involving subelliptic operators
on stratified Lie groups. We refer to [27, 49, 59] and the references therein.

In this paper, we study the following nonlinear nonlocal Dirichlet eigenvalue prob-
lem involving the fractional p-sub-Laplacian on stratified Lie groups,

(−�p,G)su = ν|u|p−2u, in �,

u = 0 in G \ �. (1.4)

In this direction, we first establish the existence of a minimizer for the Rayleigh
quotient, namely, the existence of the first eigenfunction. Then, similar to the classi-
cal case, we prove some important properties of the first eigenfunction and the first
eigenvalue of the problem (1.4), which are listed below in the form of the following
result.

Theorem 2 Let 0 < s < 1 < p < ∞ and let � ⊂ G be a bounded domain of a
stratified Lie group G of homogeneous dimension Q. Then for Q > sp, we have the
following properties.

(i) The first eigenfunction of the problem (1.4) is strictly positive.
(ii) The first eigenvalue λ1 of the problem (1.4) is simple and the corresponding eigen-

functionφ1 is the only eigenfunction of constant sign, that is, if u is an eigenfunction
associated to an eigenvalue ν > λ1(�), then u must be sign-changing.

(iii) The first eigenvalue λ1 of the problem (1.4) is isolated.

123



Compact embeddings, eigenvalue problems, and subelliptic...

Among the key ingredients to prove Theorem 2 are a strong minimum principle
(Theorem 6) and logarithmic estimates (Lemma 4).

Now, as a combined application of Theorem 1 and Theorem 2, we turn our attention
to the following problem involving the fractional p-sub-Laplacian on the stratified Lie
group G:

(−�p,G
)s
u = λ f (x)

uδ
+ g(x)uq in �,

u > 0 in �,

u = 0 in G \ �, (1.5)

where � is a bounded domain in G, λ > 0, 1 < p < Q, 0 < s, δ < 1 < p <

q + 1 < p∗
s . Here Q denotes the homogeneous dimension ofG, p∗

s := Qp
Q−sp denotes

the critical Sobolev exponent, and
(−�p,G

)s is the fractional p-sub-Laplacian (ref.
Sect. 2). The weight functions f , g ∈ L∞(�) are strictly positive.

The problem of the type (1.5) is usually referred to as the Brezis–Nirenberg type
problem [21] in the literature. Before we briefly recall some studies done in the
Euclidean case, let us first discuss the motivation to consider Brezis-Nirenberg type
problem on stratified Lie groups setting. The primary motivation to investigate the
Brezis-Nirenberg problem in the classical Euclidean setting (i.e., p = 2 and s = 1)
comes from the fact that it resembles variation problems in differential geometry and
physics. One such celebrated example is the Yamabe problem on a Riemannian mani-
folds. There are many other examples that are directly related to the Brezis-Nirenberg
problem; for example, existences of extremal functions for functional inequalities and
existence of non-minimal solutions for Yang-Mills functions and H -system (see [21]).
The pioneering investigation of CR Yamabe problemwas started by Jerison and Lee in
their seminal work [63]. It is well-known that the Heisenberg group (simplest example
of a stratified Lie group) plays the same role in the CR geometry as the Euclidean space
in conformal geometry. Naturally, the analysis on stratified Lie groups proved to be
a fundamental tool in the resolution of the CR Yamabe problem. Therefore, a great
deal of interest has been shown to studying subelliptic PDEs on stratified Lie groups.
Recently, several researchers have considered the fractional CR Yamabe problem and
problems around it; see [28, 40, 55, 66, 67, 90] and references therein. These afore-
mentioned developments naturally encourage one for studying the Brezis-Nirenberg
type problem (1.5) on stratified Lie groups. Apart from this, it is also worthmentioning
that the investigation of problems of type (1.5) is closely related to the existence of
best constant in functional inequalities, e.g. see [51] and references therein.

On the other hand, it was noted in the celebrated paper [84] by Rothschild and
Stein that nilpotent Lie groups play an important role in deriving sharp subelliptic
estimates for differential operators on manifolds. In view of the Rothschild-Stein
lifting theorem, a general Hörmander’s sums of squares of vector fields on manifolds
can be approximated by a sup-Laplacian on some stratified Lie group (see also, [47]
and [85]). This makes it crucial to study partial differential equations on stratified
Lie groups and led to several interesting and promising works amalgamating the Lie
group theory with the analysis on partial differential equations. Moreover, in recent
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decades, there is a rapidly growing interest for sub-Laplacians on stratified Lie groups
because these operators appear not only in theoretical settings (see e.g. Gromov [54]
or Danielli, Garofalo and Nhieu [33] for general expositions from different points of
view), but also in application settings such as mathematical models of crystal material
and human vision (see, [31, 32]).

It is almost impossible to enlist all such studies dealing with existence, multiplic-
ity and regularity of solutions but we will mention some of the pivotal studies that
motivated us to consider this problem (1.5) in the subelliptic setting on stratified Lie
groups. These studies are primarily divided into two cases, namely, λ = 0 and λ > 0.
For λ > 0, g = 0, p = 2, s = 1 and δ > 0, i.e., the purely singular problem involving
Laplacian was initially tossed up by Crandall et al. [30] following a pseudo-plastic
model in the bounded domain � ⊂ R

N with the Dirichlet boundary condition. Mov-
ing forward with the same setting, Lazer and McKenna [69] observed that one can
expect a W 1,2

0 (�) solution if and only if 0 < δ < 3. Later, in [100] it was proved

that the exponent δ = 3 proposed in [69] is optimal to obtain a W 1,2
0 (�) solution.

The nonlocal counterparts of these type of PDEs were studied in Canino et al. [22] for
all p ∈ (1,∞) and s ∈ (0, 1). For further references on the study of purely singular
problems we refer to [13, 22] and the references therein. It is noteworthy to mention
that the problem (1.5) with g = 0 always possess a unique solution for λ, δ > 0. The
study of the multiplicity and regularity of solutions was widely considered for λ ≥ 0,
see [8, 11, 37, 62, 78] and the references therein.

We now emphasize the study of the existence of solutions to PDEs associated with
subelliptic operators. In [6], the authors established the existence of solutions to the
following problem involving the sub-Laplacian on the Heisenberg group:

−�HN u = λ f (x)

uδ
in �,

u > 0 in �,

u = 0 in ∂�, (1.6)

They applied the fixed point theorem argument and a weak convergence method to
deduce existence of solutions. The nonlinear extension of the aforementioned problem,
that is, the singular problem with the p-sub-Laplacian was investigated in [51] in the
setting of stratified Lie groups for 0 < δ < 1. In both of these studies, the authors used
the weak convergence method to establish the existence of solution. In [96], the author
considered subelliptic problemassociatedwith sub-Laplacian on theHeisenberg group
with mixed singular and power type nonlinearity. They established the existence of
solution using themoving planemethod. The authors [101] extended this to the Carnot
groups. In [58], Han studied existence and nonexistence results for positive solutions to
an integral type Brezis-Nirenberg type problem on the Heisenberg groups. Ruzhansky
et al. [86] established the global existence and blow-up of the positive solutions to
a nonlinear porous medium equation over stratified Lie groups. In [9] the authors
characterised the existence of unique positive weak solution for subelliptic Dirichlet
problems. A few more results dealing with the existence and multiplicity of solutions
over the Heisenberg groups and stratified Lie groups can be found in [10, 15, 41, 44,
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74–76, 81–83] and references listed therein. Finally, we cite [26, 38] and references
therein for the study of non-homogeneous fractional p-Laplacian on metric measure
spaces. The study of existence and multiplicity of weak solutions mainly uses the
variational tools, such as mountain pass theorem, Nehari manifold techniques, etc.

In this study we employ the Nehari manifold method [61, 94] to establish the
multiplicity of solutions to the problem (1.5). The result is stated as follows.

Theorem 3 Let � be a bounded domain of a stratified Lie group G of homogeneous
dimension Q, and let 0 < s, δ < 1 < p < q + 1 < p∗

s := Qp
Q−ps , Q > ps. Then

there exists � > 0 such that for all λ ∈ (0,�) the problem (1.5) admits at least two
non-negative solutions in Xs,p

0 (�).

Let us make a few more comments on results of this paper before concluding the
introduction. In this paper, our main focus is to study subelliptic eigenvalue problem
and the Brezis-Nirenberg type problem on stratified Lie groups. But, we emphasise
that the proofs and statements of Theorems 2 and 3 can easily be adopted with suitable
modifications in the case of metric measure space, at least, in case when the metric
measure space is doubling and satisfies a Poincaré inequality.

The paper is organized as follows: In the next section we present basics of the anal-
ysis on stratified Lie groups along with function spaces defined on them. In Sect. 3, we
study the fractional p-sub-Laplacian eigenvalue problem on stratified Lie groups. The
existence of (at least) two solutions of the nonlocal singular problem by using Nehari
manifold technique is analysed in Sect. 4. The last section consists of showing the
boundedness of solution by employing the Moser iteration followed by a comparison
principle.

2 Preliminaries: stratified Lie groups and Sobolev spaces

This section is devoted to recapitulating some basic notations and concepts related
to stratified Lie groups and the fractional Sobolev spaces defined on them. There are
manyways to introduce the notion of stratifiedLie groups, for instance onemay refer to
books and monographs [14, 45, 48, 88]. In his seminal paper [46], Folland extensively
investigated the properties of function spaces on these groups. The monographs [45]
deals with the theory associated to higher order invariant operators, namely, the Rock-
land operators on graded Lie groups. For precise studies and properties on stratified
Lie group, we refer [14, 45, 46, 48, 52].

Definition 1 ALie groupG (onRN ) is said to be homogeneous if, for eachλ > 0, there
exists an automorphism Dλ : G → G defined by Dλ(x) = (λr1x1, λr2x2, ..., λrN xN )

for ri > 0, ∀ i = 1, 2, ..., N . The map Dλ is called a dilation on G.

For simplicity, we sometimes prefer to use the notation λx to denote the dilation Dλx .
Note that, ifλx is a dilation thenλr x is also a dilation. The number Q = r1+r2+...+rN
is called the homogeneous dimension of the homogeneous Lie groupG and the natural
number N represents the topological dimension of G. The Haar measure on G is
denoted by dx and it is nothing but the usual Lebesgue measure on R

N .
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Definition 2 A homogeneous Lie group G = (RN , ◦) is called a stratified Lie group
(or a homogeneous Carnot group) if the following two conditions are fulfilled:

(i) For some natural numbers N1 + N2 + ... + Nk = N the decomposition R
N =

R
N1 × R

N2 × ... × R
Nk holds, and for each λ > 0 there exists a dilation of the

form Dλ(x) = (λx (1), λ2x (2), ..., λk x (k)) which is an automorphism of the group
G. Here x (i) ∈ R

Ni for i = 1, 2, ..., k.
(ii) With N1 the same as in the above decomposition ofRN , let X1, ..., XN1 be the left

invariant vector fields on G such that Xk(0) = ∂
∂xk

|0 for k = 1, ..., N1. Then the

Hörmander condition rank(Lie{X1, ..., XN1}) = N holds for every x ∈ R
N . In

other words, the Lie algebra corresponding to the Lie group G is spanned by the
iterated commutators of X1, ..., XN1 .

Here k is called the step of the homogeneous Carnot group. Note that, in the case
of stratified Lie groups, the homogeneous dimension becomes Q = ∑i=k

i=1 i Ni . Fur-
thermore, the left-invariant vector fields X j satisfy the divergence theorem and they
can be written explicitly as

Xi = ∂

∂x (1)
i

+
k∑

j=2

N1∑

l=1

a( j)
i,l (x1, x2, ..., x j−1)

∂

∂x ( j)
l

. (2.1)

For simplicity, we set n = N1 in the above Definition 2.
An absolutely continuous curve γ : [0, 1] → R is said to be admissible, if there

exist functions ci : [0, 1] :→ R, for i = 1, 2..., n such that

γ̇ (t) =
i=n∑

i=1

ci (t)Xi (γ (t)) and
i=n∑

i=1

ci (t)
2 ≤ 1.

Observe that the functions ci may not be unique as the vector fields Xi may not be
linearly independent. For any x, y ∈ G the Carnot-Carathéodory distance is defined
as

ρcc(x, y) = inf{l > 0 : there exists an admissible γ : [0, l]′
→ G with γ (0) = x & γ (l) = y}.

We define ρcc(x, y) = 0, if no such curve exists. This ρcc is not a metric in general
but the Hörmander condition for the vector fields X1, X2, ...XN1 ensures that ρcc is a
metric. The space (G, ρcc) is is known as a Carnot-Carathéodory space.

Let us now define the quasi-norm on the homogeneous Carnot group G.

Definition 3 A continuous function | · | : G → R
+ is said to be a homogeneous

quasi-norm on a homogeneous Lie group G if it satisfies the following conditions:

(i) (definiteness): |x | = 0 if and only if x = 0.
(ii) (symmetric): |x−1| = |x | for all x ∈ G, and
(iii) (1-homogeneous): |λx | = λ|x | for all x ∈ G and λ > 0.
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An example of a quasi-norm onG is the norm defined as d(x) := ρcc(x, 0), x ∈ G,
where ρ is a Carnot-Carathéodory distance related to Hörmander vector fields onG. It
is known that all homogeneous quasi-norms are equivalent onG. In this paper we will
work with a left-invariant homogeneous distance d(x, y) := |y−1 ◦ x | for all x, y ∈ G

induced by the homogeneous quasi-norm of G.

The sub-Laplacian (or Horizontal Laplacian) on G is defined as

L := X2
1 + · · · + X2

N1
. (2.2)

The horizontal gradient on G is defined as

∇G := (
X1, X2, . . . , XN1

)
. (2.3)

The horizontal divergence on G is defined by

divG v := ∇G · v. (2.4)

For p ∈ (1,+∞), we define the p-sub-Laplacian on the stratified Lie group G as

�G,pu := divG
(
|∇Gu|p−2 ∇Gu

)
. (2.5)

Let � be a Haar measurable subset ofG. Then μ(Dλ(�)) = λQμ(�) where μ(�)

is the Haar measure of �. The quasi-ball of radius r centered at x ∈ G with respect to
the quasi-norm | · | is defined as

B(x, r) =
{
y ∈ G :

∣
∣
∣y−1 ◦ x

∣
∣
∣ < r

}
. (2.6)

Observe that B(x, r) can be obtained by the left-translation by x of the ball B(0, r).
Furthermore, B(0, r) is the image under the dilation Dr of B(0, 1). Thus, we have
μ(B(x, r)) = r Q for all x ∈ G.

We are now in a position to define the notion of fractional Sobolev–Folland–Stein
type spaces related to our study.

Let � ⊂ G be an open subset. Then for 0 < s < 1 < p < ∞, the fractional
Sobolev space Ws,p(�) on stratified groups is defined as

Ws,p(�) = {u ∈ L p(�) : [u]s,p,� < ∞}, (2.7)

endowed with the norm

‖u‖Ws,p(�) = ‖u‖L p(�) + [u]s,p,�, (2.8)

where [u]s,p,� denotes the Gagliardo semi-norm defined by

[u]s,p,� :=
(∫

�

∫

�

|u(x) − u(y)|p
∣
∣y−1x

∣
∣Q+ps

dxdy

) 1
p

< ∞. (2.9)
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Observe that for all φ ∈ C∞
c (�), we have [u]s,p,� < ∞. We define the space

Ws,p
0 (�) as the closure of C∞

c (�) with respect to the norm ‖u‖Ws,p(�). We would
like to point out that Ws,p

0 (G) = Ws,p(G).
Now for an open bounded subset � ⊂ G, define the space Xs,p

0 (�) as the closure
ofC∞

c (�)with respect to the norm ‖u‖L p(�) +[u]s,p,G. Note that the spaces Xs,p
0 (�)

andWs,p
0 (�) are different even in the Euclidean case unless� is an extension domain

(see [79]).

Lemma 1 The space Xs,p
0 (�) is a reflexive Banach space for 1 < p < ∞.

The space Xs,p
0 (�) can be equivalently defined with respect to the homogeneous

norm [u]s,p,G. Indeed, for u ∈ C∞
c (�) and Br ⊂ G\�, we have

|u(x)|p = |y−1x |Q+ps |u(x) − u(y)|p
|y−1x |Q+ps

(2.10)

for all x ∈ � and y ∈ Br . Integrating first with respect to y and then with respect to
x , we obtain,

∫

�

|u(x)|p dx ≤ diam(� ∪ Br )Q+ps

|Br |
∫

�

∫

Br

|u(x) − u(y)|p
|y−1x |Q+ps

dxdy. (2.11)

Now define

C = C(Q, s, p,�) = inf
{diam(� ∪ B)Q+ps

|B| : B ⊂ G \ � is a ball
}
.

Then we have the following Poincaré type inequality,

‖u‖p
L p(�) ≤ C[u]ps,p,G. (2.12)

This confirms that the space Xs,p
0 (�) can be defined as a closure of C∞

c (�) with
respect to the homogeneous norm [u]s,p,G. That is

‖u‖Xs,p
0 (�)

∼= [u]s,p,G for all u ∈ Xs,p
0 (�).

Moreover, the construction of the space Xs,p
0 (�) suggests that by assigning u = 0

inG\� for u ∈ Xs,p
0 (�), we conclude that the inclusionmap i : Xs,p

0 (�) → Ws,p(G)

is well-defined and continuous.
Note that, in general Xs,p

0 (�) ⊂ {u ∈ Ws,p(G) : u = 0 in G\�}. From the
equivalence of the norms and being the closure of C∞

c (�) with respect to the norm
‖ · ‖L p(�) + [u]s,p,G, we can represent Xs,p

0 (�) as follows:

Xs,p
0 (�) = {u ∈ Ws,p(G) : u = 0 in G \ �},
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whenever � is bounded with at least continuous boundary ∂�. For u ∈ Xs,p
0 (�),

[u]s,p,G =
∫∫

G×G

|u(x) − u(y)|p
∣
∣y−1x

∣
∣Q+ps

dxdy =
∫∫

G×G\(�c×�c)

|u(x) − u(y)|p
∣
∣y−1x

∣
∣Q+ps

dxdy.

We conclude this section with the following two definitions. For s ∈ (0, 1) and
p ∈ (1,∞), we define the fractional p-sub-Laplacian as

(−�p,G
)s
u(x) := CQ,s,p P.V .

∫

G

|u(x) − u(y)|p−2(u(x) − u(y))
∣
∣y−1x

∣
∣Q+ps

dy, x ∈ G.

(2.13)

For any ϕ ∈ Xs,p
0 (�), we have

〈(−�p,G
)s
u, ϕ〉 =

∫∫

G×G

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
∣
∣y−1x

∣
∣Q+ps

dxdy.

(2.14)

The simplest example of a stratified Lie group is the Heisenberg groupHN with the
underlying manifold R2N+1 := R

N ×R
N ×R for N ∈ N. For (x, y, t), (x ′, y′, t ′) ∈

H
N the multiplication in H

N is given by

(x, y, t) ◦ (x ′, y′, t ′) = (x + x ′, y + y′, t + t ′ + 2(〈x ′, y〉) − 〈x, y′〉),

where (x, y, t), (x ′, y′, t ′) ∈ R
N × R

N × R and 〈·, ·〉 represents the inner product
on R

N . The homogeneous structure of the Heisenberg group H
N is provided by the

following dilation, for λ > 0,

Dλ(x, y, t) = (λx, λy, λ2t).

the homogeneous dimension Q of HN is given by 2N + 2 := N + N + 2 while the
topological dimension of HN is 2N + 1. The left-invariant vector fields {Xi ,Yi }Ni=1
defined below form a basis for the Lie algebra corresponding to the Heisenberg group
H

N :

Xi = ∂

∂xi
+ 2yi

∂

∂t
; Yi = ∂

∂ yi
− 2xi

∂

∂t
and T = ∂

∂t
, for i = 1, 2, ..., N . (2.15)

It is easy to see that [Xi ,Yi ] = −4T for i = 1, 2, ..., N and

[Xi , X j ] = [Yi ,Y j ] = [Xi ,Y j ] = [Xi , T ] = [Y j , T ] = 0
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for all i �= j and these vector fields satisfy the Hörmander rank condition. Conse-
quently, the sub-Laplacian on H

N is given by

LHN :=
N∑

i=1

(X2
i + Y 2

i ).

3 Fractional p-sub-Laplacian eigenvalue problem on stratified Lie
groups

This section is devoted to the study of eigenvalue problems associated to the fractional
p-sub-Laplacian on stratified Lie groups. Let us consider the following PDE on a
stratified Lie group G:

(−�p,G
)s
u = ν|u|p−2u, in �,

u = 0 in G \ �, (3.1)

where ν ∈ R and � is bounded domain in G. The problem (3.1) is usually referred to
as the fractional p-sub-Laplacian (or (s, p)-sub-Laplacian) eigenvalue problem.

Definition 4 We say that u ∈ Xs,p
0 (�) is a weak solution to (3.1) if, for each φ ∈

C∞
c (�), we have

〈(−�p,G
)s
u, φ〉 = ν

∫

�

|u|p−2uφdx . (3.2)

A nontrivial solution to (3.2) is known as the (s, p)-sub-Laplacian eigenfunctions
corresponding to an (s, p)-sub-Laplacian eigenvalue ν.

Such eigenfunctions are directly related to the following minimization problem of the
Rayleigh quotient R defined by

R(u) :=
∫∫

G×G

|u(x)−u(y)|p
|y−1x |Q+ps dxdy

∫
�

|u(x)|pdx , u ∈ C∞
c (�). (3.3)

Observe that a minimizer for the Rayleigh quotient does not change its sign. This
follows immediately from the triangle inequality

|u(x) − u(y)| > ||u(x)| − |u(y)|| whenever u(x)u(y) < 0.

Consider the space S defined as

S = {u ∈ Xs,p
0 (�) : ‖u‖p = 1}. (3.4)
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Then the eigenfunctions of (3.1) are the minimizers of the following energy functional
on S:

I (u) =
∫∫

G×G

|u(x) − u(y)|p
|y−1x |Q+ps

dxdy. (3.5)

In particular, the eigenfunctions of the problem (3.1) coincides with the critical points
of I on the space S.

We define the first eigenvalue or the least eigenvalue λ1(�) over � as

λ1(�) = inf{R(φ) : φ ∈ C∞
c (�)} (3.6)

or

λ1(�) = inf{I (u) : u ∈ S}. (3.7)

Recall the Sobolev inequality (6.3) which is given by

(∫

�

|u(x)|p∗
dx

) 1
p∗s ≤ C(Q, p, s)

(∫

G

∫

G

|u(x) − u(y)|p
|y−1x |Q+ps

dx dy

) 1
p

.

From the Hölder inequality with the exponent p∗
s
p and p∗

s
p∗
s −p we obtain the following

inequality which assures that the first eigenvalue λ1(�) of (3.1) is positive:

C(Q, p, s)−p |�|− ps
Q

∫

�

|u(x)|p dx ≤
∫

G

∫

G

|u(x) − u(y)|p
|y−1x |Q+ps

dx dy. (3.8)

Thus, by definition all eigenvalues of (3.1) are positive. The weak solution of (3.1)
corresponding to ν = λ1 is called the first eigenfunction of (3.1).

We now state the following existence result for the problem (3.1).

Theorem 4 Let 0 < s < 1 < p < ∞ and let� be a bounded domain of a stratified Lie
group G of homogeneous dimension Q. Then for Q > ps, there exists a nonnegative
minimizer φ1 of (3.5) in Xs,p

0 (�) and φ1 is a weak solution to the problem (3.1) for
ν = λ1(�). Moreover, φ1 ∈ L∞(�). Furthermore, there exists C = C(Q, p, s) such

that λ1(�) ≥ C |�|− ps
Q .

Proof The proof for existence is straightforward from the direct method of the calcu-
lus of variations. Suppose {un} is a minimizing sequence for I . Then, by the Sobolev
inequality, we have that {un} is bounded in Xs,p

0 (�). Thanks to the reflexivity of
Xs,p
0 (�), we get φ1 ∈ Xs,p

0 (�) such that up to a subsequence un⇀φ1 weakly in

Xs,p
0 (�) and therefore, un → φ1 strongly in (Xs,p

0 (�))
′ := X−s,p′

0 (�). Thus, Theo-
rem 1 implies that un → φ1 strongly in L p(�) and un → φ1 a.e. in � and un → φ1
strongly in L p′

(�), where p′ = p
p−1 . To prove the strong convergence, we show that

‖un‖Xs,p
0 (�) → ‖φ1‖Xs,p

0 (�). The weak convergence implies that

〈(−�p,G
)s
un − (−�p,G

)s
φ1, un − φ1〉 → 0. (3.9)
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We will use the following inequality from (7.1):

〈(−�p,G
)s
u1 − (−�p,G

)s
u2, u1 − u2〉 ≥ Cp

⎧
⎪⎨

⎪⎩

[u1 − u2]ps,p, if p ≥ 2

[u1−u2]2s,p
([u1]ps,p+[u2]ps,p

) 2−p
p

, if 1 < p < 2.

(3.10)

Thus, by combining these two inequalities (3.9) and (3.10), we obtain ‖un‖Xs,p
0 (�) →

‖φ1‖Xs,p
0 (�) and therefore, by using the uniform convexity, we conclude un → φ1

strongly in Xs,p
0 (�). In addition to this, we also observe that I (|φ1|) = I (φ1). Thus

we conclude that the solutions are nonnegative. Indeed, we have

λ1(�) = inf
u∈S

∫

G

∫

G

|u(x) − u(y)|p
|y−1x |Q+ps

dxdy

≤
∫

G

∫

G

||φ1(x)| − |φ1(y)||p
|y−1x |Q+ps

dxdy

≤
∫

G

∫

G

|φ1(x) − φ1(y)|p
|y−1x |Q+ps

= λ1(�).

Thus, |φ1| is also minimizes I over S. Therefore, we may conclude that the first
eigenfunction of (3.1) can be chosen to be non-negative.

By taking λ = 0, g(x) = ν and q = p in the problem (1.5) and from the Lemma
14 (see Sect. 5), we deduce that every solutions of the eigenvalue problem (3.6) are
uniformly bounded. ��
Theorem 5 Let 0 < s < 1 < p < ∞. Assume that � ⊂ G is a bounded domain of a
stratified Lie group G. Let v ∈ Xs,p

0 (�) solve (3.1) and assume that v > 0, and let ν
be the corresponding eigenvalue of v. Then we have

ν = λ1(�), (3.11)

where λ1(�) = inf{I (φ) : φ ∈ Xs,p
0 (�)}. In particular, any eigenfunction corre-

sponding to an eigenvalue ν > λ1(�) must be sign-changing.

Proof For every nonnegative u, v ∈ Xs,p
0 (�), we claim that

I (z(t)) ≤ (1 − t)I (v) + t I (u), ∀ t ∈ [0, 1], (3.12)

where z(t) = ((1 − t)v p(x) + tu p(x))1/p , ∀ t ∈ [0, 1]. Let us first establish the
above inequality. The estimate follows immediately by considering the �p-norm of
z(t) over R2. Observe that

z(t) =
∥
∥
∥
(
t
1
p u, (1 − t)

1
p v
)∥
∥
∥

�p
.
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For any x, y ∈ � ⊂ G, we first put

a =
(
t1/pu(y), (1 − t)1/pv(y)

)

and

b =
(
t1/pu(x), (1 − t)1/pv(y)

)

in the following triangle inequality

|‖a‖�p − ‖b‖�p | ≤ ‖a − b‖�p

and then divide it by the fractional p-kernel |y−1x |Q+ps on both sides followed by
integration to obtain the desired inequality (3.12).

We now proceed to prove the main claim of this theorem. Suppose v ∈ Xs,p
0 (�)

and v > 0 in � is a weak solution of (3.1). Further, by normalizing, if necessary, we
may assume that ‖v‖p = 1. Suppose that u ∈ Xs,p

0 (�) minimizes the problem (3.6).
In other words

λ1(�) = min

{

I (u) : u ∈ Xs,p
0 (�),

∫

�

|u(x)|pdx = 1

}

is minimized at u. Define, uε = u + ε, vε = v + ε and for all x ∈ �

z(t, ε)(x) = (
tuε(x)

p + (1 − t)vε(x)
p) 1

p , t ∈ [0, 1].
Thanks to the inequality (3.12), the image of t �→ z(t, ε) is a family of curves in
Xs,p
0 (�) along which the energy I is convex. Thus we have

∫∫

G×G

|z(t, ε)(x) − z(t, ε)(y)|p
|y−1x |Q+ps

dxdy −
∫∫

G×G

|v(x) − v(y)|p
|y−1x |Q+ps

dxdy

≤ t

(∫∫

G×G

|u(x) − u(y)|p
|y−1x |Q+ps

dxdy −
∫∫

G×G

|v(x) − v(y)|p
|y−1x |Q+ps

dxdy

)

= t (λ1(�) − ν) , ∀ t ∈ [0, 1] and ∀ ε � 1. (3.13)

Now, using the convexity of τ �→ |τ |p, that is, (|a|p − |b|p ≥ p|b|p−2b(a − b)),
we estimate the left hand side of (3.13) from below as follows:

∫∫

G×G

|z(t, ε)(x) − z(t, ε)(y)|p
|y−1x |Q+ps

dxdy −
∫∫

G×G

|v(x) − v(y)|p
|y−1x |Q+ps

dxdy

≥ p
∫∫

G×G

|v(x) − v(y)|p−2(v(y) − v(x))

|y−1x |Q+ps

× (z(t, ε)(y) − z(t, ε)(x) − (v(y) − v(x))) dxdy, (3.14)

for all t ∈ [0, 1] and for all ε � 1.
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Observe that, the fact u, v ∈ Xs,p
0 (�) implies that

z(t, ε) ∈ Xs,p
0 (�) and v(y) − v(x) = vε(y) − vε(x).

Thus, on testing (3.2) with φ = (z(t, ε) − vε) corresponding to the eigenfunction v,
we get, for all ε � 1,

∫∫

G×G

|v(x) − v(y)|p−2(v(y) − v(x))

|y−1x |Q+ps

(z(t, ε)(y) − z(t, ε)(x) − (vε(y) − vε(x))) dxdy

= ν

∫

�

v(τ)p−1 (z(t, ε)(τ ) − vε(τ )) dτ. (3.15)

Therefore, from (3.13), (3.14) and (3.15), we obtain

ν

∫

�

v(τ)p−1(z(t, ε)(τ ) − vε(τ ))dτ ≤ t(λ1(�) − ν), (3.16)

for all t ∈ [0, 1] and for all ε � 1.

Now, by the concavity τ �→ |τ | 1p and by recalling that z(t, ε)(x) = (
tuε(x)p

+ (1 − t)vε(x)p
) 1
p we get the following point-wise boundedness a.e. in �

v(τ)p−1(z(t, ε)(τ ) − vε(τ )) ≥ t v(τ)p−1 (uε(τ ) − vε(τ )) (3.17)

and

v(τ)p−1 (uε(τ ) − vε(τ )) ∈ L1(�).

Therefore, from Fatou’s lemma we obtain

ν

∫

�

(
v(τ)

vε(τ )

)p−1

((uε(τ ))p − (vε(τ ))p)dτ

≤ ν lim inf
t→0+

∫

�

v(τ)p−1 z(t, ε)(τ ) − vε(τ )

t
dτ

≤ λ1(�) − ν (3.18)

for sufficiently small ε > 0.
Finally, recalling that v > 0 and applying the Lebesgue dominated convergence

theorem and then passing the limit ε → 0+, we get

0 ≤ λ1(�) − ν. (3.19)

Since, λ1(�) is the least eigenvalue and λ1(�) ≥ ν, we conclude that λ1(�) = ν.
Hence, the proof is complete. ��
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Lemma 2 Let 0 < s < 1 < p < ∞ and let � ⊂ G be a bounded domain. Suppose
that u and v are two positive eigenfunctions corresponding to λ1(�). Then u = cv for
some c > 0, that means, u and v are proportional. This says that the first eigenfunction
λ1(�) is simple.

Proof Let u, v ∈ Xs,p
0 (�) be such that ‖u‖p = ‖v‖p = 1 and u, v ≥ 0. Recall the

inequality (3.12) for t = 1/2. Then, we have

I

((
v p + u p

2

)1/p
)

≤ I (v) + I (u)

2
. (3.20)

Observe that w =
(

v p+u p

2

)1/p ∈ S. Consider the convex function

B(l,m) =
∣
∣
∣l

1
p − m

1
p

∣
∣
∣
p
for all l > 0,m > 0.

Recall from [71, Lemma 13] that

B
( l1 + l2

2
,
m1 + m2

2

)
≤ 1

2
B(l1,m1) + 1

2
B(l2,m2)

and equality holds only if l1m2 = l2m1. Thus, using the fact that u, v, w ∈ S and
(3.20), we obtain

λ1(�) ≤
∫

G

∫

G

|w(x) − w(y)|p
|y−1x |Q+ps

dxdy

≤ 1

2

∫

G

∫

G

|u(x) − u(y)|p
|y−1x |Q+ps

dxdy + 1

2

∫

G

∫

G

|v(x) − v(y)|p
|y−1x |Q+ps

dxdy = λ1(�).

Therefore, the inequality becomes equality and thus we get

u(x)v(y) = v(x)u(y).

This implies

u(y)

v(y)
= u(x)

v(x)
= c, (say).

Hence, u = cv a.e. in �. ��
Consider the problem

(−�p,G
)s
u = 0 in �

u = 0 in G \ �. (3.21)

123



S. Ghosh et al.

We say a function u ∈ Xs,p
0 (�) is a weak subsolution (or supersolution) of (3.21),

if for every nonnegative φ ∈ Xs,p
0 (�), we have

∫

G

∫

G

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))

|y−1x |Q+ps
dxdy ≤ (or ≥)0. (3.22)

A function u ∈ Xs,p
0 (�) is a weak solution of (3.21), if it is a weak subsolution

as well as a weak supersolution of (3.22). In particular, for every φ ∈ Xs,p
0 (�), u

satisfies

∫

G

∫

G

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))

|y−1x |Q+ps
dxdy = 0. (3.23)

We define the nonlocal tail of a function v ∈ Xs,p
0 (�) in a quasi-ball BR(x0) ⊂ G

given by

Tail(v, x0, R) =
[

Rsp
∫

G\BR(x0)

|v(x)|p−1

|x−1
0 x |Q+ps

dx

] 1
p−1

. (3.24)

Clearly, for any v ∈ Lr (G), r ≥ p − 1 and R > 0, we have Tail(v, x0, R) is finite,
by using the Hölder inequality. For the definitions of the nonlocal tail in the Euclidean
space and the Heisenberg group, we refer [35] and [80], respectively.

We state the following comparison principle for fractional p-sub-Laplacian on
stratified Lie groups. We refer to [25, 29] for the strong maximal principle for the
subellipic p-Laplacian for families of Hörmander vector fields and to [87, 89, 92] for
a comparison principle for higher order invariant hypoelliptic operators on graded Lie
groups.

Lemma 3 Let λ > 0, 0 < s < 1 < p < ∞ and u, v ∈ Xs,p
0 (�). Suppose that

(−�p,G)sv ≥ (−�p,G)su

weakly with v = u = 0 in G \ �. Then v ≥ u in G.

Proof It immediately follows from the proof of Lemma 13 later on with λ = 0. ��

The next aim is to establish a minimum principle for the problem (3.21). Prior to
that we will prove the following logarithmic estimate which will be used to prove the
minimum principle.

Lemma 4 Let 0 < s < 1 < p < ∞ and let u ∈ Xs,p
0 (�) be a weak supersolution of

(3.21) such that u ≥ 0 in BR := BR(x0) ⊂ �. Then for any Br := Br (x0) ⊂ B R
2
(x0)

and for any d > 0, the following estimate holds:
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∫

Br

∫

Br

∣
∣
∣
∣log

u(x) + d

u(y) + d

∣
∣
∣
∣

p dxdy

|y−1x |Q+ps

≤ CrQ−ps
(
d1−p

( r

R

)sp [Tail(u−, x0, R)]p−1 + 1
)

, (3.25)

where C = C(N , p, s), u− is the negative part of u.

Proof We follow the idea from [36] which is proved for the Euclidean case. Let us
first prove an inequality similar to Lemma 3.1 of [36].

Let p ≥ 1 and ε ∈ (0, 1]. Then for any a, b ∈ R, we have

|a| ≤ (|b| + |a − b|). (3.26)

Now, using this triangle inequality and the convexity of t p, we obtain

|a|p ≤ (|b| + |a − b|)p = (1 + ε)p
[

1

1 + ε
|b| + ε

1 + ε

|a − b|
ε

]p

≤ (1 + ε)p−1|b|p +
(
1 + ε

ε

)p−1

|a − b|p

≤ |b|p + cpε|b|p + cp(1 + cpε)ε
1−p|a − b|p, (3.27)

where cp = (p − 1)�(max{1, p − 2}) is obtained by iterating the last term of the
following estimate

(1 + ε)p−1 = 1 + (p − 1)
∫ 1+ε

1
t p−2dt ≤ 1 + ε(p − 1)max{1, (1 + ε)p−2}.

We will now proceed to prove the main estimate of this lemma. Let d > 0 and
η ∈ C∞

c (G) be such that

0 ≤ η ≤ 1, η ≡ 1 in Br , η ≡ 0 in G \ B2r and |∇Hη| < Cr−1. (3.28)

Since u(x) ≥ 0 for all x ∈ supp(η),ψ = (u+d)1−pηp is a well-defined test function
for (3.23). Thus, we get

∫

B2r

∫

B2r

|u(x) − u(y)|p−2(u(x) − u(y))

|y−1x |Q+ps

[
ηp(x)

(u(x) + d)p−1 − ηp(y)

(u(y) + d)p−1

]

dxdy

+ 2
∫

G\B2r

∫

B2r

|u(x) − u(y)|p−2(u(x) − u(y))

|y−1x |Q+ps

ηp(x)

(u(x) + d)p−1 dxdy = 0.

(3.29)

We will estimate both the terms individually. Set

I1 =
∫

B2r

∫

B2r

|u(x) − u(y)|p−2(u(x) − u(y))

|y−1x |Q+ps
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[
ηp(x)

(u(x) + d)p−1 − ηp(y)

(u(y) + d)p−1

]

dxdy (3.30)

I2 = 2
∫

G\B2r

∫

B2r

|u(x) − u(y)|p−2(u(x) − u(y))

|y−1x |Q+ps

ηp(x)

(u(x) + d)p−1 dxdy. (3.31)

We will first estimate I1. Let us assume that u(x) > u(y). Observe that u(y) ≥ 0
for all y ∈ B2r ⊂ BR using the support of η. Then on choosing

a = η(x), b = η(y) and ε = l
u(x) − u(y)

u(x) + d
∈ (0, 1) with l ∈ (0, 1) (3.32)

in the inequality (3.27), it can be estimated that

|u(x) − u(y)|p−2(u(x) − u(y))

|y−1x |Q+ps

[
ηp(x)

(u(x) + d)p−1 − ηp(y)

(u(y) + d)p−1

]

≤ (u(x) − u(y))p−1

(u(x) + d)p−1

ηp(y)

|y−1x |Q+ps

[

1 + cpl
u(x) − u(y)

u(x) + d
−
(
u(x) + d

u(y) + d

)p−1
]

+ cpl
1−p |η(x) − η(y)|p

|y−1x |Q+ps

=
(
u(x) − u(y)

u(x) + d

)p
ηp(y)

|y−1x |Q+ps

⎡

⎢
⎣
1 −

(
u(y)+d
u(x)+d

)1−p

1 − u(y)+d
u(x)+d

+ cpl

⎤

⎥
⎦

+ cpl
1−p |η(x) − η(y)|p

|y−1x |Q+ps

:= J1 + cpl
1−p |η(x) − η(y)|p

|y−1x |Q+ps
. (3.33)

We now aim to estimate J1. Consider the following function

h(t) := 1 − t1−p

1 − t
= − p − 1

1 − t

∫ 1

t
τ−pdτ, ∀t ∈ (0, 1).

Since, the function h1(t) = 1
1−t

∫ 1
t τ−pdτ is decreasing in t ∈ (0, 1), we have h is

increasing in t ∈ (0, 1). Thus, we have

h(t) ≤ −(p − 1), ∀ t ∈ (0, 1).

Case-1: 0 < t ≤ 1
2 .

In this case,

h(t) ≤ − p − 1

2p
t1−p

1 − t
.
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For t = u(y)+d
u(x)+d ∈ (0, 1/2], i.e. for u(y) + d ≤ u(x)+d

2 , we get

J1 ≤
(

cpl − p − 1

2p

)[
u(x) − u(y)

u(y) + d

]p−1
ηp(y)

|y−1x |Q+ps
, (3.34)

since

(u(x) − u(y))

(
(u(y) + d)p−1

(u(x) + d)p

)

=
(
u(y) + d

u(x) + d

)p−1

−
(
u(y) + d

u(x) + d

)p

≤ 1.

On choosing l as

l = p − 1

2p+1cp

(

= 1

2p+1�(max{1, p − 2}) < 1

)

, (3.35)

we obtain

J1 ≤ − p − 1

2p+1

[
u(x) − u(y)

u(y) + d

]p−1
ηp(y)

|y−1x |Q+ps
.

Case-2: 1
2 < t < 1.

Again choosing, t = u(y)+d
u(x)+d ∈ (1/2, 1), i.e. u(y) + d >

u(x)+d
2 , we obtain

J1 ≤ [cpl − (p − 1)]
[
u(x) − u(y)

u(x) + d

]p
ηp(y)

|y−1x |Q+ps

−
(
2p+1 − 1

)
(p − 1)

2p+1

[
u(x) − u(y)

u(x) + d

]p
ηp(y)

|y−1x |Q+ps
(3.36)

for the choice of l as in (3.35).
We note that, for 2(u(y) + d) < u(x) + d, we have

[

log

(
u(x) + d

u(y) + d

)]p
≤ cp

[
u(x) − u(y)

u(y) + d

]p−1

, (3.37)

and, for 2(u(y) + d) ≥ u(x) + d, we derive

[

log

(
u(x) + d

u(y) + d

)]p
=
[

log

(

1 + u(x) − u(y)

u(y) + d

)]p
≤ 2p

(
u(x) − u(y)

u(x) + d

)p

,

(3.38)

by using u(x) > u(y) and log(1 + x) ≤ x, ∀x ≥ 0.
Thus, from the estimates (3.33), (3.34), (3.36), (3.37) and (3.38), we obtain

|u(x) − u(y)|p−2(u(x) − u(y))

|y−1x |Q+ps

[
ηp(x)

(u(x) + d)p−1 − ηp(y)

(u(y) + d)p−1

]
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≤ − 1

cp

[

log

(
u(x) + d

u(y) + d

)]p
ηp(y)

|y−1x |Q+ps
+ cpl

1−p |η(x) − η(y)|p
|y−1x |Q+ps

.

This is true also for u(y) > u(x) by exchanging x and y. The case u(x) = u(y) holds
trivially. Thus, we can estimate I1 in (3.30) as

I1 ≤ − 1

c(p)

∫

B2r

∫

B2r

∣
∣
∣
∣log

(
u(x) + d

u(y) + d

)∣∣
∣
∣

p
ηp(y)

|y−1x |Q+ps
dxdy

+ c(p)
∫

B2r

∫

B2r

|η(x) − η(y)|p
|y−1x |Q+ps

dxdy, (3.39)

for some constant c(p) depending on the choice of l.
We will now estimate the term I2 in (3.31). Observe that u(y) ≥ 0 for all y ∈ BR .

Thus, using (u(x) − u(y))+ ≤ u(x), we get

(u(x) − u(y))p−1
+

(d + u(x))p−1 ≤ 1, ∀ x ∈ B2r , y ∈ BR . (3.40)

On the other hand for y ∈ � \ BR , we have

(u(x) − u(y))p−1
+ ≤ 2p−1

[
u p−1(x) + (u(y))p−1

−
]
, ∀ x ∈ B2r . (3.41)

Then using the inequalities (3.40) and (3.41), we obtain

I2 ≤ 2
∫

BR\B2r

∫

B2r
(u(x) − u(y))p−1

+ (d + u(x))1−p ηp(x)

|y−1x |Q+ps
dxdy

+ 2
∫

G\BR

∫

B2r
(u(x) − u(y))p−1

+ (d + u(x))1−p ηp(x)

|y−1x |Q+ps
dxdy

≤C(p)
∫

G\B2r

∫

B2r

ηp(x)

|y−1x |Q+ps
dxdy + C ′(p)d1−p

∫

G\BR

∫

B2r

(u(y))p−1
−

|y−1x |Q+ps
dxdy

≤ C(p) sup
x∈B2r

r Q
∫

G\B2r
dy

|y−1x |Q+ps
+ C ′(p)d1−p |Br |

∫

G\BR

(u(y))p−1
−

∣
∣y−1x0

∣
∣Q+ps

dy

≤ C(p)r Q−ps + C ′(p)d1−p r Q

Rsp

[
Tail (u−; x0, R)

]p−1

≤ C(p)
∫

B2r

∫

B2r

|η(x) − η(y)|p
|y−1x |Q+ps

dxdy + C(p)r Q−ps

+ C ′(p)d1−p r Q

Rsp

[
Tail (u−; x0, R)

]p−1
, (3.42)

for some constants C(p),C ′(p) depending on p.
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Therefore, by using (3.39) and (3.42) in (3.29), we get

∫

B2r

∫

B2r

∣
∣
∣
∣log

(
u(x) + d

u(y) + d

)∣∣
∣
∣

p
ηp(y)

|y−1x |Q+ps
dxdy

≤ C
∫

B2r

∫

B2r

|η(x) − η(y)|p
|y−1x |Q+ps

dxdy

+ Cd1−pr Q R−ps [Tail (u−; x0, R)
]p−1 + CrQ−ps . (3.43)

Again, by using |∇Hη| ≤ Cr−1, we have

∫

B2r

∫

B2r

|η(x) − η(y)|p
|y−1x |Q+ps

dxdy ≤ Cr−p
∫

B2r

∫

B2r
|y−1x |−Q+p(1−s)dxdy

≤ C

p(1 − s)
r−sp |B2r | . (3.44)

Therefore, the logarithmic estimate (3.25) follows from (3.43) and (3.44). ��
We have now all the ingredients to state the following strong minimum principle.

Theorem 6 (Strong minimum principle) Let 0 < s < 1 < p < ∞ and let � ⊂ G

be an open, connected and bounded subset of a stratified Lie group G. Assume that
u ∈ Xs,p

0 (�) is a weak supersolution of (3.21) such that u ≥ 0 in � and u �≡ 0 in �.

Then u > 0 a.e. in �.

Proof Suppose for a moment that u > 0 a.e. in K for every connected and compact
subset of �. Since � is connected and u �≡ 0 in �, there exists a sequence of compact
and connected sets K j ⊂ � such that

∣
∣�\K j

∣
∣ <

1

j
and u �≡ 0 in K j .

Thus u > 0 a.e. in K j for all j . Now passing to the limit as j → ∞, we get that
u > 0 a.e. �. Thus it enough to prove the result stated in the lemma for compact and
connected subsets of �. Since K ⊂ � is compact and connected, then there exists
r > 0 such that K ⊂ {x ∈ � : distcc(x, ∂�) > 2r}. Again, using the compactness,
there exist xi ∈ K , i = 1, 2, ..., k, such that the quasi-balls Br/2 (x1) , . . . Br/2 (xk)
cover K and

∣
∣Br/2 (xi ) ∩ Br/2 (xi+1)

∣
∣ > 0, i = 1, . . . , k − 1. (3.45)

Suppose that u vanishes on a subset of K with positive measure. Then with the help
of (3.45), we conclude that there exists i ∈ {1, . . . , k − 1} such that

|Z | := | {x ∈ Br/2 (xi ) : u(x) = 0
} | > 0.
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For d > 0 and x ∈ Br/2 (xi ), define

Fd(x) = log

(

1 + u(x)

d

)

.

Observe that for every x ∈ Z we have

Fd(x) = 0.

Thus for every x ∈ Br/2 (xi ) and y ∈ Z with x �= y we get

|Fd(x)|p = |Fd(x) − Fd(y)|p
|y−1x |Q+ps

|y−1x |Q+ps .

Integrating with respect to y ∈ Z , we get

|Z | |Fd(x)|p ≤
(

max
x,y∈Br/2(xi )

|y−1x |Q+ps
)∫

Br/2(xi )

|Fd(x) − Fd(y)|p
|y−1x |Q+ps

dy.

Again integratingwith respect to x ∈ Br/2 (xi )we deduce the following local Poincaré
inequality:

∫

Br/2(xi )
|Fd |p dx ≤ r Q+ps

|Z |
∫

Br/2(xi )

∫

Br/2(xi )

|Fd(x) − Fd(y)|p
|y−1x |Q+ps

dxdy. (3.46)

Observe that
∣
∣
∣
∣log

(
d + u(x)

d + u(y)

)∣∣
∣
∣

p

= |Fd(x) − Fd(y)|p .

Plugging the logarithmic estimate (3.25) into the above Poincaré inequality (3.46) by
using the fact that u− = 0 (hence Tail(u−, xi , R) = 0), we get

∫

Br/2(xi )

∣
∣
∣
∣log

(

1 + u(x)

d

)∣∣
∣
∣

p

dx ≤ C
r2Q

|Z | . (3.47)

Now taking limit d → 0 in (3.47), we obtain u = 0 a.e. in Br/2 (xi ) . Thanks to (3.45),
by repeating this arguments in the quasi-balls Br/2 (xi−1) and Br/2 (xi+1) and so on
we obtain that u ≡ 0 a.e. on K . This is a contradiction and hence u > 0 a.e. in K .
This completes the proof. ��
Lemma 5 Let 0 < s < 1 < p < ∞. Assume that � ⊂ G is a bounded domain. Let
u be an eigenfunction of (3.1) corresponding to ν �= λ1(�). Then we have ν(�) >

λ1(�+) and ν(�) > λ1(�−), where�+ = {u > 0} and�− = {u < 0}. In particular,

ν ≥ C(N , p, s) |�+|− ps
Q and ν ≥ C(Q, p, s) |�−|− ps

Q . (3.48)
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Proof Since ν �= λ1(�), then u must be sign-changing. On testing the equation (3.2)
with φ = u+ we obtain

ν

∫

�+
|u+|p dx ≥

∫∫

G×G

|u+(x) − u+(y)|p
|y−1x |Q+ps

dxdy

+ 2p/2
∫∫

G×G

(u+(y)u−(x))
p
2

|y−1x |Q+ps
dxdy.

Dividing both sides by
∫
�+ |u+(x)|p dx , we have

ν ≥ λ1 (�+) + 2p/2

∫∫

G×G

(u+(y)u−(x))
p
2

|y−1x |Q+ps
dxdy

∫

�+
|u+(x)|p dx

.

Therefore, we get ν > λ1 (�+). Inequality (3.8) yields that

ν

∫

�+
|u+|p dx ≥

∫∫

G×G

|u+(x) − u+(y)|p
|y−1x |Q+ps

dxdy ≥ C |�+|− ps
Q

∫

�+
|u+(x)|pdx

(3.49)

and dividing by
∫
�+ |u+(x)|pdx we deduce ν ≥ C(N , p, s) |�+|− ps

Q .

Similarly, we can deduce ν > λ1 (�−) and ν ≥ C |�−|− ps
Q . This completes the

proof. ��
Lemma 6 Let 0 < s < 1 < p < ∞. Assume that � ⊂ G is bounded. Then the first
eigenvalue λ1(�) of (3.1) is isolated.

Proof We will prove it by contradiction. Let {νk} be a sequence of eigenvalues con-
verging to λ1 such that νk �= λ1. Suppose that uk is the eigenfunction corresponding
to νk . Without loss of generality, we may assume that ‖uk‖p = 1. Then we have

νk =
∫

�×�

|uk(x) − uk(y)|p
|y−1x |Q+ps

dxdy.

By Theorem 1, there exists u ∈ Xs,p
0 (�) such that, up to a subsequence

uk → u strongly in L p (�) and uk(x) → u(x) point-wise a.e. in �.

Then by applying Fatou’s lemma, we get

∫∫

G×G

|u(y) − u(x)|p
|y−1x |Q+ps

dxdy
∫

�

|u(x)|pdx
≤ lim

k→∞ νk = λ1(�).
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Hence we can conclude that u coincides with the first eigenfunction. Theorem 3 infers
that u cannot change sign. Thus either u > 0 in� or u < 0 in�. Thanks to Theorem 5,
we conclude that uk must change signs in �, since νk > λ1(�). Therefore, the sets
�k± �= ∅ are with positive measure, where

�k+ = {x ∈ � : uk(x) > 0} and �k− = {x ∈ � : uk(x) < 0} .

From the estimate (3.48), we have

νk ≥ λ1

(
�k+
)

≥ C
∣
∣
∣�k+

∣
∣
∣
− ps

Q
and νk ≥ λ1

(
�k−
)

≥ C
∣
∣
∣�k−

∣
∣
∣
− ps

Q
.

This implies that

|�±| = | lim sup�k±| > 0.

Therefore, letting k → ∞, we get that u ≥ 0 in �+ and u ≤ 0 in �−. Thus we arrive
at a contradiction that u is a first eigenfunction. ��
Proof of Theorem 2 The proof immediately follows from the Theorem 2, Lemmas 5
and 6. ��

4 Nehari manifold, weak formulation andmultiplicity result

In this section, we use the results established in the previous two sections to study
the existence and multiplicity of weak solutions to the nonlocal singular subelliptic
problem (1.5). We employ the Nehari manifold technique to establish the multiplic-
ity of solutions. The following subsection is devoted to defining the notion of weak
solutions, fibering maps, Nehari manifold and some preliminary results.

4.1 Weak solution and geometry of Nehari manifold

Let us now present the notion of a positive weak solution to the problem (1.5).

Definition 5 We say that u ∈ Xs,p
0 (�) is a positive weak solution of (1.5) if u > 0 on

� (i.e. essinfK u ≥ CK > 0 for all compact subsets K ⊂ �) and

〈(−�p,G
)s
u, ψ〉 − λ

∫

�

f (x)u−δψdx −
∫

�

g(x)uqψdx = 0 (4.1)

for all ψ ∈ C∞
c (�)

The energy functional Iλ : Xs,p
0 (�) → R associated with the problem (1.5) is

defined as
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Iλ(u) = 1

p
‖u‖p

Xs,p
0 (�)

− λ

1 − δ

∫

�

f (x)|u|1−δdx − 1

q + 1

∫

�

g(x)|u|q+1dx .

(4.2)

We note here that due to the presence of the singular exponent δ ∈ (0, 1), the functional
Iλ is not Fréchet differentiable. Also, it is not bounded from below in Xs,p

0 (�) as
q > p − 1. The method of Nehari manifold plays an important role to extract critical
points of this type of energy functional. We define the Nehari manifold N for λ > 0
as

Nλ := {
u ∈ Xs,p

0 (�) \ {0} : 〈I ′
λ(u), u

〉 = 0
}
. (4.3)

We set

cλ = inf {Iλ(u) : u ∈ Nλ} . (4.4)

It is obvious that u ∈ Nλ if and only if

‖u‖p
Xs,p
0 (�)

− λ

∫

�

f (x)|u|1−δdx −
∫

�

g(x)|u|q+1dx = 0. (4.5)

In the next result we establish the coerciveness and boundedness of the functional Iλ.

Lemma 7 For each λ > 0, the energy Iλ is coercive and bounded from below on Nλ.

Proof By referring to the equations (4.2) and (4.5), we obtain

Iλ(u) = 1

p
‖u‖p

Xs,p
0 (�)

− λ

1 − δ

∫

�

f (x)|u|1−δdx − 1

q + 1

∫

�

g(x)|u|q+1dx

=
(
1

p
− 1

q + 1

)

‖u‖p
Xs,p
0 (�)

− λ

(
1

1 − δ
− 1

q + 1

)∫

�

f (x)|u|1−δdx

≥
(
1

p
− 1

q + 1

)

‖u‖p
Xs,p
0 (�)

− cλ‖ f ‖∞
(

1

1 − δ
− 1

q + 1

)

‖u‖1−δ

Xs,p
0 (�)

.

(4.6)

Since 0 < 1 − δ < 1 and q + 1 > p > 1, we conclude that that Iλ is coercive and
bounded from below on Nλ. ��

Now, we prove the following lemma proceeding as in the proof given in [62].

Lemma 8 For every non-negative u ∈ Xs,p
0 (�) there exists a non-negative, increasing

sequence {un} in Xs,p
0 (�)with each un having compact support in� such that un → u

strongly in Xs,p
0 (�).

Proof Take u ∈ Xs,p
0 (�) and u ≥ 0. By invoking the density of C∞

c (�) in Xs,p
0 (�),

we can choose a sequence {vn} ⊂ C∞
c (�) converging strongly to u in Xs,p

0 (�) such
that vn ≥ 0 for all n ∈ N. We now construct another sequence {wn} by wn =
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min{vn, u}. Then wn → u strongly in Xs,p
0 (�). Let ε > 0. Choose n1 > 0 such

that ‖wn1 − u‖ < ε, then ‖max{u1, wn} − u‖ → 0, where u1 := wn1 . Again
choose, n2 such that ‖max{u1, wn2}− u‖ < ε

2 , then for u2 := max{u1, wn2} we have
‖max{u2, wn} − u‖ → 0. Continuing in this way, set uk = max{uk−1, wnk }. Note
that each uk is compactly supported and ‖uk − u‖ ≤ ε

k . Thus we can deduce that
‖un − u‖ → 0 and this is the desired sequence. ��

For each u ∈ Xs,p
0 (�), the fiber map φu : (0,∞) → R is defined by φu(t) =

Iλ(tu). This fibering map is an important tool to extract the critical points of the
energy functional Iλ which was first coined by Drábek and Pohozaev [37]. Clearly,
for t > 0, we have

φu(t) = t p

p
‖u‖p − λ

t1−δ

1 − δ

∫

�

f (x)|u|1−δdx − tq+1

q + 1

∫

�

g(x)|u|q+1dx, (4.7)

φ′
u(t) = t p−1‖u‖p − λt−δ

∫

�

f (x)|u|1−δdx − tq
∫

�

g(x)|u|q+1dx, (4.8)

and

φ′′
u (t) = (p − 1)t p−2‖u‖p + δλt−δ−1

∫

�

f (x)|u|1−δdx − qtq−1
∫

�

g(x)|u|q+1dx .

(4.9)

Observe that φ′
u(t) = 1

t 〈I ′
λ(tu), tu〉. Thus φ′

u(t) = 0 if and only if tu ∈ Nλ for
some t > 0 and u is a critical point of Iλ if and only if φ′

u(1) = 0. Thus it is natural
to split Nλ into three essential subsets corresponding to local minima, local maxima
and points of inflexion.

For this purpose, we define the following three sets

N+
λ = {

u ∈ Nλ : φ′
u(1) = 0, φ′′

u (1) > 0
}

= {
t0u ∈ Nλ : t0 > 0, φ′

u (t0) = 0, φ′′
u (t0) > 0

}
, (4.10)

N−
λ = {

u ∈ Nλ : φ′
u(1) = 0, φ′′

u (1) < 0
}

= {
t0u ∈ Nλ : t0 > 0, φ′

u (t0) = 0, φ′′
u (t0) < 0

}
, (4.11)

and

N0
λ = {

u ∈ Nλ : φ′
u(1) = 0, φ′′

u (1) = 0
}
. (4.12)

Therefore, it is enough to find two members u ∈ N+
λ \N0

λ and v ∈ N−
λ \N0

λ to establish
our result. It is easy to see that only members of the sets N±

λ \ N0
λ are critical points

of the energy functional Iλ.
We first introduce the following quantity

�1 = sup
u∈Xs,p

0 (�)

{
λ > 0 : φu(t) (ref. (4.7)) has two critical points in (0,∞)

}
.
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Proposition 1 Under the assumptions on the problem (1.5), we have 0 < �1 < ∞.

To prove Proposition 1 we first prove the following result which ensure that �1 > 0.
We first define the function mu : R+ → R by

mu(t) = t p−1+δ‖u‖p
Xs,p
0 (�)

− tq+δ

∫

�

g(x)|u|q+1dx . (4.13)

The function mu will play a crucial role to find a λ∗ > 0 in the following lemma.

Lemma 9 Under the assumptions on the problem (1.5), there exists λ∗ > 0 such that,
for every 0 < λ < λ∗, we have N±

λ �= ∅, i.e., there exist unique t1 and t2 in (0,∞)

with t1 < t2 such that t1u ∈ N+
λ and t2u ∈ N−

λ . Moreover, for any λ ∈ (0,�1), we
have N0

λ = ∅.
Furthermore, sup

u∈N+
λ

‖u‖Xs,p
0 (�) < ∞ and inf

v∈N−
λ

‖v‖Xs,p
0 (�) > 0.

Proof Using (4.8) and (4.13) we first deduce that, for t > 0, we have

φ′
u(t) = t−δ

(

mu(t) − λ

∫

�

f (x)|u|1−δdx

)

. (4.14)

This implies that φ′
u(t) = 0 if and only if mu(t) − λ

∫
�

f (x)|u|1−δdx = 0. Referring
to (4.13) and q > p−1, we note that for u �= 0,mu(0) = 0 and limt→∞ mu(t) = −∞.
Thus, one can verify that the functionmu(t) attains its maximum at t = tmax given by

tmax =
⎡

⎣
(p − 1 + δ)‖u‖p

Xs,p
0 (�)

(q + δ)
∫
�
g(x)|u|q+1dx

⎤

⎦

1
q+1−p

. (4.15)

The value of mu at t = tmax is given by

mu (tmax) =
(
q + 2 − p

p − 1 + δ

)(
p − 1 + δ

q + δ

) δ+q
q+1−p ‖u‖

p(q+δ)
q+1−p

Xs,p
0 (�)

(∫
�
g(x)|u|q+1dx

) p−1+δ
q+1−p

. (4.16)

In addition, by using the fact that limt→0+ m′
u(t) > 0, we conclude thatmu is increas-

ing function on (0, tmax) and is decreasing function on (tmax,∞). Indeed, we have

mu(tmax)∫
�

f (x)|u|1−δdx
=
(
q + 2 − p

p − 1 + δ

)(
p − 1 + δ

q + δ

) δ+q
δ+1−p

‖u‖
p(q+δ)
δ+1−p

Xs,p
0 (�)

(∫
�
g|u|q+1dx

) p−1+δ
q+1−p

(∫
�

f |u|1−δdx
)
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≥
(
q + 2 − p

p − 1 + δ

)(
p − 1 + δ

q + δ

) δ+q
δ+1−p S

− p−1+δ
q+1−p

q+1 S−1
1−δ

‖ f ‖∞‖g‖
p−1+δ
q+1−p∞

, (4.17)

where Sα = sup{‖u‖α
α : u ∈ Xs,p

0 (�), ‖u‖Xs,p
0 (�) = 1} for α ≥ 0, i.e.

∫
�

|u|αdx ≤
Sα‖u‖α

Xs,p
0 (�)

.

Now we set

λ∗ =
(
q + 2 − p

p − 1 + δ

)(
p − 1 + δ

q + δ

) δ+q
δ+1−p S

− p−1+δ
q+1−p

q+1 S−1
1−δ

‖ f ‖∞‖g‖
p−1+δ
q+1−p∞

. (4.18)

Then, for every λ ∈ (0, λ∗), we have

0 < λ

∫

�

f (x)|u|1−δdx ≤ mu (tmax) . (4.19)

Thus, there exist t1 and t2 with 0 < t1 < tmax < t2 such that

mu(t1) = mu(t2) = λ

∫

�

f (x)|u|1−δdx . (4.20)

Therefore, we deduce that φu decreasing on the set (0, t1), increasing on (t1, t2) and
again decreasing on (t2,∞). So, φu has a local maxima at t = t2 and a local minima
at t = t1 such that t2u ∈ N−

λ and t1u ∈ N+
λ . In particular, we have

Iλ(t1)(u) = min
0≤t≤tmax

Iλ(u) and Iλ(t2)(u) = max
t≥0

Iλ(u). (4.21)

We now intend to prove that N0
λ = ∅. For a moment, we suppose that u �≡ 0 and

u ∈ N0
λ, then u ∈ Nλ. Therefore, by using the definition of the fibering map φu(t),

we see that t = 1 is a critical point. Now, the above arguments imply that the critical
points of φu are corresponding to a local minima or a local maxima. Thus, we get
either u ∈ N+

λ or u ∈ N−
λ . This contradicts the fact that u ∈ N0

λ and therefore we
conclude that N0

λ = ∅.

Finally, we assume that u ∈ N+
λ . From (4.9) and φ

′′
u(1) > 0 we get

(q + 1 − p)‖u‖p
Xs,p
0 (�)

≤ λ(q + δ)c1‖ f ‖∞‖u‖1−δ

Xs,p
0 (�)

,

which implies that

‖u‖Xs,p
0 (�) ≤

(
λ(q + δ)c1‖ f ‖∞

q + 1 − p

) 1
p−1+δ

. (4.22)
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Similarly, for v ∈ N−
λ , from (4.9) and the fact φ

′′
v(1) < 0 we obtain

(p − 1 + δ)‖v‖p
Xs,p
0 (�)

≥ (q + δ)c2‖g‖∞‖v‖q+1
Xs,p
0 (�)

which eventually gives

‖v‖Xs,p
0 (�) ≥

(
p − 1 + δ

(q + δ)c1‖g‖∞

) 1
q+1−p

. (4.23)

From (4.22) and (4.23), we conclude that
sup
u∈N+

λ

‖u‖Xs,p
0 (�) < ∞ and inf

v∈N−
λ

‖v‖Xs,p
0 (�) > 0. ��

Lemma 10 Let u be a local minimizer for Iλ on N−
λ or N+

λ such that u /∈ N0
λ. Then u

is a critical point of Iλ.

Proof Wefirst introduce the functional Jλ(u) = 〈I ′
λ(u), u〉. Then, one can easily verify

that Nλ = J−1
λ (0) \ {0} and

〈
J ′
λ(u), u

〉 = p‖u‖p
Xs,p
0 (�)

− λ(1 − δ)

∫

�

f (x)|u|1−δ

Xs,p
0 (�)

dx − q
∫

�

g(x)|u|q+1dx

= (p − 1 + δ)‖u‖p − (q − δ)

∫

�

h(x)|u|q+1dx, ∀ u ∈ Nλ.

Since u is a local minimizer for Iλ on Nλ we can redefine the minimization problem
under the following constrained equation

Jλ(u) = 〈I ′
λ(u), u〉 = 0 (4.24)

Therefore, the method of Lagrange multipliers guarantees the existence of a constant
κ ∈ R such that

J ′
λ(u) = κ I ′

λ(u).

Thus, we obtain

〈I ′
λ(u), u〉 = κ〈J ′

λ(u), u〉 = κφ
′′
(1) = 0.

Therefore, we conclude that κ = 0 as u /∈ N0
λ. Hence, u is a critical point of Iλ. ��

4.2 Existence of minimizers onN+
� andN−

�

In this subsection, wewill prove the existence ofminimizers uλ and vλ of Iλ onN
+
λ and

N−
λ which is attained inN+

λ andN−
λ respectively. Also, we show that these minimizers

are solutions of (1.5) and uλ �= vλ. We have the following lemma.
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Lemma 11 For all λ ∈ (0,�1), there exists uλ ∈ N+
λ such that Iλ (uλ) = inf Iλ

(
N+

λ

)
.

Moreover, uλ is a non-negative weak solution to the problem (1.5).

Proof Since the functional Iλ is bounded below onNλ (hence bounded below onN+
λ ),

there exists a sequence {un} ⊂ N+
λ such that Iλ(un) → inf Iλ(N

+
λ ) as n → +∞.

Moreover, by using the coercivity of Iλ and Lemma 9, we have that {un} is bounded in
Xs,p
0 (�) and hence by the reflexiveness of Xs,p

0 (�), there exists uλ ∈ Xs,p
0 (�) such

that un⇀uλ weakly in Xs,p
0 (�). Thus, by the compact embedding (ref. Theorem 1),

we get un → uλ strongly in Lr (�) for 1 ≤ r < p∗
s and un → uλ pointwise a.e.

in �. Our aim is to show un → uλ strongly in Xs,p
0 (�). Prior to that we prove that

inf Iλ(N
+
λ ) < 0. Indeed, for w ∈ N+

λ , the fiber map φ has a local minima in N+
λ and

φ
′′
(1) > 0. Thus, from (4.9), we get

(
p − 1 + δ

δ + q

)

‖w‖p
Xs,p
0 (�)

>

∫

�

|w|q+1 dx . (4.25)

The above inequality (4.25) with the fact that q > p − 1 retrieves the required claim.
In fact, we have

Iλ (w) =
(
1

p
− 1

1 − δ

)

‖w‖p
Xs,p
0 (�)

+
(

1

1 − δ
− 1

q + 1

)∫

�

|w|q+1 dx

≤ (1 − δ − p)

p(1 − δ)
‖w‖p

Xs,p
0 (�)

+ (p − 1 + δ)

(q + 1)(1 − δ)
‖w‖p

Xs,p
0 (�)

=
(

− 1

p
+ 1

q + 1

)(
p − 1 + δ

1 − δ

)

‖w‖p
Xs,p
0 (�)

=
(
p − (q + 1)

p(q + 1)

)(
p − 1 + δ

1 − δ

)

‖w‖p
Xs,p
0 (�)

< 0.

We now prove the strong convergence by contradiction. Suppose the strong conver-
gence un → uλ in Xs,p

0 (�) fails. Then we have

‖uλ‖Xs,p
0 (�) < lim inf

n→∞ ‖un‖Xs,p
0 (�). (4.26)

Further, by the compact embedding (see Theorem 1), we have

∫

�

g(x)|uλ|q+1dx = lim inf
n→∞

∫

�

g(x)|un|q+1dx (4.27)
∫

�

f (x)|uλ|1−δdx = lim inf
n→∞

∫

�

f (x)|un|1−δdx . (4.28)
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Since {un} ⊂ N+
λ then φ′(1) = 〈I ′

λ(un), un〉 = 0. Thus, we get from (4.6) that

Iλ(un) ≥
(
1

p
− 1

q + 1

)

‖un‖p
Xs,p
0 (�)

− cλ‖ f ‖∞
(

1

1 − δ
− 1

q + 1

)

‖un‖1−δ

Xs,p
0 (�)

.

(4.29)

Therefore, passing to the limit as n → ∞, we deduce

inf Iλ(N
+
λ ) ≥ lim

n→∞

(
1

p
− 1

q + 1

)

‖un‖p
Xs,p
0 (�)

− lim
n→∞ cλ‖ f ‖∞

(
1

1 − δ
− 1

q + 1

)

‖un‖1−δ

Xs,p
0 (�)

>

(
1

p
− 1

q + 1

)

‖uλ‖p
Xs,p
0 (�)

− cλ‖ f ‖∞
(

1

1 − δ
− 1

q + 1

)

‖uλ‖1−δ

Xs,p
0 (�)

> 0, (4.30)

which is impossible since inf Iλ(N
+
λ ) < 0. Thus, un → uλ strongly in Xs,p

0 (�).
Finally, we get φ

′′
uλ

(1) > 0 for all λ ∈ (0,�1). Hence, we have uλ ∈ N+
λ and

Iλ(uλ) = Iλ(N
+
λ ). Since, Iλ(uλ) = Iλ(|uλ|), we can assume that uλ is non-negative.

Finally, by the Lemma 10, we deduce that uλ is a critical point of Iλ(uλ) and hence a
weak solution to the problem (1.5). ��

The next lemma guarantees the existence of a minimizer in N−
λ .

Lemma 12 For all λ ∈ (0,�1), there exists vλ ∈ N−
λ such that Iλ (vλ) = inf Iλ

(
N−

λ

)
.

Moreover, vλ is a non-negative weak solution to the problem (1.5).

Proof Proceeding as in the previous Lemma 11, we can assume that there exists a
sequence {vn} ⊂ N−

λ such that Iλ(vn) → inf Iλ(N
−
λ ) as n → +∞ and there exists

vλ ∈ Xs,p
0 (�) such that vn⇀vλ weakly in Xs,p

0 (�). Therefore, the compact embed-
ding (see Theorem 1) guarantees that vn → vλ strongly in Lr (�) for 1 ≤ r < p∗

s and
vn → vλ pointwise a.e. in �. Let us first prove that inf Iλ(N

−
λ ) > 0. Suppose z ∈ Nλ.

Therefore, using (4.6), we get

Iλ(z) ≥
(
1

p
− 1

q + 1

)

‖z‖p
Xs,p
0 (�)

− cλ‖ f ‖∞
(

1

1 − δ
− 1

q + 1

)

‖z‖1−δ

Xs,p
0 (�)

= ‖z‖1−δ

Xs,p
0 (�)

(
q + 1 − p

p(q + 1)

)

‖z‖p−1+δ

Xs,p
0 (�)

− cλ‖ f ‖∞
(

q + δ

(1 − δ)(q + 1)

)

.

(4.31)

Now, for any λ <
(q+1−p)(1−δ)

cp‖ f ‖∞ in (4.31), we get Iλ(z) > 0. Since, N+
λ ∩ N−

λ = ∅
and N+

λ ∪N−
λ = Nλ (ref. Lemma 9), then we must have z ∈ N−

λ . Again, for z ∈ N−
λ ,

there exists t > 0 such that φ′
z(t z) = I ′

λ(t z) < 0, since 1 − δ < 1 < p < q + 1.
This implies t z ∈ N−

λ . This is also true for vλ. We are now in a state to prove the
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strong convergence. Suppose the strong convergence vn → vλ in Xs,p
0 (�) fails. Then

proceeding as Lemma 11, we obtain

Iλ(tvλ) ≤ lim
n→∞ Iλ(tvn) ≤ lim

n→∞ Iλ(vn) = inf Iλ
(
N−

λ

)
. (4.32)

This estimate gives the equality Iλ(tvλ) = inf Iλ
(
N−

λ

)
, which is a contradiction.

Thus, vn → vλ strongly in Xs,p
0 (�) and Iλ(vλ) = Iλ(N

−
λ ). Since, Iλ(uλ) = Iλ(|uλ|),

we can assume that uλ is non-negative. Finally, by the Lemma 10, we deduce that uλ

is a critical point of Iλ(uλ) and hence a weak solution to the problem (1.5). ��
Proof of Proposition 1 Clearly, from Lemma 9, we get �1 > 0. We will prove the
boundedness of�1 by contradiction. Suppose�1 = +∞. Letλ1 be the first eigenvalue
of the problem (3.21) and letφ1 be the correspondingfirst eigenfunction. Choose λ̄ > 0
such that

λ̄ f (x)

tδ
+ g(x)tq > (λ1 + ε)t p−1 (4.33)

for all t ∈ (0,∞), x ∈ � and for some ε ∈ (0, 1). Recall the weak solution uλ ∈ N+
λ .

Then for the above choice of λ̄, ū := uλ̄ ∈ Xs,p
0 (�) is weak supersolution to

(−�p,G)su = (λ1 + ε)|u|p−2u in �,

u = 0 in G \ �. (4.34)

Then we can choose r > 0 such that u = rφ1 becomes a subsolution to the problem
(4.34). Now by using the boundedness of φ1, we can choose a smaller r > 0 (this
choice is possible since rφ1 is a subsolution) such that u ≤ ū. Now define w = rφ1
and wn ∈ Xs,p

0 (�) such that

(−�p,G)swk = (λ1 + ε)|wk−1|p−2wk−1 in �.

From Lemma 3, for all x ∈ � we have

rφ1 = w0 ≤ w1 ≤ ... ≤ wk ≤ .... ≤ uλ̄.

This shows that {wk} is bounded in Xs,p
0 (�) and hence from the reflexivity, we con-

clude that wk⇀w in Xs,p
0 (�), up to a subsequence. Thus w becomes a weak solution

to (4.34). Since λ1 + ε > λ1, we arrive at a contradiction to the fact that λ1 is simple
and isolated. Hence, �1 < ∞. ��
Having developed all the necessary tools now we are ready to prove our main result.

Proof of Theorem 3 Set � = min{λ∗,�1}. Then, by using the fact N+
λ ∩ N−

λ = ∅
and N+

λ ∪ N−
λ = Nλ together with Lemma 11 and Lemma 12, we get two solutions

uλ �= vλ in Xs,p
0 (�). In other words, it shows that the problem (1.5) has at least two

non-negative solutions for every λ ∈ (0,�). ��
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5 Regularity results for the obtained solutions

In this section we prove that all nonnegative solutions to the problem (1.5) are uni-
formly bounded. Let us begin with the following weak comparison principle.

Lemma 13 (Weak Comparison Principle) Let λ > 0, 0 < δ, s < 1 < p < ∞ and
u, v ∈ Xs,p

0 (�). Suppose that

(−�p,G)sv − λ f (x)

vδ
≥ (−�p,G)su − λ f (x)

uδ

weakly with v = u = 0 in G \ �. Then v ≥ u in G.

Proof It follows from the statement of the lemma that

〈(−�p,G)sv, φ〉 −
∫

�

λφ

v
dx ≥ 〈(−�p,G)su, φ〉 −

∫

�

λφ

u
dx, (5.1)

for all non-negative φ ∈ Xs,p
0 (�).

Recall the identity

|b|p−2b − |a|p−2a = (p − 1)(b − a)

∫ 1

0
|a + t(b − a)|p−2dt (5.2)

and define,

Q(x, y) =
∫ 1

0
|(u(x) − u(y)) + t((v(x) − v(y)) − (u(x) − u(y)))|p−2dt . (5.3)

Then, by choosing a = v(x) − v(y), b = u(x) − u(y) we have

|u(x) − u(y)|p−2(u(x) − u(y)) − |v(x) − v(y)|p−2(u(x) − u(y))

= (p − 1){(u(y) − v(y)) − (u(x) − v(x))}Q(x, y). (5.4)

Set ψ = u − v = (u − v)+ − (u − v)−, where (u − v)± = max{±(u − v), 0}. Then,
for φ = (u − v)+ we obtain

[ψ(x) − ψ(y)][φ(x) − φ(y)] = (ψ+(x) − ψ+(y))2 ≥ 0. (5.5)

Therefore, the inequality (5.5) together with the test function φ = (u−v+) yields that

0 ≥
∫

�

λ(u − v)+
[
1

vδ
− 1

uδ

]

≥ 〈(−�p,G)su − (−�p,G)sv, (u − v)+〉

= (p − 1)
∫∫

G×G

Q(x, y)(ψ+(x) − ψ+(y))2

|y−1x |Q+ps
dxdy ≥ 0.
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Hence, we have v ≥ u a.e. in G. ��
Remark 1 It is worth noting that the result of Lemma 13 also holds for more general
nonlocal operator of subelliptic type on homogeneous Lie groups.

We recall the following three results from [17] which will be useful for establishing
subsequent results.

Proposition 2 [[17]] For every β > 0 and 1 ≤ p < ∞ we have the following
inequality

(
1

β

) 1
p
(
p + β − 1

p

)

≥ 1.

Proposition 3 [ [17]] Let 1 < p < ∞ and let f : R → R to be a C1 convex function
and Jp(t) := |t |p−2t . Then, the following inequality

Jp(a − b)
[
AJp( f

′(a)) − BJp( f
′(b))

] ≥ ( f (a) − f (b))p−2( f (a) − f (b))(A − B),

(5.6)

holds for every a, b ∈ R and every A, B ≥ 0.

Proposition 4 ([17]) Let 1 < p < ∞ and let h : R → R to be an increasing function.
Define

G(t) =
∫ t

0
h′(τ )

1
p dτ, t ∈ R.

Then, we have

Jp(a − b)(h(a) − h(b)) ≥ |h(a) − h(b)|p. (5.7)

The next lemma concludes the boundedness of solutions of the problem (1.5). We will
employ a Moser type iteration to establish our result.

Lemma 14 Suppose u ∈ Xs,p
0 (�) is a nonnegative weak solution to the problem (1.5),

then we have u ∈ L∞(�).

Proof Let ε > 0 be given. Consider the smooth, Lipschitz function gε(t) = (ε2+t2)
1
2 ,

which is convex and gε(t) → |t | as ε → 0. In addition, we also have |g′
ε(t)| ≤ 1. For

each strictly positiveψ ∈ C∞
c (�), test the weak formulation (5) with the test function

ϕ = |g′
ε(u)|p−2g′

ε(u)ψ to obtain the following estimate

〈(−�p,G)sgε(u), ψ〉 ≤
∫

�

(∣∣
∣
∣
λ f (x)

uδ
+ g(x)uq

∣
∣
∣
∣

)

|g′
ε(u)|p−1ψdx, (5.8)

for all ψ ∈ C∞
c (�) ∩ R

+. This is immediate from Proposition 3 by setting a =
u(x), b = u(y), A = ψ(x) and B = ψ(y).
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Thanks to Fatou’s Lemma, by passing to the limit ε → 0, we deduce

〈(−�p,G)s(|u|), ψ〉 ≤
∫

�

(∣∣
∣
∣
λ f (x)

uδ
+ g(x)uq

∣
∣
∣
∣

)

ψdx . (5.9)

The density result guarantees that (5.9) holds also for ψ ∈ Xs,p
0 (�).

For each k > 0, consider uk = min{(u−1)+, k} ∈ Xs,p
0 (�). Then, for fixed β > 0

and η > 0, by testing (5.9) with the test function ψ = (uk + η)β − ηβ we get

∫∫

G×G

||u(x)| − |u(y)||p−2(|u(x)| − |u(y)|)((uk(x) + η)β − (uk(y) + η)β)

|y−1x |Q+ps
dxdy

≤
∫

�

∣
∣
∣
∣
λ f (x)

uδ
+ g(x)uq

∣
∣
∣
∣ ((uk + η)β − ηβ)dx .

We apply Proposition 4 with h(u) = (uk + η)β to deduce the following estimate:

∫∫

G×G

|((uk(x) + η)
β+p−1

p − (uk(y) + η)
β+p−1

p )|p
|y−1x |Q+ps

dxdy

≤ (β + p − 1)p

β pp

×
∫∫

G×G

||u(x)| − |u(y)||p−2(|u(x)| − |u(y)|)((uk(x) + η)β − (uk(y) + η)β)

|y−1x |Q+ps
dxdy

≤ (β + p − 1)p

β pp

∫

�

(∣∣
∣
∣
λ f (x)

uδ

∣
∣
∣
∣+ |g(x)uq |

)
(
(uk + η)β − ηβ

)
dx

= (β + p − 1)p

β pp

×
[∫

{u≥1}
λ| f (x)||u|−δ

(
(uk + η)β − ηβ

)+
∫

{u≥1}
|g(x)||u|q ((uk + η)β − ηβ

)
dx

]

≤ (β + p − 1)p

β pp

[∫

{u≥1}
(
λ| f (x)| + |g(x)||u|q) ((uk + η)β − ηβ

)
dx

]

≤ 2C(λ, ‖ f ‖∞, ‖g‖∞)

(
(β + p − 1)p

β pp

)[∫

�

|u|q ((uk + η)β − ηβ
)
dx

]

≤ C ′
(

(β + p − 1)p

β pp

)

‖u‖qp∗
s
‖(uk + η)β‖κ , (5.10)

where κ = p∗
s

p∗
s −q . By recalling the fractional Sobolev inequality for fractional p-sub-

Laplacian (6.3), we obtain

∫∫

G×G

|((uk(x) + η)
β+p−1

p − (uk(y) + η)
β+p−1

p )|p
|y−1x |Q+ps

dxdy

≥ C

∥
∥
∥
∥(uk + η)

β+p−1
p − η

β+p−1
p

∥
∥
∥
∥

p

p∗
s

(5.11)
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for some C > 0.
By using triangle inequality with (uk + η)β+p−1 ≥ ηp−1(uk + η)β, we have

[∫

�

(

(uk + η)
β+p−1

p − η
β+p−1

p

)p∗
s

dx

] p

p∗
s

≥
(η

2

)p−1
[∫

�

(uk + η)
p∗s β

p

] p

p∗
s − ηβ+p−1|�|

p

p∗
s . (5.12)

Thus, plugging (5.12) into (5.11) and finally from (5.10), we obtain

∥
∥
∥
∥(uk + η)

β
p

∥
∥
∥
∥

p

p∗
s

≤ C ′

⎡

⎢
⎢
⎣C

(
2

η

)p−1
(

(β + p − 1)p

β pp

)

‖u‖qp∗
s
‖(uk + η)β‖κ + ηβ |�|

p

p∗
s

⎤

⎥
⎥
⎦ . (5.13)

Now, Proposition 2, estimates (5.10) and (5.13) imply that

∥
∥
∥
∥(uk + η)

β
p

∥
∥
∥
∥

p

p∗
s

≤ C ′

⎡

⎢
⎢
⎣
1

β

(
β + p − 1

p

)p
∥
∥(uk + η)β

∥
∥

κ

⎛

⎜
⎜
⎝
C‖u‖qp∗

s

ηp−1 + |�|
p

p∗
s
−
1

κ

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ .

(5.14)

We are now in a position to employ a Moser type bootstrap argument to establish our

claim. For this, choose η > 0 such that ηp−1 = C‖u‖r−1
p∗
s

(

|�|
p
p∗s − 1

κ

)−1

. We observe

that for β ≥ 1, we have β p ≥
(

β+p−1
p

)p
.

Let us now rewrite the estimate (5.14) by plugging χ = p∗
s

pκ
> 1 and τ = βκ as

follows:

‖(uk + η)‖χτ ≤
(

C |�|
p
p∗s − 1

κ

) κ
τ (τ

κ

) κ
τ ‖(uk + η)‖τ . (5.15)

We perform m iterations with τ0 = κ and τm+1 = χτm = χm+1κ on (5.15) to have

‖(uk + η)‖τm+1
≤
(

C |�|
p
p∗s − 1

κ

)
(

m∑

i=0

κ
τi

) (
m∏

i=0

(τi

κ

) κ
τi

)p−1

‖(uk + η)‖κ
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=
(

C |�|
p
p∗s − 1

κ

) χ
χ−1

(

χ
χ

(χ−1)2

)p−1

‖(uk + η)‖κ . (5.16)

Now, taking the limit as m → ∞, we obtain

‖uk‖∞ ≤
(

C |�|
p
p∗s − 1

q

) χ
χ−1

(

C ′χ
χ

(χ−1)2

)p−1

‖(uk + η)‖q . (5.17)

Finally, we use uk ≤ (u − 1)+ in (5.17) combined with the triangle inequality and
pass the limit k → ∞, to obtain

∥
∥(u − 1)+

∥
∥∞ ≤ ‖uk‖∞ ≤ C

(

χ
χ

(χ−1)2

)p−1 (

|�|
p
p∗s − 1

κ

) χ
χ−1

(∥
∥(u − 1)+

∥
∥

κ
+ η|�| 1κ

)
. (5.18)

Therefore, we have u ∈ L∞(�) and hence the proof. ��
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Appendix A: Sobolev–Rellich–Kondrachov type embedding on
stratified Lie groups

The purpose of this section to prove continuity and compactness of the Sobolev embed-
ding for Xs,p

0 (�)where� is any open subset of a stratified Lie groupG.We follow the
ideas of [79] to establish the continuous embedding whereas the compact embedding
will be proved based on the idea originated by [52]. Recently, a similar embedding
result is obtained for the Rockland operator on graded Lie groups [91]. The embedding
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results for the fractional Sobolev space Xs,p
0 (�) overRN can be found in [34, 43]. We

note here that in [1] the authors studied weighted compact embeddings for the frac-
tional Sobolev spaces on bounded extension domains of theHeisenberg group using an
approach similar to [79]. Recently, the fractional Sobolev inequality on stratified Lie
groups was shown in [65, Theorem 2] (see [64] for fractional logarithmic inequalities
on homogeneous Lie groups). Motivated by the above mentioned investigations we
prove the continuous and compact embeddings of Xs,p

0 (�) into the Lebesgue space
Lr (�) for an appropriate range of r ≥ 1. We now state the embedding result for the
space Xs,p

0 (�) on stratified Lie groups.

Theorem 7 LetG be a stratified Lie group of homogeneous dimension Q, and let� ⊂
G be an open set. Let 0 < s < 1 ≤ p < ∞ and Q > sp. Then the fractional Sobolev
space Xs,p

0 (�) is continuously embedded in Lr (�) for p ≤ r ≤ p∗
s := Qp

Q−sp , that is,

there exists a positive constant C = C(Q, s, p,�) such that for all u ∈ Xs,p
0 (�), we

have

‖u‖Lr (�) ≤ C‖u‖Xs,p
0 (�).

Moreover, if � is bounded, then the following embedding

Xs,p
0 (�) ↪→ Lr (�) (6.1)

is continuous for all r ∈ [1, p∗
s ] and is compact for all r ∈ [1, p∗

s ).

Proof Let us recall the fractional Sobolev inequality on stratified Lie groups [65],
given by

‖u‖L p∗s (G)
≤ C‖u‖Ws,p(G). (6.2)

Thus, the spaceWs,p(G) is continuously embedded in L p∗
s (G). Let r ∈ (p, p∗

s ) be
such that 1

r = θ
p + 1−θ

p∗
s

for some θ ∈ (0, 1). Then by the interpolation inequality of
Lebesgue spaces we have

‖u‖Lr (G) ≤ ‖u‖θ
L p(G)‖u‖1−θ

L p∗s (G)
.

Therefore, using Young’s inequality with the exponent 1
θ
and 1

1−θ
we obtain

‖u‖Lr (G) ≤‖u‖L p(G) + ‖u‖L p∗s (G)

≤‖u‖L p(G) + C‖u‖Ws,p(G).

Thus, we get that the space Ws,p(G) is continuously embedded in Lr (G) for all
r ∈ [p, p∗

s ].
Let � be an open subset ofG. Then, for each u ∈ Xs,p

0 (�), we have from (6.2), as
u = 0 in G \ �, that

‖u‖L p∗s (�)
≤ C‖u‖Xs,p

0 (�). (6.3)
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Thus the space Xs,p
0 (�) is continuously embedded in L p∗

s (�). Proceeding as above
we conclude that the embedding Xs,p

0 (�) ↪→ Lr (�) is continuous for all r ∈ [p, p∗
s ].

That is, for all u ∈ Xs,p
0 (�) there exists a C = C(Q, p, s,�) > 0 such that

‖u‖Lr (�) ≤ C‖u‖Xs,p
0 (�) for all p ≤ r ≤ p∗

s . (6.4)

In particular, if � is bounded that is |�| < ∞, then applying the Hölder inequality
to the inequality (6.4), we get the continuous embedding for all r ∈ [1, p∗

s ]. This
concludes the proof of the first part of the theorem.

Now, we choose η ∈ C∞
c (G) such that suppη ⊂ B1(0), 0 ≤ η ≤ 1 and ‖η‖L1(G) =

1. For each ε > 0 and f ∈ L1
loc(G), let us define

ηε(x) = 1

εQ
η(ε−1x)

and

Tε f (x) := f ∗ ηε(x) :=
∫

G

f (x)ηε(x
−1y) dy. (6.5)

Prior to proceeding to show the compactness of the embedding, we first we prove the
following lemma.

Lemma 15 Let � be a open bounded subset of G. Then, for 1 ≤ r < ∞, the set
F ⊂ Lr (�) is relatively compact in Lr (�) if and only if F is bounded and ‖Tε f −
f ‖Lr (�) → 0 uniformly in f ∈ F as ε → 0.

Proof Suppose that F is relatively compact in Lr (�).We agree to extend any function
Lr (�) to Lr (G) by assigning zero out of �. Let R > 0 and let f1, f2, . . . , fl ∈ F be
such that F ⊂ ∪l

j=1BR( f j ) ⊂ Lr (�). Then we have

‖ f − Tε f ‖Lr (�) ≤ ‖ f − f j‖Lr (�) + ‖ f j − Tε f j‖Lr (�) + ‖Tε f j − Tε f ‖Lr (�).

(6.6)

Since Tε f → f in Lr (�) as ε → 0 and ‖Tε f ‖r ≤ ‖ f ‖r , we have uniform conver-
gence ‖Tε f − f ‖Lr (�) → 0 by passing ε → 0.

Conversely, we assume that F is bounded and ‖Tε f − f ‖Lr (�) → 0 uniformly
in f ∈ F as ε → 0. Choose a bounded sequence ( fn) in F. Thanks to the Banach-
Alouglu theorem we can extract a subsequence (again denoted by ( fn)) such that
fn⇀ f weakly in Lr (�). We now aim to prove strong convergence. For that we first
observe that

‖ fn − f ‖Lr (�) ≤ ‖ f − Tε fn‖Lr (�) + ‖Tε fn − Tε f ‖Lr (�) + ‖Tε f − f ‖Lr (�).

(6.7)
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It follows from the weak convergence of fn⇀ f that, for all x ∈ G and for ε > 0, we
have limn→∞ Tε( fn − f )(x) → 0. Again, by Hölder inequality we have

‖Tε( fn − f )‖rLr (�) ≤ ‖ηε‖rL1(G)
‖ fn − f ‖rLr (�) < ∞ (6.8)

and therefore by the Lebesgue dominated convergence theorem we get

∫

G

|Tε( fn − f )(x)|r dx → 0 n → ∞. (6.9)

Thus, as ε → 0, all three terms on right hand side of (6.7) go to zero with the
use of assumption ‖Tε f − f ‖Lr (�) → 0 uniformly in f ∈ F as ε → 0. Thus,
fn → f converges strongly in Lr (�). Hence, F is relative compact in Lr (�) for all
1 ≤ r < ∞. ��

Now, we continue the proof of Theorem 1. We emphasise that by assigning f = 0
inG\� we have f ∈ Ws,p(G) for every f ∈ Xs,p

0 (�). Now, with the help of Lemma
15 we prove the relative compactness of a bounded set F in Xs,p

0 (�). Recall that
|BR(x)| = RQ |B1(0)| (see [45, p. 140]). Therefore, the boundedness of F in Lr (�) is
immediate from the fractional Gagliardo-Nirenberg inequality [88, Theorem 4.4.1],

‖ f ‖Lr (G) ≤ C[ f ]bs,p‖ f ‖1−b
Lq (G), (6.10)

where p > 1, q ≥ 1, r > 0, b ∈ (0, 1] satisfy 1
r = b

(
1
p − s

Q

)
+ 1−b

q .

Setting,

Kε := Tε f − f for all f ∈ F,

we get from the fractional Gagliardo-Nirenberg inequality (6.10), as f ∈ Xs,p
0 (�)

and thus Kε(x) = 0 for all x ∈ G\�, that

‖Kε‖Lr (�) ≤ C[Kε]bs,p‖Kε‖1−b
Lq (�), (6.11)

where 1
r = b

(
1
p − s

Q

)
+ 1−b

q . Thus, it is sufficient to show that

[Kε]s,p ≤ ‖Tε f − f ‖Xs,p
0 (�) → 0. (6.12)

This means that

lim
ε→0

∫

G

∫

G

|(Tε f − f )(x) − (Tε f − f )(y)|p
|y−1x |Q+ps

dxdy = 0. (6.13)

Using supp(ηε) ⊂ Bε(0), the Hölder inequality, Tonelli’s and Fubini’s theorem we
obtain

∫

G

∫

G

|(Tε f − f )(x) − (Tε f − f )(y)|p
|y−1x |Q+ps

dxdy
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=
∫

G

∫

G

1

|y−1x |Q+ps

∣
∣
∣

∫

G

ηε(z)
(
f (z−1x) − f (z−1y)

)
dz − f (x) + f (y)

∣
∣
∣
p
dxdy

=
∫

G

∫

G

1

|y−1x |Q+ps

∣
∣
∣ε−Q

∫

Bε (0)
η(ε−1z)

(
f (z−1x) − f (z−1y)

)
dz − f (x) + f (y)

∣
∣
∣
p
dxdy

=
∫

G

∫

G

1

|y−1x |Q+ps

∣
∣
∣

∫

B1(0)
η(z′)

(
f ((εz′)−1x) − f ((εz′)−1y) − f (x) + f (y)

)
dz′
∣
∣
∣
p
dxdy

≤ |B1(0)|p−1
∫

G

∫

G

(∫

B1(0)
ηp(z)

| f ((εz)−1x) − f ((εz)−1y) − f (x) + f (y)|p
|y−1x |Q+ps

dz

)

dxdy

= |B1(0)|p−1
∫

B1(0)

∫

G×G

| f ((εz)−1x) − f ((εz)−1y) − f (x) + f (y)|p
|y−1x |Q+ps

ηp(z)dx dy dz (6.14)

Now, we note that for the Lie group G × G with the Haar measure dxdy using the
continuity of translations on L p(G × G) (see [60, Theorem 20.15]) we obtain, for
v ∈ L p(G × G) and (z, z) ∈ G × G, that

lim
ε→0

∫

G×G

|v((εz, εz)−1(x, y)) − v(x, y)|pdxdy = 0. (6.15)

Now, fix z ∈ B1(0) and set

v(x, y) := f (x) − f (y)

|y−1x | Q+ps
p

.

Observe that v ∈ L p(G × G) as f ∈ Xs,p
0 (�). Therefore, the property (6.15) yields

lim
ε→0

∫

G×G

| f ((εz)−1x) − f ((εz)−1y) − f (x) + f (y)|p
|y−1x |Q+ps

dxdy = 0. (6.16)

Thus,

ρε(z) := ηp(z)
∫

G×G

| f ((εz)−1x) − f ((εz)−1y) − f (x) + f (y)|p
|y−1x |Q+ps

dxdy → 0

(6.17)

as ε → 0. Now for a.e. z ∈ B1(0), using the fact that f ∈ Xs,p
0 (�) we have

|ρε(z)| ≤ 2p−1ηp(z)

(∫

G×G

| f ((εz)−1x) − f ((εz)−1y)|p
|y−1x |Q+ps

dxdy

+
∫

G×G

| f (x) − f (y)|p
|y−1x |Q+ps

dxdy

)

= 2pηp(z)
∫

G×G

| f (x) − f (y)|p
|y−1x |Q+ps

dxdy. (6.18)
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Observe that the last estimate shows ρε ∈ L∞(B1(0)) uniformly as ε → 0. Therefore,
by the Lebesgue dominated convergence theorem we conclude that

∫

B1(0)

∫

G×G

| f ((εz)−1x) − f ((εz)−1y)dz − f (x) + f (y)|p
|y−1x |Q+ps

ηp(z)dx dy dz

=
∫

B1(0)
ρε(z)dz → 0 (6.19)

as ε → 0. This fact along with (6.14) gives (6.13) and so (6.12). Finally, by Lemma 15
we conclude that F is relatively compact in Lr (�). Thus we conclude that the space
Xs,p
0 (�) is compactly embedded in Lr (�) for all r ∈ [1, p∗

s ). ��

Appendix B

In this section we prove the following important lemma.

Lemma 16 Let u1, u2 ∈ Xs,p
0 (�) \ {0}. Then there exists a positive constant C = Cp,

depending only on p, such that

〈(−�p,G
)s
u1 − (−�p,G

)s
u2, u1 − u2〉

≥ Cp

⎧
⎪⎨

⎪⎩

[u1 − u2]ps,p, if p ≥ 2

[u1−u2]2s,p
([u1]ps,p+[u2]ps,p

) 2−p
p

, if 1 < p < 2.
(7.1)

Proof Let us recall the well-known Simmon’s inequality

(
|a|p−2a − |b|p−2b

)
· (a − b) ≥ C(p)

{ |a−b|2
(|a|+|b|)2−p if 1 < p < 2

|a − b|p if p ≥ 2,
(7.2)

where a, b ∈ R
N\{0} and C(p) is a positive constant depending only on p.

For simplicity we denote

wi (x, y) = ui (x) − ui (y), i = 1, 2.

Therefore,

〈(−�p,G
)s
u1 − (−�p,G

)s
u2, u1 − u2〉

=
∫∫

G×G

|w1|p−2w1 − |w2|p−2w2

|y−1x |Q+ps (w1 − w2) dxdy.

Observe that for p ≥ 2 the inequality (7.1) immediately follows from the inequality
(7.2). Thus we are left to establish the inequality (7.1) for the range 1 < p < 2.

123



Compact embeddings, eigenvalue problems, and subelliptic...

From (7.2), we have

〈(−�p,G
)s
u1 − (−�p,G

)s
u2, u1 − u2

〉

≥ C(p)
∫∫

G×G

|w1 − w2|2
(|w1| + |w2|)2−p |y−1x |Q+ps

dxdy. (7.3)

Now from the Hölder’s inequality, we get

[u1 − u2]ps,p =
∫∫

G×G

|w1 − w2|p
|y−1x |Q+ps

dxdy

=
∫∫

G×G

|w1 − w2|p
(|w1| + |w2|) p(2−p)

2 |y−1x |(Q+ps) p
2

(|w1| + |w2|) p(2−p)
2

|y−1x |(Q+ps) 2−p
2

dxdy

≤ A
p
2 B

2−p
2 , (7.4)

where

A =
∫∫

G×G

|w1 − w2|2
(|w1| + |w2|)2−p |y−1x |Q+ps

dxdy

and

B =
∫∫

G×G

(|w1| + |w2|)p
|y−1x |Q+ps

dxdy

≤ 2p
∫∫

G×G

|w1|p + |w2|p
|y−1x |Q+ps

dxdy = 2p([u1]ps,p + [u2]ps,p).

From (7.3), we deduce

〈(−�p,G
)s
u1 − (−�p,G

)s
u2, u1 − u2

〉

≥ C(p)A ≥ C(p)
(
[u1 − u2]ps,p B− 2−p

2

) 2
p

≥ C(p)[u1 − u2]2s,p
(
2p
([u1]ps,p + [u2]ps,p

))− 2−p
p

= 2p−2C(p)
[u1 − u2]2s,p

([u2]ps,p + [u2]ps,p
) 2−p

p

, (7.5)

completing the proof. ��
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