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Abstract
Westudyembeddings ofBesov-type andTriebel–Lizorkin-type spaces, idτ : Bs1,τ1

p1,q1(Ω)

↪→ Bs2,τ2
p2,q2(Ω) and idτ : Fs1,τ1

p1,q1(Ω) ↪→ Fs2,τ2
p2,q2(Ω), where Ω ⊂ R

d is a bounded
domain, and obtain necessary and sufficient conditions for the compactness of idτ .
Moreover, we characterize its entropy and approximation numbers. Surprisingly,
these results are completely obtained via embeddings and the application of the cor-
responding results for classical Besov and Triebel–Lizorkin spaces as well as for
Besov–Morrey and Triebel–Lizorkin–Morrey spaces.

Keywords Besov-type spaces · Triebel-Lizorkin-type spaces · Compact
embeddings · Entropy numbers · Approximation numbers

Mathematics Subject Classification 46E35 · 41A46

1 Introduction

Usually called smoothness spaces of Morrey type or, for short, smoothness Morrey
spaces, these function spaces are built upon Morrey spacesMu,p(R

d), 0 < p ≤ u <
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∞, and attracted some attention in the last decades, motivated firstly by possible appli-
cations. They include Besov–Morrey spaces N s

u,p,q(Rd), Triebel–Lizorkin–Morrey
spaces E s

u,p,q(Rd), 0 < p ≤ u < ∞, 0 < q ≤ ∞, s ∈ R, Besov-type spaces
Bs,τ

p,q(Rd) and Triebel–Lizorkin-type spaces Fs,τ
p,q(Rd), 0 < p < ∞, 0 < q ≤ ∞,

τ ≥ 0, s ∈ R.
The classical Morrey spaces Mu,p, 0 < p ≤ u < ∞, were introduced by Mor-

rey [22] and are part of a wider class of Morrey–Campanato spaces, cf. [23]. They can
be seen as a complement to L p spaces, sinceMp,p(R

d) = L p(R
d).

TheBesov–Morrey spacesN s
u,p,q (Rd)were introducedbyKozonoandYamazaki [19]

and used by them and later on by Mazzucato [21] in the study of Navier–Stokes equa-
tions. In [34], Tang and Xu introduced the corresponding Triebel–Lizorkin–Morrey
spaces E s

u,p,q(Rd), thanks to establishing the Morrey version of Fefferman–Stein
vector-valued inequality. Some properties of these spaces including their wavelet char-
acterizationswere later described in the papers by Sawano [27,28], Sawano andTanaka
[29,30] and Rosenthal [26]. Recently, some limiting embedding properties of these
spaces were investigated in a series of papers [13–16].

Another class of generalizations, the Besov-type space Bs,τ
p,q(Rd) and the Triebel–

Lizorkin-type space Fs,τ
p,q(Rd) were introduced in [45]. Their homogeneous versions

were originally investigated by El Baraka [8–10] and byYuan andYang [40,41]. There
are also some applications in partial differential equations for spaces of type Bs,τ

p,q(Rd)

and Fs,τ
p,q(Rd), such as (fractional) Navier–Stokes equations, cf. [20].

Although the above scales are defined in different ways, they share some prop-
erties and are related to each other by a number of embeddings and coincidences.
For instance, they both include the classical spaces of type Bs

p,q(Rd) and Fs
p,q(Rd)

as special cases. We refer to our papers mentioned above, to the recently published
papers [43,44], but in particular to the fine surveys [32,33] by Sickel.

There is still a third approach, due to Triebel, who introduced and studied in [38]
local spaces and in [39] hybrid spaces, together with their use in heat equations and
Navier–Stokes equations. However, since the hybrid spaces coincide with appropri-
ately chosen spaces of type Bs,τ

p,q(Rd) or Fs,τ
p,q(Rd), respectively, cf. [46], we do not

have to deal with them separately now.
In this paper we investigate the compactness of the embeddings of the spaces

Bs,τ
p,q(Ω) and Fs,τ

p,q(Ω), where Ω ⊂ R
d is a bounded domain, i.e. a bounded open set

in R
d . In particular, our first goal is to find necessary and sufficient conditions for the

compactness of the embeddings

idτ : As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2(Ω), (1.1)

where A = B or A = F , cf. Theorem 3.2. Here we prove that idτ is compact if, and
only if,

s1 − s2
d

> max

{(
τ2 − 1

p2

)
+

−
(

τ1 − 1

p1

)
+

,
1

p1
− τ1 − min

{
1

p2
− τ2,

1

p2
(1 − p1τ1)+

}}
,

(1.2)
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Compact embeddings in Besov-type and Triebel–Lizorkin… 763

where we use the notation a+ := max{a, 0}. At this point, this work can be seen
as a counterpart of the papers [14–16], where we studied the compactness of the
corresponding embeddings of the spaces N s

u,p,q and E s
u,p,q .

Usually one would start by studying the continuity of such embeddings and later
proceed to the compactness. Here we do it differently and start by dealing with the
compactness. Our technique relies basically on embeddings. Since for compactness
one always has strict inequalities, like condition (1.2), one can always have further
embeddings in between the considered spaces. Therefore, we take advantage of the
relations between this scale, the smoothness Morrey spacesN s

u,p,q and E s
u,p,q and the

classical spaces of type Bs
p,q and Fs

p,q , and use the corresponding results for these
spaces to obtain our main result.

Afterwards we qualify the compactness of idτ in (1.1) by means of entropy and
approximation numbers. In the recent works [16,17], we characterised entropy and
approximation numbers of the embedding

idA :As1
u1,p1,q1(Ω) ↪→ As2

u2,p2,q2(Ω),

with A = N or A = E . However, to the best of our knowledge, apart from a result
obtained in [43] for approximation numbers when the target space is L∞, nothing is
known on this matter for embeddings between spaces of type As,τ

p,q . Here we contribute
a little more to the development of this topic, establishing some partial counterparts
of the results proved in [17].

This paper is organized as follows. In Sect. 2 we present and collect some basic
facts about smoothness Morrey spaces, on R

d and on bounded domains Ω ⊂ R
d ,

and introduce the notions of entropy and approximation numbers. In Sect. 3 we are
concerned with the compactness of the above-described embeddings of Besov-type
and Triebel–Lizorkin-type spaces on bounded domains. We also prove an extension
of the results obtained in [14] for the scale N s

u,p,q to the cases when pi = ui = ∞,
i = 1, 2. Moreover, we collect some immediate consequences of the main result,
when we consider particular source and/or target spaces. In Sect. 4 we end up by
characterizing entropy and approximation numbers of the embedding idτ in (1.1),
collecting also some special cases.

2 Preliminaries

First we fix some notation. By N we denote the set of natural numbers, by N0 the set
N ∪ {0}, and by Z

d the set of all lattice points in R
d having integer components. For

a ∈ R, let a+ := max{a, 0}. All unimportant positive constants will be denoted by
C , occasionally with subscripts. By the notation A � B, we mean that there exists
a positive constant C such that A ≤ C B, whereas the symbol A ∼ B stands for
A � B � A. We denote by B(x, r) := {y ∈ R

d : |x − y| < r} the ball centred at
x ∈ R

d with radius r > 0, and | · | denotes the Lebesgue measure when applied to
measurable subsets of R

d .
Given two (quasi-)Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the

natural embedding of X into Y is continuous.
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764 F. Gonçalves et al.

2.1 Smoothness spaces of Morrey type onR
d

LetS(Rd) be the set of all Schwartz functions onR
d , endowedwith the usual topology,

and denote by S ′(Rd) its topological dual, namely, the space of all bounded linear
functionals on S(Rd) endowed with the weak ∗-topology. For all f ∈ S(Rd) or
S ′(Rd), we use f̂ to denote its Fourier transform, and f ∨ for its inverse. Let Q be
the collection of all dyadic cubes in R

d , namely, Q := {Q j,k := 2− j ([0, 1)d +
k): j ∈ Z, k ∈ Z

d}. The symbol �(Q) denotes the side-length of the cube Q and
jQ := − log2 �(Q).
Let ϕ0, ϕ ∈ S(Rd) be such that

supp ϕ̂0 ⊂ {ξ ∈ R
d : |ξ | ≤ 2}, |ϕ̂0(ξ)| ≥ C if |ξ | ≤ 5/3 (2.1)

and

supp ϕ̂ ⊂ {ξ ∈ R
d : 1/2 ≤ |ξ | ≤ 2} and |ϕ̂(ξ)| ≥ C if 3/5 ≤ |ξ | ≤ 5/3, (2.2)

where C is a positive constant. In what follows, for all ϕ ∈ S(Rd) and j ∈ N,
ϕ j (·) := 2 jdϕ(2 j ·).
Definition 2.1 Let s ∈ R, τ ∈ [0,∞), q ∈ (0,∞] and ϕ0, ϕ ∈ S(Rd) be as in (2.1)
and (2.2), respectively.

(i) Let p ∈ (0,∞]. The Besov-type space Bs,τ
p,q(Rd) is defined to be the collection of

all f ∈ S ′(Rd) such that

‖ f | Bs,τ
p,q(Rd)‖ := sup

P∈Q
1

|P|τ

⎧⎪⎨
⎪⎩

∞∑
j=max{ jP ,0}

2 jsq

⎡
⎣∫

P

|ϕ j ∗ f (x)|p dx

⎤
⎦

q
p

⎫⎪⎬
⎪⎭

1
q

< ∞

with the usual modifications made in case of p = ∞ and/or q = ∞.
(ii) Let p ∈ (0,∞). The Triebel–Lizorkin-type space Fs,τ

p,q(Rd) is defined to be the
collection of all f ∈ S ′(Rd) such that

‖ f | Fs,τ
p,q(Rd)‖ := sup

P∈Q
1

|P|τ

⎧⎪⎨
⎪⎩
∫
P

⎡
⎣ ∞∑

j=max{ jP ,0}
2 jsq |ϕ j ∗ f (x)|q

⎤
⎦

p
q

dx

⎫⎪⎬
⎪⎭

1
p

< ∞

with the usual modification made in case of q = ∞.

Remark 2.2 These spaces were introduced in [45]. To some extent the scale of
Nikol’skij–Besov type spaces Bs,τ

p,q(Rd) had already been studied in [8–10].

We shall collect some features of these spaces below, but introducefirst another scale
of smoothness spaces of Morrey type. Recall first that the Morrey space Mu,p(R

d),
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0 < p ≤ u < ∞, is defined to be the set of all locally p-integrable functions
f ∈ L loc

p (Rd) such that

‖ f | Mu,p(R
d)‖ := sup

x∈Rd ,R>0
R

d
u − d

p

[∫
B(x,R)

| f (y)|p dy

] 1
p

< ∞.

Remark 2.3 The spaces Mu,p(R
d) are quasi-Banach spaces (Banach spaces for p ≥

1). They originated from Morrey’s study on PDE (see [22]) and are part of the wider
class ofMorrey–Campanato spaces; cf. [23]. They can be considered as a complement
to L p spaces. As a matter of fact, Mp,p(R

d) = L p(R
d) with p ∈ (0,∞). To extend

this relation,weputM∞,∞(Rd) = L∞(Rd). One can easily see thatMu,p(R
d) = {0}

for u < p, and that for 0 < p2 ≤ p1 ≤ u < ∞,

Lu(Rd) = Mu,u(Rd) ↪→ Mu,p1(R
d) ↪→ Mu,p2(R

d). (2.3)

In an analogous way, one can define the spacesM∞,p(R
d), p ∈ (0,∞), but using the

Lebesgue differentiation theorem, one can easily prove that M∞,p(R
d) = L∞(Rd).

Next we recall the definition of the other scale of smoothness spaces of Morrey
type we deal with in this paper.

Definition 2.4 Let 0 < p ≤ u < ∞ or p = u = ∞. Let q ∈ (0,∞], s ∈ R and ϕ0,
ϕ ∈ S(Rd) be as in (2.1) and (2.2), respectively.

(i) The Besov–Morrey space N s
u,p,q(Rd) is defined to be the set of all distributions

f ∈ S ′(Rd) such that

∥∥ f | N s
u,p,q(Rd)

∥∥ :=
[ ∞∑

j=0

2 jsq
∥∥ϕ j ∗ f | Mu,p(R

d)
∥∥q

]1/q

< ∞ (2.4)

with the usual modification made in case of q = ∞.
(ii) Let u ∈ (0,∞). The Triebel–Lizorkin–Morrey space Es

u,p,q(Rd) is defined to be
the set of all distributions f ∈ S ′(Rd) such that

∥∥ f | E s
u,p,q(Rd)

∥∥ :=
∥∥∥∥
[ ∞∑

j=0

2 jsq |(ϕ j ∗ f )(·)|q
]1/q

| Mu,p(R
d)

∥∥∥∥ < ∞ (2.5)

with the usual modification made in case of q = ∞.

Remark 2.5 Besov–Morrey spaces were introduced by Kozono and Yamazaki [19].
They studied semi-linear heat equations and Navier–Stokes equations with initial data
belonging to Besov–Morrey spaces. The investigations were continued by Mazzucato
[21], where one can find the atomic decomposition of the spaces. The Triebel–
Lizorkin–Morrey spaces were later introduced by Tang and Xu [34]. We follow the
ideas of Tang and Xu [34], where a somewhat different definition is proposed. The
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766 F. Gonçalves et al.

ideas were further developed by Sawano and Tanaka [27–30]. The most systematic
and general approach to the spaces of this type can be found in the monograph [45]
or in the survey papers by Sickel [32,33].

Remark 2.6 Note that for u = p or τ = 0 we re-obtain the usual Besov and Triebel–
Lizorkin spaces:

N s
p,p,q(Rd) = Bs

p,q(Rd) = Bs,0
p,q(Rd) (2.6)

and
E s

p,p,q(Rd) = Fs
p,q(Rd) = Fs,0

p,q(Rd), (2.7)

where Bs
p,q(Rd) and Fs

p,q(Rd) denote the classical Besov spaces and Triebel–Lizorkin
spaces, respectively. There exists extensive literature on such spaces; we refer, in
particular, to the series of monographs [35–37] for a comprehensive treatment.

ConventionWeadopt the nowadays usual custom towrite As
p,q instead of Bs

p,q or Fs
p,q ,

As,τ
p,q instead of Bs,τ

p,q or Fs,τ
p,q , andAs

u,p,q instead ofN s
u,p,q orE s

u,p,q , respectively,when
both scales of spaces are meant simultaneously in some context.

Wecollect somebasic properties of the scales As,τ
p,q (Rd) andAs

u,p,q(Rd). The spaces
As,τ

p,q(Rd) andAs
u,p,q(Rd) are independent of the particular choices of ϕ0, ϕ appearing

in their definitions. They are quasi-Banach spaces (Banach spaces for p, q ≥ 1), and
S(Rd) ↪→ As

u,p,q(Rd), As,τ
p,q(Rd) ↪→ S ′(Rd). In case of τ < 0 or u < p we have

As,τ
p,q(Rd) = As

u,p,q(Rd) = {0}.
Next we recall some basic embeddings results needed in the sequel. We refer to the

references given above. For the spaces As,τ
p,q(Rd) it is known that

As+ε,τ
p,r (Rd) ↪→ As,τ

p,q(Rd) if ε ∈ (0,∞), r , q ∈ (0,∞], (2.8)

and
As,τ

p,q1(R
d) ↪→ As,τ

p,q2(R
d) if q1 ≤ q2, (2.9)

as well as
Bs,τ

p,min{p,q}(R
d) ↪→ Fs,τ

p,q(Rd) ↪→ Bs,τ
p,max{p,q}(R

d), (2.10)

which directly extends the well-known classical case from τ = 0 to τ ∈ [0,∞),
p ∈ (0,∞), q ∈ (0,∞] and s ∈ R. Moreover, it is known from [45, Proposition 2.6]
that

As,τ
p,q(Rd) ↪→ B

s+d(τ− 1
p )

∞,∞ (Rd). (2.11)

The following remarkable feature was proved in [42].

Proposition 2.7 Let s ∈ R, τ ∈ [0,∞) and p, q ∈ (0,∞] (with p < ∞ in the

F-case). If either τ > 1
p or τ = 1

p and q = ∞, then As,τ
p,q(Rd) = B

s+d(τ− 1
p )

∞,∞ (Rd).

As for the scale As
u,p,q(Rd) the counterparts to (2.8)–(2.10) read as

As+ε
u,p,r (R

d) ↪→ As
u,p,q(Rd) if ε > 0, r ∈ (0,∞], (2.12)
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Compact embeddings in Besov-type and Triebel–Lizorkin… 767

and
As

u,p,q1(R
d) ↪→ As

u,p,q2(R
d) if q1 ≤ q2. (2.13)

However, there also exist some differences. Sawano proved in [27] that, for s ∈ R and
0 < p < u < ∞,

N s
u,p,min{p,q}(Rd) ↪→ E s

u,p,q(Rd) ↪→ N s
u,p,∞(Rd), (2.14)

where, for the latter embedding, r = ∞ cannot be improved—unlike in case of u = p
[see (2.10) with τ = 0]. More precisely,

E s
u,p,q(Rd) ↪→ N s

u,p,r (R
d) if, and only if, r = ∞ or u = p and r ≥ max{p, q}.

On the other hand, Mazzucato has shown in [21, Proposition 4.1] that

E0
u,p,2(R

d) = Mu,p(R
d), 1 < p ≤ u < ∞,

in particular,
E0

p,p,2(R
d) = L p(R

d) = F0
p,2(R

d), p ∈ (1,∞). (2.15)

Remark 2.8 We obtained a lot more embedding results within the scales of spaces
As

u,p,q(Rd) and As,τ
p,q(Rd), respectively, in [14,15,43,44], but will recall some of them

in detail below as far as needed for our argument. We turn to the relation between the
two scales of smoothness Morrey spaces. Let s, u, p and q be as in Definition 2.4 and
τ ∈ [0,∞). It is known from [45, Corollary 3.3, p. 64] that

N s
u,p,q(Rd) ↪→ Bs,τ

p,q(Rd) with τ = 1

p
− 1

u
. (2.16)

Moreover, the above embedding is proper if τ > 0 and q < ∞. If τ = 0 or q = ∞,
then both spaces coincide with each other, in particular,

N s
u,p,∞(Rd) = B

s, 1p − 1
u

p,∞ (Rd). (2.17)

As for the F-spaces, if 0 ≤ τ < 1/p, then

Fs,τ
p,q(Rd) = E s

u,p,q(Rd) with τ = 1

p
− 1

u
, 0 < p ≤ u < ∞; (2.18)

cf. [45, Corollary 3.3, p. 63]. Moreover, if p ∈ (0,∞) and q ∈ (0,∞], then

F
s, 1

p
p,q (Rd) = Fs∞, q(Rd) = B

s, 1
q

q,q (Rd); (2.19)

cf. [32, Propositions 3.4 and 3.5] and [33, Remark 10].

123



768 F. Gonçalves et al.

For later use we recall the definition of the space bmo(Rd), i.e., the local (non-
homogeneous) space of functions of boundedmean oscillation, consisting of all locally
integrable functions f ∈ L loc

1 (Rd) satisfying that

∥∥∥ f | bmo(Rd)

∥∥∥ := sup
|Q|≤1

1

|Q|
∫
Q

| f (x) − fQ | dx + sup
|Q|>1

1

|Q|
∫
Q

| f (x)| dx < ∞,

where Q appearing in the above definition runs over all cubes in R
d , and fQ denotes

the mean value of f with respect to Q, namely, fQ := 1
|Q|

∫
Q f (x) dx , cf. [35,

2.2.2(viii)]. Hence the above result (2.19) implies, in particular,

bmo(Rd) = F0∞,2(R
d) = F0,1/p

p,2 (Rd), 0 < p < ∞. (2.20)

Remark 2.9 In contrast to this approach, Triebel followed the original Morrey-
Campanato ideas to develop local spaces Lr As

p,q(Rd) in [38], and so-called ‘hybrid’
spaces Lr As

p,q(Rd) in [39], where 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and

− d
p ≤ r < ∞. This construction is based on wavelet decompositions and also com-

bines local and global elements as in Definitions 2.1 and 2.4. However, Triebel proved
in [39, Chapter 3] that

Lr As
p,q(Rd) = As,τ

p,q(Rd), τ = 1

p
+ r

d
, (2.21)

in all admitted cases. Therefore we do not have to deal with these spaces separately
in the sequel.

2.2 Spaces on domains

We assume that Ω is a bounded domain in R
d . We consider smoothness Morrey

spaces on Ω defined by restriction. Let D(Ω) be the set of all infinitely differentiable
functions supported inΩ and denote byD′(Ω) its dual. IfΩ is a C∞ domain, then we
are able to define the extension operator ext :D(Ω) → S(Rd), cf. [31], the restriction
operator re :S ′(Rd) → D′(Ω) can be defined naturally as an adjoint operator

〈re( f ), ϕ〉 = 〈 f , ext(ϕ)〉, f ∈ S ′(Rd),

where ϕ ∈ D(Ω). We will write f |Ω = re( f ).

Definition 2.10 Let s ∈ R and q ∈ (0,∞].
(i) Let 0 < p ≤ u < ∞ or p = u = ∞ (with u < ∞ in case of A = E). Then

As
u,p,q(Ω) is defined by

As
u,p,q(Ω) := {

f ∈ D′(Ω): f = g|Ω for some g ∈ As
u,p,q(Rd)

}

123



Compact embeddings in Besov-type and Triebel–Lizorkin… 769

endowed with the quasi-norm

∥∥ f | As
u,p,q(Ω)

∥∥ := inf
{‖g | As

u,p,q(Rd)‖: f = g|Ω, g ∈ As
u,p,q(Rd)

}
.

(ii) Let τ ∈ [0,∞) and p ∈ (0,∞] (with p < ∞ in case of A = F). Then As,τ
p,q(Ω)

is defined by

As,τ
p,q(Ω) := {

f ∈ D′(Ω): f = g|Ω for some g ∈ As,τ
p,q(Rd)

}

endowed with the quasi-norm

∥∥ f | As,τ
p,q(Ω)

∥∥ := inf
{‖g | As,τ

p,q(Rd)‖: f = g|Ω, g ∈ As,τ
p,q(Rd)

}
.

Remark 2.11 The spaces As
u,p,q(Ω) and As,τ

p,q(Ω) are quasi-Banach spaces (Banach
spaces for p, q ≥ 1). When u = p or τ = 0 we re-obtain the usual Besov and
Triebel–Lizorkin spaces defined on bounded domains. Several properties of the spaces
As

u,p,q(Ω), including the extension property, were studied in [31]. As for the spaces
As,τ

p,q(Ω) we also refer to [45, Section 6.4.2]. In particular, if the domain is smooth
then, according to [45, Theorem 6.13], there exists a linear and bounded extension
operator

extτ : As,τ
p,q(Ω) → As,τ

p,q(Rd), where 1 ≤ p < ∞, 0 < q ≤ ∞, s ∈ R, τ ≥ 0,
(2.22)

such that
re ◦ extτ = id in As,τ

p,q(Ω), (2.23)

where re: As,τ
p,q(Rd) → As,τ

p,q(Ω) is the restriction operator as above.
Several types of embeddings related to these scales were already considered

for bounded smooth domains. For instance, embeddings within the scale of spaces
As

u,p,q(Ω) as well as to classical spaces like C(Ω) or Lr (Ω) were investigated in
[14,15]. In [12] we studied the question under what assumptions these spaces con-
sist of regular distributions only. Moreover, in [43] we considered the approximation
numbers of some special compact embedding of As,τ

p,q(Ω) into L∞(Ω).

Remark 2.12 Let usmention that we have the counterparts ofmany continuous embed-
dings stated in the previous subsection for spaces on R

d when dealing with spaces
restricted to bounded domains. This concerns, in particular, the elementary embed-
dings and coincidences (2.8)–(2.10), Proposition 2.7 and (2.12)–(2.18).

For a matter of completion, we finish this subsection by giving the definition of
bmo(Ω), that we will use later on. As previously, this is done by restriction, that is,
bmo(Ω) is defined as being the space of all restrictions toΩ of functions in bmo(Rd),
equipped with the norm

‖ f | bmo(Ω)‖ := inf
{‖g | bmo(Rd)‖: f = g|Ω, g ∈ bmo(Rd)

}
.
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2.3 Entropy numbers

As explained in the beginning already, our main concern in this paper is to character-
ize the compactness of embeddings in further detail. Therefore we briefly recall the
concepts of entropy and approximation numbers.

Definition 2.13 Let X and Y be two complex (quasi-) Banach spaces, k ∈ N and let
T ∈ L(X , Y ) be a linear and continuous operator from X into Y .

(i) The kth entropy number ek(T ) of T is the infimum of all numbers ε > 0 such that
there exist 2k−1 balls in Y of radius ε which cover the image T BX of the unit ball
BX = {x ∈ X : ‖x |X‖ ≤ 1}.

(ii) The kth approximation number ak(T ) of T is defined by

ak(T ) = inf{‖T − S‖: S ∈ L(X , Y ), rank S < k}, k ∈ N. (2.24)

Remark 2.14 For details and properties of entropy and approximation numbers we
refer to [3,4,18,25] (restricted to the case of Banach spaces), and [7] for some exten-
sions to quasi-Banach spaces. Among other features we only want to mention the
multiplicativity of entropy numbers: let X , Y , Z be complex (quasi-) Banach spaces
and T1 ∈ L(X , Y ), T2 ∈ L(Y , Z). Then

ek1+k2−1(T2 ◦ T1) ≤ ek1(T1) ek2(T2), k1, k2 ∈ N. (2.25)

Note that one has in general limk→∞ ek(T ) = 0 if, and only if, T is compact. The
last equivalence justifies the saying that entropy numbers measure ‘how compact’ an
operator acts. This is one reason to study the asymptotic behavior of entropy numbers
(that is, their decay) for compact operators in detail.

Approximation numbers share many of the basic features of entropy numbers,
but are different in some respect. They can—unlike entropy numbers—be regarded
as special s-numbers, a concept introduced by Pietsch [24, Section 11]. Of special
importance is the close connection of both concepts, entropy numbers as well as
approximation numbers, with spectral theory, in particular, the estimate of eigenvalues.
We refer to the monographs [3,4,7,18,25] for further details.

Remark 2.15 We recall what is well-known in the case of the embedding

idA : As1
p1,q1(Ω) → As2

p2,q2(Ω),

where −∞ < s2 ≤ s1 < ∞, 0 < p1, p2 ≤ ∞ (p1, p2 < ∞ in the F-case),
0 < q1, q2 ≤ ∞, and the spaces As

p,q(Ω) are defined by restriction. Let

δ = s1 − s2 − d

(
1

p1
− 1

p2

)
, δ+ = s1 − s2 − d

(
1

p1
− 1

p2

)
+

. (2.26)
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Then idA is compact when δ+ > 0; cf. [7, (2.5.1/10)]. In this situation Edmunds and
Triebel proved in [5,6] (see also [7, Theorem 3.3.3/2]) that

ek(idA) ∼ k− s1−s2
d , k ∈ N, (2.27)

where s1 ≥ s2, 0 < p1, p2 ≤ ∞(p1, p2 < ∞ in the F-case), 0 < q1, q2 ≤ ∞,
and δ+ > 0. It was originally proved there for smooth domains, but the extension
to arbitrary bounded domains is also covered by [37, Theorem 1.92]. In the case of
approximation numbers the situation is more complicated; the result of Edmunds and
Triebel for smooth domains in [7, Theorem 3.3.4], partly improved by Caetano [2],
reads as

ak(idA) ∼ k− δ+
d −κ, k ∈ N, (2.28)

with

κ =
(
min{p′

1, p2}
2

− 1

)
+

· min

{
δ

d
,

1

min{p′
1, p2}

}
, (2.29)

where δ is given by (2.26) and p′
1 denotes the conjugate of p1 defined by 1

p1
+ 1

p′
1

= 1

if 1 ≤ p1 ≤ ∞ and p′
1 = ∞ if 0 < p1 < 1. The above asymptotic result is almost

complete now, apart from the restrictions that (p1, p2) �= (1,∞) or δ
d �= 1

min{p′
1,p2}

when 0 < p1 < 2 < p2 ≤ ∞. Note that κ = 0 unless p1 < 2 < p2, and δ ≥ δ+
with δ = δ+ if p1 ≤ p2.

3 Compact embeddings

First we recall our compactness result as obtained in [14] (for A = N ) and [15] (for
A = E), with a supplement related to arbitrary bounded domains proved in [17]. We
shall heavily rely on this result in our argument below.
ConventionHere and in the sequelwe shall understand pi

ui
= 1 in case of pi = ui = ∞,

i = 1, 2.

Theorem 3.1 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ui < ∞, or, in the case ofN -spaces,
allow also pi = ui = ∞, i = 1, 2. Then the embedding

idA :As1
u1,p1,q1(Ω) ↪→ As2

u2,p2,q2(Ω) (3.1)

is compact if, and only if, the following condition holds:

s1 − s2
d

> max

{
0,

1

u1
− 1

u2
,

p1
u1

( 1

p1
− 1

p2

)}
. (3.2)

In particular, if p1 = u1 = ∞ and As1
u1,p1,q1 = N s1

u1,p1,q1 , then idA given by (3.1)
is compact if, and only if, s1 > s2. If p2 = u2 = ∞ and As2

u2,p2,q2 = N s2
u2,p2,q2 , then

idA is compact if, and only if, s1−s2
d > 1

u1
.
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Proof The cases when 0 < pi ≤ ui < ∞, i = 1, 2, were proved in [14,15] forA = N
andA = E respectively. So we are left with the cases p1 = u1 = ∞ or p2 = u2 = ∞.

At first, let us consider the case when p1 = u1 = ∞ and As1
u1,p1,q1 = N s1

u1,p1,q1 . If
s1 − s2 > 0, the compactness of idA follows from

N s1∞,∞,q1(Ω) = Bs1∞,q1(Ω) ↪→ As2
u2,q2(Ω) ↪→ As2

u2,p2,q2(Ω), (3.3)

as the first embedding is compact when s1 − s2 > 0.
Now we assume that idA is compact. We have

Bs1∞,q1(Ω) = N s1∞,∞,q1(Ω) ↪→ As2
u2,p2,q2(Ω) ↪→ As2

p2,q2(Ω), (3.4)

where the last embedding was proved in [14,15]. Then, the compactness of the first
embedding implies the compactness of the embedding between the outer spaces,which
in turn implies s1 − s2 > 0.

Now let p2 = u2 = ∞, As2
u2,p2,q2 = N s2

u2,p2,q2 and s1−s2
d > 1

u1
. As the case

p1 = u1 = ∞ (when A = N ) is already covered by our preceding observation, we
may further assume that 0 < p1 ≤ u1 < ∞. By a straightforward extension of our
continuity result in [14, Theorem 3.1] (to the cases when pi = ui = ∞ for i = 1 or
i = 2) we have the continuous embedding

N s1
u1,p1,q1(Ω) ↪→ B

s1− d
u1∞,∞ (Ω). (3.5)

Moreover, in case of s1 − d
u1

> s2, it is well-known that the embedding

B
s1− d

u1∞,∞ (Ω) ↪→ Bs2∞,q2(Ω) = N s2∞,∞,q2(Ω) (3.6)

is compact. Thus N s1
u1,p1,q1(Ω) ↪→ N s2∞,∞,q2(Ω) compactly for any q1, q2 ∈ (0,∞].

The compactness of E s1
u1,p1,q1(Ω) ↪→ N s2∞,∞,q2(Ω) is then a consequence of (2.14).

The necessity follows from the following chain of embeddings

Bs1
u1,q1(Ω) ↪→ N s1

u1,p1,q1(Ω) ↪→ N s2∞,∞,q2(Ω) = Bs2∞,q2(Ω) (3.7)

in the same way as above. Finally we apply (2.14) for the case As1
u1,p1,q1 = E s1

u1,p1,q1 .��
Nowwe give the counterpart of Theorem 3.1 for Besov-type and Triebel–Lizorkin-

type spaces. For convenience we use some abbreviation for the following expression,
which plays an essential role in the sequel. So let us denote

γ (τ1, τ2, p1, p2) :=max

{(
τ2 − 1

p2

)
+
−

(
τ1 − 1

p1

)
+

,
1

p1
− τ1 − min

{
1

p2
− τ2,

1

p2
(1 − p1τ1)+

}}
.

(3.8)
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Theorem 3.2 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞ (with pi < ∞ in case of A = F),
τi ≥ 0, i = 1, 2. The embedding

idτ : As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2(Ω) (3.9)

is compact if, and only if, the following condition holds:

s1 − s2
d

> γ (τ1, τ2, p1, p2). (3.10)

Proof We shall use sharp embeddings and identities like (2.11), Proposition 2.7 and
(2.18) (all adapted to spaces restricted to the domain Ω , recall Remark 2.12) together
with our previous result Theorem 3.1 several times. Therefore we shall always distin-
guish below between the cases τi < 1

pi
and τi ≥ 1

pi
(with some additional restrictions

on qi occasionally), i = 1, 2. For that reason it seems convenient to reformulate con-
dition (3.10) according to these cases; that is, the goal is to prove that idτ given by
(3.9) is compact if, and only if,

s1 − s2
d

>

⎧⎪⎪⎨
⎪⎪⎩

1
p1

− τ1 − 1
p2

+ τ2, if τ2 ≥ 1
p2

,
1
p1

− τ1, if τ1 ≥ 1
p1

, τ2 < 1
p2

,

max
{
0, 1

p1
− τ1 − 1

p2
+ max

{
τ2,

p1
p2

τ1

}}
, if τ1 < 1

p1
, τ2 < 1

p2
.

(3.11)

Step 1. Let us assume that τ2 ≥ 1
p2

with q2 = ∞ if τ2 = 1
p2
. First we prove the

sufficiency of (3.11) for the compactness of idτ , that is, we assume now

s1 + d

(
τ1 − 1

p1

)
> s2 + d

(
τ2 − 1

p2

)
. (3.12)

Then the embedding (2.11) and Proposition 2.7 yield

As1,τ1
p1,q1(Ω) ↪→ B

s1+d
(
τ1− 1

p1

)
∞,∞ (Ω) ↪→ B

s2+d
(
τ2− 1

p2

)
∞,∞ (Ω) = As2,τ2

p2,q2(Ω) (3.13)

and the embedding between the Besov spaces is compact. So idτ is compact.
Now we turn to the necessity of (3.12) for the compactness of idτ . So we assume

that idτ given by (3.9) is compact. Let first τ1 ≥ 1
p1

with q1 = ∞ if τ1 = 1
p1
. Then

by Proposition 2.7 we obtain

B
s1+d

(
τ1− 1

p1

)
∞,∞ (Ω) = As1,τ1

p1,q1(Ω) ↪→ As2,τ2
p2,q2(Ω) = B

s2+d
(
τ2− 1

p2

)
∞,∞ (Ω) (3.14)

which results in a compact embedding between the outer Besov spaces. This is well-
known to imply (3.12) as desired. A similar argument works for p1 = ∞, τ1 = 0 and
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q1 < ∞, since then we have

Bs1∞,q1(Ω) = Bs1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2(Ω) = B
s2+d

(
τ2− 1

p2

)
∞,∞ (Ω).

Let now 0 < τ1 ≤ 1
p1

with q1 < ∞ if τ1 = 1
p1
. We take p0 ∈ (0,∞) such that

1
p0

> 1
p1

− τ1 and q0 = min{p1, q1}. Then Corollary 5.2 in [44] implies

B
s1+d

(
τ1− 1

p1
+ 1

p0

)
p0,q0 (Ω) ↪→ Bs1,τ1

p1,q0 (Ω) ↪→ As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2 (Ω) = B
s2+d

(
τ2− 1

p2

)
∞,∞ (Ω).

(3.15)

Once more the compactness of idτ implies (3.12). If τ1 = 0, then Bs1
p1,q0(Ω) can be

embedded into As1,τ1
p1,q1(Ω) and the similar argument holds. This concludes the proof

in that case of τ2 ≥ 1
p2

with q2 = ∞ if τ2 = 1
p2
.

Step 2 Next we assume that 0 ≤ τ2 < 1
p2

and benefit from the coincidence (2.18).

Substep 2.1 If also 0 ≤ τ1 < 1
p1
, then (3.10) reads as

s1 − s2
d

> max

{
0,

1

p1
− τ1 − 1

p2
+ max

{
τ2,

p1
p2

τ1

}}
. (3.16)

For the F-spaces, the result immediately follows fromcoincidence (2.18) andTheorem
3.1. Note that in this case (3.2) coincides with the last line in (3.11) in view of 1

ui
=

1
pi

− τi , i = 1, 2, as required by (2.18).
We shall then prove the result for the Besov scale. At first, let us assume (3.16)

holds. Then (2.9), (2.16) and (2.17) yield

Bs1,τ1
p1,q1(Ω) ↪→ Bs1,τ1

p1,∞(Ω) = N s1
u1,p1,∞(Ω) ↪→ N s2

u2,p2,q2(Ω) ↪→ Bs2,τ2
p2,q2(Ω) (3.17)

and the embedding between the Besov–Morrey spaces is compact. Therefore idτ is
compact.

We now turn to the necessity and assume that idτ is compact. Then

N s1
u1,p1,q1(Ω) ↪→ Bs1,τ1

p1,q1(Ω) ↪→ Bs2,τ2
p2,q2(Ω) ↪→ Bs2,τ2

p2,∞(Ω) = N s2
u2,p2,∞(Ω), (3.18)

where we have used again (2.16), (2.9) and the coincidence (2.17). In view of Theorem
3.1 this leads to the desired condition (3.16).

Substep 2.2 An analogous argument works for τ1 ≥ 1
p1

with q1 = ∞ if τ1 = 1
p1
, cf.

Proposition 2.7. This time (3.10) coincides with the second line of (3.11). So for the
sufficiency we assume that

s1 − s2
d

>
1

p1
− τ1. (3.19)
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Then Proposition 2.7, the embedding (2.16) and the coincidence (2.18) give

As1,τ1
p1,q1(Ω) = B

s1+d
(
τ1− 1

p1

)
∞,∞ (Ω) = N

s1+d
(
τ1− 1

p1

)
∞,∞,∞ (Ω) ↪→ As2

u2,p2,q2 (Ω) ↪→ As2,τ2
p2,q2 (Ω).

(3.20)

Then, by Theorem 3.1, idτ is compact. Conversely, let us assume that idτ is compact.
We benefit from Proposition 2.7 and the coincidences (2.17) and (2.18) to obtain

N
s1+d

(
τ1− 1

p1

)
∞,∞,∞ (Ω) = B

s1+d
(
τ1− 1

p1

)
∞,∞ (Ω) = As1,τ1

p1,q1(Ω) ↪→ As2,τ2
p2,q2 (Ω) ↪→ N s2

u2,p2,∞(Ω).

(3.21)

In case of A = F , the last embedding is true due to the elementary embeddings (2.14).
Therefore, the compactness of idτ and Theorem 3.1 lead to the desired condition
s1−s2

d > 1
p1

− τ1.

Substep 2.3 Assume finally τ1 = 1
p1

with q1 < ∞. Note that in this case, due to the
middle line of (3.11), the condition (3.10) reads as s1 > s2. We apply (2.11) to obtain

As1,τ1
p1,q1(Ω) = A

s1,
1
p1

p1,q1 (Ω) ↪→ Bs1∞,∞(Ω) ↪→ As2
u2,p2,q2(Ω) ↪→ As2,τ2

p2,q2(Ω),

with
1

u2
= 1

p2
− τ2 > 0. (3.22)

Since Bs1∞,∞(Ω) = N s1∞,∞,∞(Ω), in view of Theorem 3.1 the second embedding is
compact for s1 > s2, and the last embedding is a consequence of (2.16) and (2.18),
respectively. Conversely, if idτ is compact in this case, then we can argue as follows.
Put 1

u2
= 1

p2
− τ2. Then [44, Corollary 5.2] (for A = B) and (2.19) (for A = F) lead

to

Bs1∞,q1(Ω) ↪→ As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2 (Ω) ↪→ As2,τ2
p2,v2 (Ω) = As2

u2,p2,v2 (Ω) ↪→ N s2
u2,p2,∞(Ω)

(3.23)
with v2 = ∞ if A = B, and v2 ≥ q2 if A = F , where we used (2.17) and (2.18) in
the last equality and (2.14) in the last embedding. In view of Theorem 3.1 this leads
to s1 > s2 as required.

Step 3 It remains to deal with τ2 = 1
p2

and q2 < ∞. In that case (3.11) always reads

as s1 − s2 > d( 1
p1

− τ1).

Substep 3.1 Assume first τ1 < 1
p1

and let 1
u1

= 1
p1

− τ1. Then by elementary embed-
dings and the coincidences (2.17) and (2.18),

As1,τ1
p1,q1(Ω) ↪→ N s1

u1,p1,∞(Ω) ↪→ N s2∞,∞,q0(Ω) = Bs2∞,q0(Ω) ↪→ Bs2,τ2
p2,q0(Ω), (3.24)

and the embedding of the outer spaces is compact for any q0, since the second embed-
ding is compact by Theorem 3.1 with (3.10). The last embedding is continuous where
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we apply [44, Theorem 2.5]. If A = B, we put q0 = q2 and the argument is complete,
while in case of A = F we choose q0 ≤ min{p2, q2} and finally use the continuous
embedding into Fs2,τ2

p2,q2(Ω) due to (2.10).
On the other hand, [44, Corollaries 5.2, 5.9] and (2.11) ensure

As1
u1,q1(Ω) ↪→ As1,τ1

p1,q1(Ω) ↪→ As2,τ2
p2,q2(Ω) ↪→ Bs2∞,∞(Ω), (3.25)

such that the compactness of idτ implies s1 − d
u1

> s2 by the well-known classical
results. This proves the necessity of the condition.

Substep 3.2Assume τ1 ≥ 1
p1

with q1 = ∞ if τ1 = 1
p1
. We can argue in the same way

as above. Let s1−s2 > d( 1
p1

−τ1). We choose s0 such that s1−d( 1
p1

−τ1) > s0 > s2.
Then by the identities in Proposition 2.7 and (2.19),

As1,τ1
p1,q1(Ω) = B

s1+d
(
τ1− 1

p1

)
∞,∞ (Ω) ↪→ Bs0∞,∞(Ω) = Fs0,τ2

p2,∞(Ω) ↪→ As2,τ2
p2,q2(Ω),

(3.26)
where the first embedding is compact for s1+d(τ1− 1

p1
) > s0 and the last embedding

is continuous for s0 > s2 by (2.8) and (2.10). Hence idτ is compact. Conversely, the
compactness of idτ implies

B
s1+d

(
τ1− 1

p1

)
∞,∞ (Ω) = As1,τ1

p1,q1(Ω) ↪→ As2,τ2
p2,q2(Ω) ↪→ Bs2∞,∞(Ω) (3.27)

where we used (2.11) and Proposition 2.7. But the resulting compactness of the outer
embedding of Besov spaces leads to the desired condition s1 + d(τ1 − 1

p1
) > s2.

Substep 3.3 Let finally τ1 = 1
p1

with q1 < ∞. So we are in the double-limiting case
and need to show the compactness of idτ if, and only if, s1 > s2. The sufficiency can
be obtained via

As1,τ1
p1,q1(Ω) ↪→ Bs1∞,∞(Ω) ↪→ Bs2∞,q2(Ω) ↪→ As2,τ2

p2,q2(Ω) (3.28)

where we use [44, Corollary 5.2] in the last embedding in case of A = B, extended by
the same argument as above to A = F via (2.10). The second embedding is compact
for s1 > s2.

Conversely, if idτ is compact, choose q0 ≤ min{p1, q1}. Then

Bs1∞,q0(Ω) ↪→ As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2(Ω) ↪→ Bs2∞,∞(Ω) (3.29)

is compact, where we used for the first embedding [44, Corollary 5.2] (with (2.10) for
A = F) again, and (2.11) for the last one. But this implies s1 > s2. ��
Remark 3.3 Usually one needs the condition s1 − s2 > 0 to prove compactness of this
kind of embeddings. Curiously this is not the case when considering spaces of type
Bs,τ

p,q and Fs,τ
p,q . This can easily be seen by condition (3.11), for instance when τ1 ≥ 1

p1
and τ2 < 1

p2
. In parallel to (2.11) and Proposition 2.7, this evidences the fact that the

parameter τ modifies indeed the smoothness of these spaces.
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Remark 3.4 We briefly return to our Remark 2.9 which referred to the coincidence
of Triebel’s hybrid spaces Lr As

p,q with the spaces As,τ
p,q if τ = 1

p + r
d . Obviously,

defining both by restriction toΩ , this is transferred to spaces on domains. In that sense
Theorem 3.2 can be formulated as follows: let si ∈ R, 0 < qi ≤ ∞, 0 < pi < ∞,
− d

pi
≤ ri < ∞, i = 1, 2. Then the embedding

idL : Lr1 As1
p1,q1(Ω) ↪→ Lr2 As2

p2,q2(Ω) (3.30)

is compact if, and only if, the following condition holds:

s1 − s2 > max

{
(r2)+ − (r1)+,−r1 + max

{
r2,

p1
p2

min{r1, 0}
}}

, (3.31)

i.e.,

s1 − s2 >

⎧⎪⎪⎨
⎪⎪⎩

r2 − r1, if r2 ≥ 0,

−r1, if r2 < 0, r1 ≥ 0,

max
{
0,−r1 + max

{
r2,

p1
p2

r1
}}

, if r2 < 0, r1 < 0.

We now collect some immediate consequences of the above compactness result.
We begin with the case τ1 = τ2 = τ ≥ 0.

Corollary 3.5 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞ (with pi < ∞ in case of
A = F), i = 1, 2, and τ ≥ 0. The embedding

idτ : As1,τ
p1,q1(Ω) ↪→ As2,τ

p2,q2(Ω) (3.32)

is compact if, and only if,

s1 − s2
d

>

{ 1
p1

− 1
p2

, if p1 < p2,

min
{
0, 1

p1
− min

{
τ, 1

p2

}}
, if p1 ≥ p2.

(3.33)

Proof We apply Theorem 3.2 with τ1 = τ2. ��
Remark 3.6 The result is well-known for τ = 0, where (3.33) reads as s1 − s2 >

d( 1
p1

− 1
p2

)+. We find it interesting that for τ > 0 there is not a simple ‘τ -shift’, but
an interplay between τ and the pi -parameters—however, only when p1 ≥ p2. This
again refers to the hybrid role played by the additional τ -parameters and makes it even
more obvious that it influences both the smoothness and the integrability parameters
si and pi , respectively.

Now we deal with special target spaces. In the case of L∞(Ω) and bmo(Ω) we
have the following result.

Corollary 3.7 Let s ∈ R, 0 < p ≤ u < ∞ and q ∈ (0,∞]. Then the following
conditions are equivalent:
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(i) the embedding As
u,p,q(Ω) ↪→ L∞(Ω) is compact,

(ii) the embedding As
u,p,q(Ω) ↪→ bmo(Ω) is compact,

(iii) the inequality s > d
u holds.

Proof The equivalence of (i) and (iii) was proved in [14,15], whereas the equivalence
of (ii) and (iii) follows from Theorem 3.2 since bmo(Ω) = F0,1/r

r ,2 (Ω), 0 < r < ∞,

and E s
u,p,q(Ω) = Fs,τ

p,q(Ω), 0 ≤ τ = 1
p − 1

u . This covers the case As
u,p,q = E s

u,p,q .
The extension to the case As

u,p,q = N s
u,p,q is done via (2.14). ��

The counterpart of Corollary 3.7 for spaces of type As,τ
p,q reads as follows.

Corollary 3.8 Let s ∈ R, τ ≥ 0, 0 < p, q ≤ ∞ (with p < ∞ in case of A = F). Then
the following conditions are equivalent:

(i) the embedding As,τ
p,q(Ω) ↪→ L∞(Ω) is compact,

(ii) the embedding As,τ
p,q(Ω) ↪→ bmo(Ω) is compact,

(iii) the inequality s > d
(
1
p − τ

)
holds.

Proof Step 1We prove the equivalence of (i) and (iii). The case τ = 0 is well-known,
so we assume τ > 0. Note that the continuity of that embedding was studied in [11,
Proposition 2.18] already, with the outcome that As,τ

p,q(Ω) ↪→ L∞(Ω) if, and only if,
s > d( 1p −τ). Hence (i) implies (iii) andwe are left to show the converse. Assume first,

in addition, that p ≥ 2, and d( 1p −τ) < s < d( 1p −τ)+1.We dealt with that situation
in [43, Corollary 5.10] and characterized the asymptotic behaviour of approximation
numbers of the embedding As,τ

p,q(Ω) ↪→ L∞(Ω). In particular, that outcome implies
(i). The additional restriction for s (from above) can immediately be removed in
view of (2.8) (adapted to spaces on bounded domains). Now let 0 < p < 2 and
s > d( 1p −τ). We use a Sobolev-type embedding: choose σ = s −d( 1p − 1

2 ) < s, then

Aσ,τ
2,q (Ω) ↪→ L∞(Ω) compactly by our previous argument, and As,τ

p,q (Ω) ↪→ Aσ,τ
2,q (Ω)

by the Sobolev-type embedding, cf. [43, Propositions 3.4, 3.8] (adapted to spaces on
domains).

Step 2 We prove the equivalence of (ii) and (iii). However, in case of A = F this
coincides with Theorem 3.2 for s1 = s, s2 = 0, p1 = p2 = p, τ1 = τ , τ2 = 1

p ,

q1 = q and q2 = 2 since bmo(Ω) = F0,1/p
p,2 (Ω). The extension to the case A = B

results from (2.8) and (2.10). ��
Remark 3.9 In case of τ > 1

p or τ = 1
p and q = ∞, Corollary 3.8 is well-known as

a compact embedding within the scale of Besov spaces Bs
p,q(Ω), in view of Propo-

sition 2.7. If 0 ≤ τ < 1
p , then Corollaries 3.7 and 3.8 coincide for E-spaces, using

(2.18). In view of our continuity result [11, Proposition 2.18] the above outcome can
be reformulated for τ > 0 such that As,τ

p,q(Ω) ↪→ L∞(Ω) is compact if, and only if,
it is bounded. This is different from the case τ = 0.

Wefinally formulate the corresponding results for compact embeddings into Lr (Ω),
1 ≤ r < ∞, which can be seen as the counterparts of Corollaries 3.7 and 3.8 where
r = ∞.
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Corollary 3.10 Let s ∈ R, 0 < p, q ≤ ∞ (with p < ∞ in case of A = F), 1 ≤ r <

∞.

(i) Let u ∈ [p,∞) (or p = u = ∞ if A = N ). Then

As
u,p,q(Ω) ↪→ Lr (Ω) is compact if, and only if, s >

d

u

(
1 − p

r

)
+

.

(ii) Let τ ≥ 0. Then

As,τ
p,q(Ω) ↪→ Lr (Ω)

is compact if, and only if,

s > d

⎧⎨
⎩
(
1
p − τ

)
if τ ≥ 1

p ,(
1
p − τ

) (
1 − p

r

)
+ if τ ≤ 1

p .
(3.34)

Proof Case (i) was already shown in [14, Proposition 5.3] (for A = N ). In view of
(2.14) and the independence of the condition with respect to q the counterpart for
A = E follows (and slightly extends our recent result in [15, Corollary 5.4] to r = 1).
We come to (ii) and start with the case A = B. Note that B0

r ,1(Ω) ↪→ Lr (Ω) ↪→
B0

r ,∞(Ω), 1 ≤ r ≤ ∞, so we apply Theorem 3.2 for s1 = s, s2 = 0, p1 = p,
p2 = r , τ1 = τ , τ2 = 0, q1 = q, and q2 = 1 or q2 = ∞ to obtain the necessary and
sufficient conditions. Again we benefit from the independence of (3.10) with respect
to the q-parameters. Finally, the case A = F follows by (2.10) again. ��

Corollary 3.11 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞ (with pi < ∞ in case of
A = F), τi ≥ 0, i = 1, 2. There is no continuous embedding

idτ : As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2(Ω)

if
s1 − s2

d
< γ (τ1, τ2, p1, p2). (3.35)

Proof Here we directly follow our proof of Theorem 3.2 and apply our continuity
results [14, Theorem 3.1] (for N -spaces) and [15, Theorem 5.2] (for E-spaces). We
again follow the splitting suggested by (3.11). So let us assume in the sequel that there
is a continuous embedding idτ .

Step 1 Let τ2 ≥ 1
p2

with q2 = ∞ if τ2 = 1
p2
. If also τ1 ≥ 1

p1
with q1 = ∞ if τ1 = 1

p2
,

then (3.14) implies the continuity of

id : B
s1+d

(
τ1− 1

p1

)
∞,∞ (Ω) ↪→ B

s2+d
(
τ2− 1

p2

)
∞,∞ (Ω)
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which is well-known to imply

s1 + d

(
τ1 − 1

p1

)
≥ s2 + d

(
τ2 − 1

p2

)
, (3.36)

contradicting (3.35) in that case. Likewise, if τ1 ≤ 1
p1

with q1 < ∞ if τ1 = 1
p1
, then

(3.15) leads to the continuity of

id : B
s1+d

(
τ1− 1

p1
+ 1

p0

)
p0,q0 (Ω) ↪→ B

s2+d
(
τ2− 1

p2

)
∞,∞ (Ω)

which implies again (3.36) and thus contradicts (3.35).

Step 2 Assume τ2 < 1
p2

and proceed parallel to Step 2 of the proof of Theorem 3.2.

If also τ1 < 1
p1
, then the continuity of idτ : Fs1,τ1

p1,q1(Ω) ↪→ Fs2,τ2
p2,q2(Ω) results in the

continuity of the corresponding embedding between E-spaces, using (2.18), which in
turn by [15, Theorem 5.2] leads to a contradiction of (3.35) again. The extension to
spaces Bs,τ

p,q(Ω) is obtained via (2.16), (2.17),

N s1
u1,p1,q1(Ω) ↪→ Bs1,τ1

p1,q1(Ω) ↪→ Bs2,τ2
p2,q2(Ω) ↪→ Bs2,τ2

p2,∞(Ω) = N s2
u2,p2,∞(Ω),

which by [14, Theorem 3.1] implies

s1 − s2
d

≥ max

{
0,

1

p1
− τ1 − 1

p2
+ max

{
τ2,

p1
p2

τ1

}}
= γ (τ1, τ2, p1, p2)

contradicting (3.35) in this setting. If τ1 ≥ 1
p1

with q1 = ∞ when τ1 = 1
p1
, then

Proposition 2.7 together with (2.17), (2.18), (2.14) yield the continuity of the outer
embedding in the following chain:

N s1+d
(
τ1− 1

p1

)
∞,∞,∞ (Ω) = B

s1+d
(
τ1− 1

p1

)
∞,∞ (Ω) = As1,τ1

p1,q1(Ω) ↪→ As2,τ2
p2,q2(Ω) ↪→ N s2

u2,p2,∞(Ω).

Thus we have again s1 − s2 ≥ d( 1
p1

− τ1), contradicting (3.35). When τ1 = 1
p1
,

q1 < ∞, (3.23) leads to the same contradiction again.

Step 3 Assume finally τ2 = 1
p2
, q2 < ∞. Then the embeddings (3.25), (3.27) and

(3.29) disprove (3.35) in the corresponding settings. ��
Remark 3.12 Obviously Theorem 3.2 implies, in particular, that the embedding idτ is
continuous when s1 − s2 > dγ (τ1, τ2, p1, p2). In view of Corollary 3.11 it thus turns
out that the limiting case for the embedding idτ is indeed

s1 − s2
d

= γ (τ1, τ2, p1, p2).

Here some influence of the fine parameters qi can also be expected. But this question
is postponed to a separate study in the future.
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4 Entropy numbers

First we return to the compact embedding idA given by (3.1), recall Theorem 3.1. For
its entropy numbers we obtained in [17, Corollaries 4.1, 4.3] the following result.

Theorem 4.1 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ui < ∞ or, in the case of N -spaces,
allow also pi = ui = ∞, i = 1, 2. Assume that (3.2) is satisfied. Then we obtain for
the entropy numbers of the compact embedding

idA :As1
u1,p1,q1(Ω) ↪→ As2

u2,p2,q2(Ω)

the following results:
(i) If

1

p1
− 1

p2
≥ s1 − s2

d
>

p1
u1

( 1

p1
− 1

p2

)
and

u2

p2
<

u1

p1
, (4.1)

then there exists some c > 0 and for any ε > 0 some cε > 0 such that for all
k ∈ N,

ck
− u1

u1−p1

(
s1−s2

d − p1
u1

(
1
p1

− 1
p2

))
≤ ek

(
idA

) ≤ cεk
− u1

u1−p1

(
s1−s2

d − p1
u1

(
1
p1

− 1
p2

))
+ε

.

(4.2)
(ii) In all other cases admitted by (3.2), it holds

ek
(
idA :As1

u1,p1,q1(Ω) ↪→ As2
u2,p2,q2(Ω)

) ∼ k− s1−s2
d , k ∈ N. (4.3)

Proof The cases when 0 < pi ≤ ui < ∞, i = 1, 2, were proved in [17], as already
mentioned. So it remains to verify the cases p1 = u1 = ∞ or p2 = u2 = ∞. Note
that in both cases we are in part (ii).

If p1 = u1 = ∞, (3.2) reads as s1 − s2 > 0. Now we use (3.3) and the multiplica-
tivity of the entropy numbers to obtain

ek(idA) � ek

(
Bs1∞,q1(Ω) ↪→ As2

u2,q2(Ω)
)

� k− s1−s2
d .

Moreover, by (3.4) we get the desired estimate from below:

ek(idA) � ek

(
Bs1∞,q1(Ω) ↪→ As2

p2,q2(Ω)
)

� k− s1−s2
d .

The case when p2 = u2 = ∞ and s1−s2
d > 1

u1
follows similarly but using (3.5)–(3.7)

this time. ��
Now we give the counterpart of the above result for the compact embedding (3.9),

described by Theorem 3.2.

123



782 F. Gonçalves et al.

Theorem 4.2 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞ (with pi < ∞ in case of
A = F), τi ≥ 0, i = 1, 2. Assume that (3.10) is satisfied. Then we obtain for the
entropy numbers of the compact embedding

idτ : As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2(Ω)

the following results:

(i) If τ1 < 1
p1

,

τ1
p1
p2

> τ2, (4.4)

and
1

p1
− 1

p2
≥ s1 − s2

d
> (1 − p1τ1)

( 1

p1
− 1

p2

)
, (4.5)

then there exists some c > 0 and for any ε > 0 some cε > 0 such that for all
k ∈ N,

ck
− 1

p1τ1

(
s1−s2

d −(1−p1τ1)
(

1
p1

− 1
p2

))
≤ ek (idτ ) ≤ cεk

− 1
p1τ1

(
s1−s2

d −(1−p1τ1)
(

1
p1

− 1
p2

))
+ε

.

(4.6)
(ii) In all other cases admitted by (3.10), it holds

ek(idτ ) ∼ k
− s1−s2

d −
(
τ1− 1

p1

)
++

(
τ2− 1

p2

)
+ , k ∈ N. (4.7)

Proof To prove this result we basically rely on the proof of Theorem 3.2 and the
corresponding counterparts of the entropy numbers for the spacesAs

u,p,q , cf. Theorem
4.1, as well as for the classical spaces As

p,q , cf. Remark 2.15. Therefore, we start by
proving part (i) and then we split part (ii) in all the possible cases as in the proof of
Theorem 3.2.

Step 1We deal with case (i). Assumption (4.4) implies also τ2 < 1
p2
, such that in view

of our reformulation (3.11) of the compactness condition (3.10) it is obvious that the
expression on the right-hand side of (3.10) equals (1− p1τ1)(

1
p1

− 1
p2

)+. We first use
(2.18) to get

ek(idτ : Fs1,τ1
p1,q1(Ω) ↪→ Fs2,τ2

p2,q2(Ω)) ∼ ek

(
idE : E s1

u1,p1,q1(Ω) ↪→ E s2
u2,p2,q2(Ω)

)
,

1

ui
= 1

pi
− τi , i = 1, 2,

together with Theorem 4.1(i) which covers the case A = F . As for the B-case, we
benefit from (3.17) (to the estimate from above) and (3.18) (to the estimate from
below), such that the multiplicativity of entropy numbers implies

ek
(
idN :N s1

u1,p1,q1(Ω) ↪→ N s2
u2,p2,∞(Ω)

)
� ek (idτ )

� ek
(
idN :N s1

u1,p1,∞(Ω) ↪→ N s2
u2,p2,q2 (Ω)

)
.
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Application of Theorem 4.1(i) concludes the argument.

Step 2We are left to prove (4.7) in all remaining cases.

Substep 2.1We first continue with the case τi < 1
pi
, i = 1, 2, from Step 1, where we

now assume that (4.4) or (4.5) are not satisfied. In both cases we proceed as above and
use the coincidence (2.18) together with Theorem 4.1(ii). This yields

ek
(
idτ : Fs1,τ1

p1,q1(Ω) ↪→ Fs2,τ2
p2,q2 (Ω)

) ∼ k− s1−s2
d = k

− s1−s2
d −

(
τ1− 1

p1

)
++

(
τ2− 1

p2

)
+ , k ∈ N,

i.e. the desired result (4.7) for A = F . The case A = B is done as in the end of Step 1,
using again (3.17) and (3.18).

Substep 2.2We stick to τ2 < 1
p2
, now together with τ1 ≥ 1

p1
and q1 = ∞ if τ1 = 1

p1
.

In view of (3.11) we thus assume s1 − s2 > d( 1
p1

− τ1) and need to show (4.7) in the
form

ek(idτ ) ∼ k
− s1−s2

d −
(
τ1− 1

p1

)
, k ∈ N.

This can be seen as follows. By (3.21),

ek(idτ : As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2 (Ω)) � ek

(
idN :N s1+d

(
τ1− 1

p1

)
∞,∞,∞ (Ω) ↪→ N s2

u2,p2,∞(Ω)

)
,

which in view of Theorem 4.1 (applied to A = N ) leads to

ek(idτ : As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2(Ω)) � k
− s1−s2

d −
(
τ1− 1

p1

)
, k ∈ N,

under the given assumptions. The estimate from above follows similarly from (3.20)
and again the multiplicativity of entropy numbers.

Substep 2.3We study the case τ2 ≥ 1
p2

with q2 = ∞ if τ2 = 1
p2
. According to (3.11)

we assume that
s1 − s2

d
>

1

p1
− τ1 − 1

p2
+ τ2. (4.8)

If τ1 ≥ 1
p1

with q1 = ∞ if τ1 = 1
p1
, then Proposition 2.7 implies that

ek(idτ ) ∼ ek
(
idB : Bσ1∞,∞(Ω) ↪→ Bσ2∞,∞(Ω)

)
, σi = si + d

(
τi − 1

pi

)
, i = 1, 2.

But the asymptotic behaviour of the entropy numbers in that latter case is well-known
for σ1 > σ2, which is equivalent to (4.8), that is

ek
(
idB : Bσ1∞,∞(Ω) ↪→ Bσ2∞,∞(Ω)

) ∼ k− σ1−σ2
d , k ∈ N,
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cf. Remark 2.15. This coincides with (4.7) in that case.
If τ1 < 1

p1
we argue as follows. We use (2.18), (2.6) and Proposition 2.7 to get

ek(idτ : Fs1,τ1
p1,q1(Ω) ↪→ Fs2,τ2

p2,q2(Ω)) ∼ ek

(
id : E s1

u1,p1,q1(Ω) ↪→ N s2+d
(
τ2− 1

p2

)
∞,∞,∞ (Ω)

)
.

(4.9)
On the other hand, Theorem 4.1(ii) yields

ek

(
idN :N s1

u1,p1,q1(Ω) ↪→ N s2+d
(
τ2− 1

p2

)
∞,∞,∞ (Ω)

)
∼ k

− s1−s2
d +τ2− 1

p2 , k ∈ N,

whenever (4.8) is satisfied. In view of (2.14) we can thus continue (4.9) by

ek(idτ : Fs1,τ1
p1,q1(Ω) ↪→ Fs2,τ2

p2,q2(Ω)) ∼ k
− s1−s2

d +τ2− 1
p2 , k ∈ N,

which is the desired result in case of A = F . The case A = B can be obtained noting
that

ek(idτ : Bs1,τ1
p1,∞(Ω) ↪→ Bs2,τ2

p2,q2 (Ω)) ∼ ek

(
idN :N s1

u1,p1,∞(Ω) ↪→ N
s2+d

(
τ2− 1

p2

)
∞,∞,∞ (Ω)

)
,

where we have used (2.6) and (2.17). Now (2.9) and Theorem 4.1(ii) give the desired
result.

Step 3 It remains to study the limiting cases, that is, when τi = 1
pi

and qi < ∞ for
i = 1 or i = 2.

Substep 3.1 Let τ1 = 1
p1
, q1 < ∞, and τ2 < 1

p2
. Following the arguments of

Substep 2.3 of the proof of Theorem 3.2, in particular, (3.22) and (3.23), and using
the multiplicativity of entropy numbers we arrive at

ek
(
id : Bs1∞,q1(Ω) ↪→ N s2

u2,p2,∞(Ω)
)

� ek(idτ ) � ek
(
id : Bs1∞,∞(Ω) ↪→ As2

u2,p2,q2 (Ω)
)
,

(4.10)
where 1

u2
= 1

p2
− τ2 > 0. However, completely parallel to Substeps 2.2 and 2.3,

Theorem 4.1(ii) implies

ek
(
id : Bs1∞,∞(Ω) ↪→ As2

u2,p2,q2 (Ω)
) ∼ ek

(
id : Bs1∞,q1 (Ω) ↪→ N s2

u2,p2,∞(Ω)
) ∼ k− s1−s2

d

whenever s1 > s2, such that (4.10) finally results in

ek(idτ ) ∼ k− s1−s2
d , k ∈ N.
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Substep 3.2 Let τ1 = 1
p1
, q1 < ∞, and τ2 ≥ 1

p2
with q2 = ∞ if τ2 = 1

p2
. In view of

(3.11), we assume now s1 − s2 > d(τ2 − 1
p2

). Then (3.13) leads to

ek(idτ ) � ek

(
idB : Bs1∞,∞(Ω) ↪→ B

s2+d
(
τ2− 1

p2

)
∞,∞ (Ω)

)
� k

− s1−s2
d +

(
τ2− 1

p2

)
, k ∈ N,

by the same arguments as above. Conversely, according to [44, Corollary 5.2] (adapted
to spaces on bounded domains), Proposition 2.7 and (2.10), we have in this case

Bs1∞,q1(Ω) ↪→ As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2(Ω) = B
s2+d

(
τ2− 1

p2

)
∞,∞ (Ω), (4.11)

such that

ek(idτ ) � ek

(
idB : Bs1∞,q1(Ω) ↪→ B

s2+d
(
τ2− 1

p2

)
∞,∞ (Ω)

)
� k

− s1−s2
d +

(
τ2− 1

p2

)
, k ∈ N.

This concludes the proof in this case.

Substep 3.3 Let τ2 = 1
p2
, q2 < ∞, and assume τ1 < 1

p1
. The chain of embeddings

(3.25) leads to

ek(idτ ) � ek

(
id : As1

u1,q1(Ω) ↪→ Bs2∞,∞(Ω)
)

� k− s1−s2
d , k ∈ N,

as desired, where we made use of the condition s1−s2
d > 1

u1
= 1

p1
− τ1 as (3.11) reads

in this case.
For the estimate from above we use (3.24). In the same way as there, if A = B we

take q0 = q2, and in case A = F we choose q0 ≤ min{p2, q2} and further use (2.10).
Thus

ek (idτ : A
s1,τ1
p1,q1 (Ω) ↪→ A

s2,τ2
p2,q2 (Ω)) � ek

(
id :N s1

u1,p1,∞(Ω) ↪→ N s2∞,∞,q0 (Ω)
)

� k− s1−s2
d , k ∈ N,

by Theorem 4.1(ii).

Substep 3.4 Let τ2 = 1
p2
, q2 < ∞, and τ1 ≥ 1

p1
with q1 = ∞ if τ1 = 1

p1
. Assume

that s1 − s2 > d(τ1 − 1
p1

). We benefit from (3.27) to conclude that

ek(idτ ) � ek

(
idB : B

s1+d
(
τ1− 1

p1

)
∞,∞ (Ω) ↪→ Bs2∞,∞(Ω)

)
� k

− s1−s2
d −

(
τ1− 1

p1

)
, k ∈ N.

For the estimate from above we adapt (3.24) properly by

As1,τ1
p1,q1 (Ω) = B

s1+d
(
τ1− 1

p1

)
∞,∞ (Ω) = N s1+d

(
τ1− 1

p1

)
∞,∞,∞ (Ω) ↪→ N s2∞,∞,q0 (Ω) = Bs2∞,q0 (Ω) ↪→ As2,τ2

p2,q2 (Ω),
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with the same choice of q0 as before. Then we get

ek(idτ ) � ek

(
idN :N s1+d

(
τ1− 1

p1

)
∞,∞,∞ (Ω) ↪→ N s2∞,∞,q2(Ω)

)
� k

− s1−s2
d −

(
τ1− 1

p1

)
, k ∈ N.

Substep 3.5 In the double-limiting case, that is, when τi = 1
pi
, qi < ∞, i = 1, 2, then

(3.28) and (3.29) immediately imply

ek(idτ ) ∼ k− s1−s2
d , k ∈ N,

since

ek

(
idB : Bs1∞,∞(Ω) ↪→ Bs2∞,q2(Ω)

)
∼ ek

(
idB : Bs1∞,q0(Ω) ↪→ Bs2∞,∞(Ω)

)
∼ k− s1−s2

d

whenever s1 > s2, cf. Remark 2.15. ��
Remark 4.3 We return to our Remarks 2.9 and 3.4 and formulate the result for Triebel’s
hybrid spaces Lr As

p,q(Ω). Let si ∈ R, 0 < qi ≤ ∞, 0 < pi < ∞, − d
pi

≤ ri < ∞,
i = 1, 2, satisfy (3.31). Then we obtain for the compact embedding

idL : Lr1 As1
p1,q1(Ω) ↪→ Lr2 As2

p2,q2(Ω) (4.12)

the following results:

(i) If r1 < 0, r1 p1 > r2 p2, and

1

p1
− 1

p2
≥ s1 − s2

d
> − p1r1

d

( 1

p1
− 1

p2

)
,

then there exists some c > 0 and for any ε > 0 some cε > 0 such that for all
k ∈ N,

ck
− 1

d+p1r1

(
s1−s2+p1r1(

1
p1

− 1
p2

)
)

≤ ek (idL) ≤ cεk
− 1

d+p1r1

(
s1−s2+p1r1(

1
p1

− 1
p2

)
)
+ε

.

(ii) In all other cases admitted by (3.31), it holds

ek(idL) ∼ k− s1−s2
d − (r1)+

d + (r2)+
d , k ∈ N.

Parallel to the end of Sect. 3 we now collect some consequences and special cases
of Theorem 4.2. We begin with the counterpart of Corollary 3.5, that is, when τ1 =
τ2 ≥ 0.

Corollary 4.4 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞ (with pi < ∞ in case of
A = F), i = 1, 2, and τ ≥ 0. Assume that (3.33) is satisfied. Then we obtain for the
entropy numbers of the compact embedding

idτ : As1,τ
p1,q1(Ω) ↪→ As2,τ

p2,q2(Ω) (4.13)
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that

ek(idτ : As1,τ
p1,q1(Ω) ↪→ As2,τ

p2,q2(Ω)) ∼ k
− s1−s2

d −(τ− 1
p1

)++(τ− 1
p2

)+
, k ∈ N.

Proof This follows immediately froman application ofTheorem4.2with τ1 = τ2 = τ .
Note that part (i) of Theorem 4.2 cannot appear in this setting. ��
Remark 4.5 The above result is again well-known for τ = 0. We find it interesting to
note that for sufficiently small τ , that is, when 0 ≤ τ ≤ min{ 1

p1
, 1

p2
}, the asymptotic

behaviour for the entropy numbers remains the same,

ek
(
idA : As1

p1,q1(Ω) ↪→ As2
p2,q2 (Ω)

) ∼ ek
(
idτ : As1,τ

p1,q1(Ω) ↪→ As2,τ
p2,q2 (Ω)

) ∼ k− s1−s2
d .

For sufficiently large τ , also the τ -dependence disappears, due to the coincidence
stated in Proposition 2.7, that is,

ek

(
idτ : As1,τ

p1,q1(Ω) ↪→ As2,τ
p2,q2(Ω)

)
∼ k

− s1−s2
d + 1

p1
− 1

p2 , τ ≥ max

{
1

p1
,
1

p2

}
.

So only ‘in between’, that is, for min{ 1
p1

, 1
p2

} < τ < max{ 1
p1

, 1
p2

} the Morrey param-
eter τ influences the asymptotic behaviour of entropy numbers. Plainly, for p1 = p2
this case is impossible, so in that case we would really have some ‘τ -shift’,

ek

(
idA : A

s1
p,q1 (Ω) ↪→ A

s2
p,q2 (Ω)

)
∼ ek

(
idτ : A

s1,τ
p,q1 (Ω) ↪→ A

s2,τ
p,q2 (Ω)

)
∼ k− s1−s2

d , τ ≥ 0.

We come to the counterpart of Corollary 3.7.

Corollary 4.6 Let s ∈ R, 0 < p ≤ u < ∞, q ∈ (0,∞], and s > d
u . Then

the entropy numbers of the compact embeddings id :As
u,p,q(Ω) ↪→ L∞(Ω) and

id :As
u,p,q(Ω) ↪→ bmo(Ω) behave like

ek

(
id :As

u,p,q(Ω) ↪→ L∞(Ω)
)

∼ ek

(
id :As

u,p,q(Ω) ↪→ bmo(Ω)
)

∼ k− s
d , k ∈ N.

Proof We can apply part (ii) of Theorem 4.2 due to the coincidence bmo(Ω) =
F0,1/r

r ,2 (Ω), 0 < r < ∞, and the well-known embeddings B0∞,1(Ω) ↪→ L∞(Ω) ↪→
B0∞,∞(Ω), i.e. we work with the assumption τ1 p1 < 1 = τ2 p2 or τ2 = 1

p2
= 0.

Step 1 Let us first consider the embeddingAs
u,p,q(Ω) ↪→ bmo(Ω). We get the result

forA = E by applying Theorem 4.2(ii) with E s
u,p,q(Ω) = Fs,τ

p,q(Ω), 0 ≤ τ = 1
p − 1

u ,
that is

ek

(
id : E s

u,p,q(Ω) ↪→ bmo(Ω)
)

∼ ek

(
idτ : Fs,τ

p,q(Ω) ↪→ F
0, 1r
r ,2 (Ω)

)
∼ k− s

d , k ∈ N.
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As for the case A = N , we use (2.17), (2.19) and (2.6) and obtain for k ∈ N

ek

(
idτ : Bs,0

u,q(Ω) ↪→ B
0, 12
2,2 (Ω)

)
� ek

(
id :N s

u,p,q(Ω) ↪→ bmo(Ω)
)

� ek

(
idτ : Bs,τ

p,∞ ↪→ B
0, 12
2,2 (Ω)

)
,

which in view of Theorem 4.2(ii) gives the desired result.

Step 2 Now we turn to the embedding id :As
u,p,q(Ω) ↪→ L∞(Ω) and make use of

the above embeddings to the B-scale. By (2.10) and (2.18) with 0 ≤ τ = 1
p − 1

u , we
have

Bs,τ
p,min{p,q}(Ω) ↪→ E s

u,p,q(Ω) = Fs,τ
p,q(Ω) ↪→ Bs,τ

p,max{p,q}(Ω)

↪→ B0∞,1(Ω) ↪→ L∞(Ω) ↪→ B0∞,∞(Ω).

According to Theorem 4.2(ii), we then get

ek(id : E s
u,p,q(Ω) ↪→ L∞(Ω)) � ek(idτ : Bs,τ

p,max{p,q}(Ω)

↪→ B0∞,1(Ω)) � k− s
d , k ∈ N,

and

ek (id :Es
u,p,q (Ω) ↪→ L∞(Ω)) � ek (idτ : Bs,τ

p,min{p,q}(Ω) ↪→ B0∞,∞(Ω)) � k− s
d , k ∈ N,

whenever s > d
u , which completes the proof for A = E .

Similarly we obtain the result for A = N . Namely, we have

ek

(
idN :N s

u,p,q (Ω) ↪→ N 0∞,∞,∞(Ω)
)

� ek (id) � ek

(
idN :N s

u,p,∞(Ω) ↪→ N 0∞,∞,1(Ω)
)

,

which in view of Theorem 4.1(ii) gives the result. ��
Remark 4.7 Corollary 4.6 extends some result on entropy numbers for the target space
L∞(Ω) obtained in [16]. There we could only cover the case s > d

p .

In a parallel way we can further characterize the compactness of the embeddings
described by Corollary 3.8.

Corollary 4.8 Let s ∈ R, τ ≥ 0, 0 < p, q ≤ ∞ (with p < ∞ in case of A = F),
and assume s > d( 1p − τ). Then the entropy numbers of the compact embeddings

idτ : As,τ
p,q(Ω) ↪→ L∞(Ω) and idτ : As,τ

p,q(Ω) ↪→ bmo(Ω) behave like

ek
(
id : As,τ

p,q (Ω) ↪→ L∞(Ω)
) ∼ ek

(
id : As,τ

p,q (Ω) ↪→ bmo(Ω)
) ∼ k

− s
d −

(
τ− 1

p

)
+ , k ∈ N.
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Proof We proceed as above and observe that Theorem 4.2(i) is again excluded for the
same reasons. ��

Finally we deal with the target space Lr (Ω), 1 ≤ r < ∞. First we recall our result
obtained in [17, Corollary 4.8].

Corollary 4.9 Let 1 ≤ r < ∞, 0 < p ≤ u < ∞, or p = u = ∞, and s >

d p
u

(
1
p − 1

r

)
+.

(i) If p ≥ r and s > 0, or p < r and s > d( 1p − 1
r ), then

ek
(
id :As

u,p,q(Ω) ↪→ Lr (Ω)
) ∼ k− s

d . (4.14)

(ii) If p < r and d p
u

(
1
p − 1

r

)
< s ≤ d

(
1
p − 1

r

)
, then there exists some c > 0 and

for any ε > 0 some cε > 0 such that for all k ∈ N,

ck
− u

u−p

(
s
d − p

u ( 1
p − 1

r )
)

≤ ek
(
id :As

u,p,q(Ω) ↪→ Lr (Ω)
) ≤ cεk

− u
u−p

(
s
d − p

u

(
1
p − 1

r

))
+ε

.

(4.15)

Now we can strengthen our above compactness result Corollary 3.10 as follows.

Corollary 4.10 Let s ∈ R, 0 < p, q ≤ ∞ (with p < ∞ in case of A = F), 1 ≤ r <

∞, τ > 0. Assume that (3.34) is satisfied.

(i) If

τ <
1

p
, p < r , and (1 − pτ)

(
1

p
− 1

r

)
<

s

d
<

1

p
− 1

r
,

then there exists some c > 0 and for any ε > 0 some cε > 0 such that for all
k ∈ N,

ck
− 1

pτ

(
s
d −(1−pτ)

(
1
p − 1

r

))
≤ ek

(
id : As,τ

p,q (Ω) ↪→ Lr (Ω)
) ≤ cεk

− 1
pτ

(
s
d −(1−pτ)

(
1
p − 1

r

))
+ε

.

(ii) In all other cases admitted by (3.34), it holds

ek

(
id : As,τ

p,q(Ω) ↪→ Lr (Ω)
)

∼ k− s
d −(τ− 1

p )+ , k ∈ N.

Proof We apply Theorem 4.2 and follow otherwise exactly the same line of arguments,
in particular, with B0

r ,1(Ω) ↪→ Lr (Ω) ↪→ B0
r ,∞(Ω). ��

Remark 4.11 Note that we (only) have an influence of r when we are in the proper
Morrey case (0 < τ < 1

p ) and s is small enough.
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Remark 4.12 Due to their similarities, we do not present the special cases when the
source or the target space matches the classical spaces Bs

p,q and Fs
p,q , that is when

τ1 = 0 or τ2 = 0. However, we would like to remark that the result is not symmetric in
the sense that we have different results for both cases. Namely, when τ1 = 0, part (i)
of Theorem 4.2 is excluded, while for the case where τ2 = 0 both parts of the theorem
are relevant, naturally with the proper adaptations for this particular case.

5 Approximation numbers

Finally we briefly collect some partial results about approximation numbers of the
embedding idτ , recall their definition (2.24). Now we assume that Ω is a C∞ domain.
In [43] we obtained some first result for approximation numbers ak(idτ ) when the
target space was L∞(Ω): let p ∈ [2,∞] (with p < ∞ in the F-case), q ∈ (0,∞],
0 ≤ τ < 1

p and d( 1p − τ) < s < d( 1p − τ) + 1. Then

ak

(
id : As,τ

p,q(Ω) → L∞(Ω)
)

∼ k− s
d −τ+ 1

p , k ∈ N. (5.1)

In [16] we studied the situation for the embedding idA with the following result.

Proposition 5.1 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ui < ∞ or, in the case of
N -spaces, allow also pi = ui = ∞, i = 1, 2, with

s1 > s2, and p1 ≥ u2. (5.2)

Then
ak

(
idA :As1

u1,p1,q1(Ω) ↪→ As2
u2,p2,q2(Ω)

)
∼ k− s1−s2

d , k ∈ N. (5.3)

The aboveproposition coincideswith [16,Corollary 3.4(i)] apart from the casewhen
pi = ui = ∞ for i = 1 or i = 2. But this extension can easily be verified following
the short proof in [16]. We also refer to [1, Section 6] where also the periodic case and
more general Morrey type spaces were studied.

Now we give some partial counterpart of Theorem 4.2 in terms of approximation
numbers.

Corollary 5.2 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞ (with pi < ∞ in case of
A = F), τi ≥ 0, i = 1, 2. Assume that s1 − s2 > dγ (τ1, τ2, p1, p2) and, in addition,

(i) either τ1 ≥ 1
p1

,

(ii) or τi < 1
pi

, i = 1, 2, with s1 > s2 and τ2 ≤ 1
p2

− 1
p1

.

Then we obtain for the approximation numbers of the compact embedding

idτ : As1,τ1
p1,q1(Ω) ↪→ As2,τ2

p2,q2(Ω)

that

ak(idτ ) ∼ k
− s1−s2

d −
(
τ1− 1

p1

)
++

(
τ2− 1

p2

)
+ , k ∈ N. (5.4)
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Proof Step 1 We begin with case (i) and assume that τ1 ≥ 1
p1
, with q1 = ∞ when

τ1 = 1
p1
. In case of τ2 ≥ 1

p2
with q2 = ∞ when τ2 = 1

p2
, then we use classical Besov

space results,

ak

(
idτ : A

s1,τ1
p1,q1 (Ω) ↪→ A

s2,τ2
p2,q2 (Ω)

)
∼ ak

(
idB : B

s1+d
(
τ1− 1

p1

)
∞,∞ (Ω) ↪→ B

s2+d
(
τ2− 1

p2

)
∞,∞ (Ω)

)

∼ k
− s1−s2

d −
(
τ1− 1

p1

)
+
(
τ2− 1

p2

)
, k ∈ N,

in view of Proposition 2.7 and the corresponding approximation number result (2.28).
This proves (5.4) in this case.

If 0 ≤ τ2 < 1
p2
, then we proceed similar to Substep 2.2 of the proof of Theorem 4.2

and make use of the chains of embeddings (3.20) and (3.21). Therefore, we get

ak

(
idN :N s1+d

(
τ1− 1

p1

)
∞,∞,∞ (Ω) ↪→ N s2

u2,p2,∞(Ω)

)
� ak (idτ )

� ak

(
id :N s1+d

(
τ1− 1

p1

)
∞,∞,∞ (Ω) ↪→ As2

u2,p2,q2 (Ω)

)
,

which, in view of Proposition 5.1, leads to

ak(idτ ) ∼ k
− s1−s2

d −
(
τ1− 1

p1

)
, k ∈ N.

As for the case τ2 = 1
p2
, q2 < ∞, we can follow Substep 3.4 of the proof of

Theorem 4.2 and apply Proposition 5.1 instead of Theorem 4.1.

Step 2 Assume that τ1 = 1
p1

with q1 < ∞. Again we check our above proof of

Theorem4.2 andfind that Substep 3.1with Proposition 5.1 cover the case 0 < τ2 < 1
p2
,

while Substep 3.2 of that proof is related to the case τ2 ≥ 1
p2

with q2 = ∞ if τ2 = 1
p2
,

and Substep 3.5 concerns the situation when τ2 = 1
p2

with q2 < ∞. In the latter two
cases we benefit from (2.28).

Step 3We deal with (ii). In this case, we can apply (2.18) and Proposition 5.1 to obtain
the result for As,τ

p,q = Fs,τ
p,q . Otherwise we argue similarly as in Step 1 and, using (3.17)

and (3.18) this time, we get

ak

(
idN :N s1

u1,p1,q1(Ω) ↪→ N s2
u2,p2,∞(Ω)

)
� ak(idτ )

� ak

(
idN :N s1

u1,p1,∞(Ω) ↪→ N s2
u2,p2,q2(Ω)

)
,

where 1
ui

= 1
pi

− τi , i = 1, 2, as usual. Now we apply Proposition 5.1 (withA = N ),
under the additional assumptionsmade in (ii), and benefit again from the independence
of qi . ��
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Remark 5.3 It is obvious from the above proof, in particular in Steps 1 and 2, that we
could follow all the arguments of the proof of Theorem 4.2 to deal with the remaining
cases. However, in view of the additional restriction (5.2) in Proposition 5.1 and the
observation of p-dependence in (2.28) this leads to partial one-sided results only.

Remark 5.4 Note that one could reformulateCorollary 5.2 in terms of the hybrid spaces
Lr As

p,q(Ω) in the spirit of Remark 4.3. We leave it to the reader.

Finally we conclude a few special cases from Corollary 5.2 and start with the case
τ1 = τ2 = τ .

Corollary 5.5 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞ (with pi < ∞ in case of
A = F), i = 1, 2, and τ ≥ 0. Assume that (3.33) is satisfied and, in addition,

(i) either τ ≥ 1
p1

,

(ii) or τ < min
{

1
p1

, 1
p2

}
, with τ ≤ 1

p2
− 1

p1
.

Then we obtain for the approximation numbers of the compact embedding

idτ : As1,τ
p1,q1(Ω) ↪→ As2,τ

p2,q2(Ω)

that

ak(idτ ) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k
− s1−s2

d + 1
p1

− 1
p2 , if τ ≥ max

{
1
p1

, 1
p2

}
,

k
− s1−s2

d −τ+ 1
p1 , if 1

p2
> τ ≥ 1

p1
,

k− s1−s2
d , if τ < min

{
1
p1

, 1
p2

}
and τ ≤ 1

p2
− 1

p1
.

(5.5)

Next we consider the special target spaces Lr (Ω), 1 ≤ r ≤ ∞, and bmo(Ω).

Corollary 5.6 Let s ∈ R, 0 < p, q ≤ ∞ (with p < ∞ in case of A = F), and assume
that τ ≥ 1

p and s > d( 1p − τ). Then the approximation numbers of the compact

embeddings id : As,τ
p,q(Ω) ↪→ L∞(Ω) and id : As,τ

p,q(Ω) ↪→ bmo(Ω) behave like

ak

(
id : As,τ

p,q(Ω) ↪→ L∞(Ω)
)

∼ ak

(
id : As,τ

p,q(Ω) ↪→ bmo(Ω)
)

∼ k− s
d −τ+ 1

p , k ∈ N.

Remark 5.7 In our paper [43] we obtained already that

ak

(
id : As,τ

p,q(Ω) ↪→ L∞(Ω)
)

∼ k− s
d −τ+ 1

p , k ∈ N,

if 0 < p, q ≤ ∞ (with p < ∞ if A = F), ( 1p − 1
2 )+ ≤ τ < 1

p , and d( 1p − τ) < s <

d( 1p − τ) + 1 (please note the misprints in [43, Corollary 5.10]). So the above result

can be seen as some partial extension to the case when τ ≥ 1
p .

The partial counterpart of Corollary 4.10 reads as follows.

123



Compact embeddings in Besov-type and Triebel–Lizorkin… 793

Corollary 5.8 Let s ∈ R, 0 < p, q ≤ ∞ (with p < ∞ in case of A = F), 1 ≤ r < ∞,
τ ≥ 0. Assume that (3.34) is satisfied and, in addition, that

(i) either τ ≥ 1
p ,

(ii) or τ < 1
p ≤ 1

r .

Then we obtain that

ak(id : As,τ
p,q(Ω) ↪→ Lr (Ω)) ∼ k− s

d −(τ− 1
p )+ , k ∈ N.

Remark 5.9 Note that Corollaries 5.6 and 5.8 deal with situations where entropy and
approximation numbers show the same asymptotic behaviour, cf. Corollaries 4.8 and
4.10, which is in general not the case.
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