COMPACT EMBEDDINGS OF VECTOR-VALUED SOBOLEV AND BESOV SPACES

Herbert Amann
Universität Zürich, Switzerland
In memoriam Branko Najman

Abstract

The main result of this paper is a generalization and sharpening of the Aubin-Dubinskii lemma concerning compact subsets in vectorvalued Lebesque spaces. In addition, there are given some new embedding results for vector valued Besov spaces.

1. Introduction and Main Results

Let E, E_{0}, and E_{1} be Banach spaces such that

$$
\begin{equation*}
E_{1} \hookrightarrow E \hookrightarrow E_{0}, \tag{1.1}
\end{equation*}
$$

with \hookrightarrow and \hookrightarrow denoting continuous and compact embedding, respectively. Suppose that $p_{0}, p_{1} \in[1, \infty]$ and $T>0$, that

$$
\begin{equation*}
\mathcal{V} \text { is a bounded subset of } L_{p_{1}}\left((0, T), E_{1}\right) \text {, } \tag{1.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\partial \mathcal{V}:=\{\partial v ; v \in \mathcal{V}\} \text { is bounded in } L_{p_{0}}\left((0, T), E_{0}\right), \tag{1.3}
\end{equation*}
$$

where ∂ denotes the distributional derivative. Then the well-known 'Aubin lemma', more precisely, the 'Aubin-Dubinskii lemma' guarantees that
\mathcal{V} is relatively compact in $L_{p_{1}}((0, T), E)$.
This result is proven in [Aub63, Théorème 1] and also in [Lio69, Théorème I.5.1], provided E_{0} and E_{1} are reflexive and $p_{0}, p_{1} \in(1, \infty)$. It has also been derived by Dubinskii [Dub65] (see [Lio69, Théorème I.12.1]) with the same
restrictions for p_{0} and p_{1}, but without the reflexivity hypothesis. (In fact, Dubinskii proves a slightly more sophisticated theorem in which the $L_{p_{1}}$-norm in (1.2) is replaced by a more general functional.)

A proof of (1.4), given assumptions (1.2) and (1.3) only, is due to Si mon (see [Sim87, Corollary 4]). In fact, this author oberves that (1.3) can be replaced by

$$
\begin{equation*}
\lim _{h \rightarrow 0+}\|v(\cdot+h)-v\|_{L_{p_{1}}\left((0, T-h), E_{0}\right)}=0, \quad \text { uniformly for } v \in \mathcal{V} \tag{1.5}
\end{equation*}
$$

(see [Sim87, Theorem 5]). Note that the integrability exponents in (1.2) and (1.5) are equal.

Compactness theorems of 'Aubin-Dubinskii type' are very useful in the theory of nonlinear evolution equations and are employed in numerous research papers. Typical situations are as follows: $\left(u_{k}\right)$ is a sequence of approximate solutions to a given nonlinear evolution equation. If it is possible to bound this sequence in $L_{p_{1}}\left(X, E_{1}\right)$ and if one can bound the sequence $\left(\partial u_{k}\right)$ in $L_{p_{0}}\left(X, E_{0}\right)$, then the Aubin-Dubinskii lemma guarantees that one can extract a subsequence which converges in $L_{p_{1}}(X, E)$. If it is then possible to pass to the limit in the approximating problems, whose solutions are the u_{k}, and if the limiting equation coincides with the original evolution equation, then the existence of a solution to the original problem has been established (cf. [Lio69] for an exposition of this technique). In many concrete cases it is rather difficult, if not impossible, to pass to the limit in nonlinear equations if $\left(\partial u_{k}\right)$ is only known to converge in $L_{p_{1}}(X, E)$. Convergence in 'better spaces', whose elements are more regular (in space or in time), is needed. Even if convergence in $L_{p_{1}}(X, E)$ is sufficient, it is often important to know that the limiting element belongs to a space with more regularity.

It is the purpose of this paper to prove compact embedding theorems of 'Aubin-Dubinskii type' involving spaces of higher regularity. For this we observe that in most practical cases it is possible to squeeze an interpolation space between E and E_{1} (see Remark 7.4). Thus we replace assumption (1.1) by the slightly more restrictive condition:

$$
\begin{equation*}
E_{1} \hookrightarrow E_{0} \quad \text { and } \quad\left(E_{0}, E_{1}\right)_{\theta, 1} \hookrightarrow E \hookrightarrow E_{0} \text { for some } \theta \in(0,1) \tag{1.6}
\end{equation*}
$$

where $(\cdot, \cdot)_{\theta, q}$ denote the real interpolation functors (cf. [BL76] or [Tri78] for the basic facts of interpolation theory; also see [Ama95, Section I.2] for a summary). Note that the compactness assumption in (1.6) is weaker than the one in (1.1). Moreover, it is well-known that $\left(E_{0}, E_{1}\right)_{\theta, 1} \hookrightarrow E \hookrightarrow E_{0}$ iff $E_{1} \hookrightarrow E \hookrightarrow E_{0}$ and

$$
\|x\|_{E} \leq c\|x\|_{E_{0}}^{1-\theta}\|x\|_{E_{1}}^{\theta}, \quad x \in E_{1}
$$

(e.g., [BL76, Theorem 3.5.2] or [Tri78, Lemma 1.10.1]). Here and below c denotes positive constants which may differ from formula to formula. Intuitively, the parameter $1-\theta$ measures the 'distance' between E_{1} and E.

In order to formulate our main result involving assumptions (1.2) and (1.6) we need some notation. Throughout this paper it is always assumed that $p, p_{0}, p_{1} \in[1, \infty]$, unless explicit restrictions are given, and that $0<\theta<1$. Then

$$
\frac{1}{p_{\theta}}:=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}
$$

Given $s \in \mathbb{R}^{+}:=[0, \infty)$, we denote by $W_{p}^{s}((0, T), E)$ the Sobolev-Slobodeckii space of order s of E-valued distributions on $(0, T)$, which is defined in analogy to the scalar case (see Section 2). We also put $c^{0}([0, T], E):=C([0, T], E)$; and $c^{s}([0, T], E)$ is, for $0<s<1$, the Banach space of all s-Hölder-continuous E-valued functions on $[0, T]$ satisfying

$$
\lim _{r \rightarrow 0} \sup _{\substack{0<x, y<T \\ 0<|x-y|<r}} \frac{\|u(x)-u(y)\|}{|x-y|^{s}}=0
$$

the 'little Hölder space' of order s.

Theorem 1.1. Let (1.2) and (1.6) be satisfied. Suppose that either

$$
\begin{equation*}
s_{0}:=1 \quad \text { and } \quad \text { (1.3) is true } \tag{1.7}
\end{equation*}
$$

or

$$
\left.\begin{array}{l}
0<s_{0}<1, \quad p_{0} \leq p_{1}, \text { and } \tag{1.8}\\
\|v(\cdot+h)-v\|_{L_{p_{0}}\left((0, T-h), E_{0}\right)} \leq c h^{s_{0}}, \quad 0<h<T, \quad v \in \mathcal{V} .
\end{array}\right\}
$$

Then \mathcal{V} is relatively compact in
(1.9) $W_{p}^{s}((0, T), E) \quad$ if $0 \leq s<(1-\theta) s_{0}$ and $s-1 / p<(1-\theta) s_{0}-1 / p_{\theta}$, and in

$$
\begin{equation*}
c^{s}([0, T], E) \quad \text { if } 0 \leq s<(1-\theta) s_{0}-1 / p_{\theta} \tag{1.10}
\end{equation*}
$$

Let (1.2), (1.3), and (1.6) be satisfied. In [Sim87, Corollary 8] it is shown that \mathcal{V} is relatively compact in

$$
\begin{equation*}
L_{p}((0, T), E) \quad \text { if } 1-\theta \leq 1 / p_{\theta}<1 / p \tag{1.11}
\end{equation*}
$$

and in

$$
\begin{equation*}
C([0, T], E) \quad \text { if } 1-\theta>1 / p_{\theta} \tag{1.12}
\end{equation*}
$$

Note that (1.9) implies in this case that \mathcal{V} is relatively compact in $L_{p}((0, T), E)$ if

$$
1 / p_{\theta}-(1-\theta)<1 / p
$$

Hence we can admit values $p>p_{\theta}$ if $1-\theta<1 / p_{\theta}$, in contrast to (1.11) where $p<p_{\theta}$ is required. Furthermore, (1.9) implies in the present situation that
\mathcal{V} is relatively compact in

$$
W_{p_{\theta}}^{s}((0, T), E) \quad \text { if } 0 \leq s<1-\theta
$$

Since (1.10) shows that \mathcal{V} is relatively compact in $c^{s}([0, T], E)$ if $0 \leq s<1-\theta-1 / p_{\theta}$, we see that Theorem 1.1 is a substantial improvement over Simon's extension of the Aubin-Dubinskii lemma, provided condition (1.6) is satisfied.

In [Sim87, Theorem 7] it is also shown that \mathcal{V} is relatively compact in $L_{p_{\theta}}((0, T), E)$ if (1.2), (1.5), and (1.6) are true. Theorem 1.1 gives a considerable sharpening of this result, provided (1.5) is replaced by its quantitative version (1.8).

Suppose that V and H are Hilbert spaces such that $V \stackrel{d}{\hookrightarrow} H$. Then, identifying H with its (anti-)dual H^{\prime}, it follows that $V \stackrel{d}{\hookrightarrow} H \stackrel{d}{\hookrightarrow} V^{\prime}$. It is known (e.g., [LM72]) that $H=\left(V^{\prime}, V\right)_{1 / 2,2}$. Hence, letting $\left(E_{0}, E_{1}\right):=\left(V^{\prime}, V\right)$ and $E:=H$, condition (1.6) is satisfied with $\theta:=1 / 2$. Setting $p_{0}:=p_{1}:=2$, we infer from (1.9) that \mathcal{V} is relatively compact in $L_{p}((0, T), H)$ for $1 \leq p<\infty$. It is also known that \mathcal{V} is continuously - but not compactly - injected in $C([0, T], H)$ (see [Mig95]). This shows that Theorem 1.1 is sharp. It should be noted that Simon's result (1.11) guarantees only that \mathcal{V} is relatively compact in $L_{p}((0, T), H)$ for $1 \leq p<2$.

Theorem 1.1 is a special case of much more general results which are also valid if $(0, T)$ is replaced by a sufficiently regular bounded open subset of \mathbb{R}^{n}. Its proof is given in Section 5.

In the next section we introduce vector-valued Besov spaces on \mathbb{R}^{n} and recall some of their basic properties. In particular, we prove an interpolation theorem extending an earlier result due to Grisvard. In Section 4 we discuss vector-valued Besov spaces on X and prove compact embedding theorems for them. In Section 5 we derive an analogue of the Rellich-Kondrachov theorem for vector-valued Sobolev spaces on X as well as a compact embedding theorem for intersections of Sobolev-Slobodeckii spaces. The last section contains a renorming result for Sobolev-Slobodeckii spaces. We close this paper by commenting on the regularity assumptions for X.

We are indebted to E. Maître for bringing [Mig95] to our attention.

2. Some Function Spaces

Let X be an open subset of \mathbb{R}^{n}. Suppose that E is a Banach space, that $1 \leq p \leq \infty$, and $m \in \mathbb{N}$. Then the Sobolev space $W_{p}^{m}(X, E)$ is the Banach space of all $u \in L_{p}(X, E)$ such that the distributional derivatives $\partial^{\alpha} u$ belong to $L_{p}(X, E)$ for $|\alpha| \leq m$, endowed with the usual norm $\|\cdot\|_{m, p}$. Furthermore, $B U C^{m}(X, E)$ is the closed linear subspace of $W_{\infty}^{m}(X, E)$ consisting
of all u such that $\partial^{\alpha} u$ is bounded and uniformly continuous on X, that is, $\partial^{\alpha} u \in B U C(X, E)$, for $|\alpha| \leq m$.

$$
\text { If } 0<\theta<1 \text {, put }
$$

$$
[u]_{\theta, p}:= \begin{cases}{\left[\int_{X \times X}\left(\frac{\|u(x)-u(y)\|_{E}}{|x-y|^{\theta}}\right)^{p} \frac{d(x, y)}{|x-y|^{n}}\right]^{1 / p},} & p<\infty \\ \sup _{\substack{x, y \in X \\ x \neq y}} \frac{\|u(x)-u(y)\|_{E}}{|x-y|^{\theta}}, & p=\infty\end{cases}
$$

Then we set

$$
W_{p}^{m+\theta}(X, E):=\left(\left\{u \in W_{p}^{m}(X, E) ;\|u\|_{m+\theta, p}<\infty\right\},\|\cdot\|_{m+\theta, p}\right)
$$

where

$$
\|u\|_{m+\theta, p}:=\|u\|_{m, p}+\max _{|\alpha|=m}\left[\partial^{\alpha} u\right]_{\theta, p}
$$

If $p<\infty$ then $W_{p}^{m+\theta}(X, E)$ is a vector-valued Slobodeckii space, and

$$
W_{\infty}^{m+\theta}(X, E)=B U C^{m+\theta}(X, E)
$$

the subspace of $B U C^{m}(X, E)$ consisting of all u such that $\partial^{\alpha} u$ is uniformly θ-Hölder continuous for $|\alpha|=m$.

If $m>0$ and $0 \leq \theta<1$ then $W_{p}^{-m+\theta}(X, E)\left[\right.$ resp. $\left.B U C^{-m}(X, E)\right]$ is the Banach space of all E-valued distributions u on X having a representation

$$
u=\sum_{|\alpha| \leq m} \partial^{\alpha} u_{\alpha}
$$

with $u_{\alpha} \in W_{p}^{\theta}(X, E)\left[\right.$ resp. $\left.u_{\alpha} \in B U C^{\theta}(X, E)\right]$, equipped with the norm

$$
u \mapsto\|u\|_{-m+\theta, p}:=\inf \left(\sum_{|\alpha| \leq m}\left\|u_{\alpha}\right\|_{\theta, p}\right)
$$

the infimum being taken over all such representations, and p being equal to ∞ if $u_{\alpha} \in B U C^{\theta}(X, E)$. Thus the 'Sobolev-Slobodeckii scale' $W_{p}^{s}(X, E), s \in \mathbb{R}$, is well-defined for each $p \in[1, \infty]$, as is the 'Hölder scale' $B U C^{s}(X, E), s \in \mathbb{R}$. Moreover,
$\mathcal{D}(X, E) \hookrightarrow W_{p}^{s}(X, E) \cap B U C^{s}(X, E) \hookrightarrow W_{p}^{s}(X, E)+B U C^{s}(X, E) \hookrightarrow \mathcal{D}^{\prime}(X, E)$ for $s \in \mathbb{R}$. Here $\mathcal{D}(X, E)$ is the space of all E-valued test functions on X endowed with the usual inductive limit topology, and $\mathcal{D}^{\prime}(X, E)=\mathcal{L}(\mathcal{D}(X), E)$ is the space of E-valued distributions on X, with \mathcal{L} denoting the space of continuous linear maps, equipped with the topology of uniform convergence on bounded sets.

We also define the scale of 'little Hölder spaces' buc' $(X, E), \quad s \in \mathbb{R}$, by setting

$$
b u c^{m}(X, E):=B U C^{m}(X, E)
$$

and by denoting by

$$
b u c^{m+\theta}(X, E) \text { the closure of } B U C^{m+1}(X, E) \text { in } B U C^{m+\theta}(X, E)
$$

for $m \in \mathbb{Z}$ and $\theta \in(0,1)$. Then $u \in B U C^{m+\theta}(X, E)$ belongs to $b u c^{m+\theta}(X, E)$ iff

$$
\lim _{r \rightarrow 0} \sup _{\substack{x, y \in X \\ 0<|x-y|<r}} \frac{\left\|\partial^{\alpha} u(x)-\partial^{\alpha} u(y)\right\|_{E}}{|x-y|^{\theta}}=0, \quad|\alpha|=m
$$

(cf. [Lun95, Proposition 0.2.1], for example).
Throughout the remainder of this paper we suppose that
X is a smoothly bounded open subset of \mathbb{R}^{n},
which means that \bar{X} is a compact n-dimensional C^{∞}-submanifold of \mathbb{R}^{n} with boundary. This assumption is imposed for convenience and can be considerably relaxed (see the last paragraph of Section 7).

It follows that $B U C^{s}(X, E)=C^{s}(\bar{X}, E)$ for $s \in \mathbb{R}^{+}$by identifying $u \in B U C^{s}(X, E)$ with its unique continuous extension $\bar{u} \in C^{s}(\bar{X}, E)$. For this reason we put

$$
C^{s}(\bar{X}, E):=B U C^{s}(X, E), \quad c^{s}(\bar{X}, E):=b u c^{s}(X, E)
$$

for all $s \in \mathbb{R}$.
Henceforth, we always suppose that E, E_{0}, and E_{1} are complex Banach spaces. The real case can be covered by complexification. We also suppose that $s, s_{0}, s_{1} \in \mathbb{R}$ and put $s_{\theta}:=(1-\theta) s_{0}+\theta s_{1}$.

3. Besov Spaces on \mathbb{R}^{n}

Fix a radial $\psi:=\psi_{0} \in \mathcal{D}\left(\mathbb{R}^{n}\right):=\mathcal{D}\left(\mathbb{R}^{n}, \mathbb{C}\right)$ with $\psi(\xi)=1$ for $|\xi|<1$ and $\psi(\xi)=0$ for $|\xi| \geq 2$. Put

$$
\psi_{k}(\xi):=\psi\left(2^{-k} \xi\right)-\psi\left(2^{-k+1} \xi\right), \quad \xi \in \mathbb{R}^{n}, \quad k \in \mathbb{N} \backslash\{0\}
$$

and $\psi_{k}(D):=\mathcal{F}^{-1} \psi_{k} \mathcal{F}$, where \mathcal{F} is the Fourier transform on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}, E\right):=$ $\mathcal{L}\left(\mathcal{S}\left(\mathbb{R}^{n}\right), E\right)$ and $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is the Schwartz space of rapidly decreasing smooth functions on \mathbb{R}^{n}. Then the Besov space $B_{p, q}^{s}\left(\mathbb{R}^{n}, E\right)$ of E-valued distributions on \mathbb{R}^{n} is defined to be the vector subspace of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}, E\right)$ consisting of all u satisfying

$$
\|u\|_{s, p, q}:=\left\|\left(2^{s k}\left\|\psi_{k}(D)\right\|_{L_{p}\left(\mathbb{R}^{n}, E\right)}\right)_{k \in \mathbb{N}}\right\|_{\ell_{q}}<\infty
$$

It is a Banach space with this norm, and different choices of ψ lead to equivalent norms.

In this section we simply write \mathfrak{F} for $\mathfrak{F}\left(\mathbb{R}^{n}, E\right)$ if the latter is a locally convex space of E-valued distributions on \mathbb{R}^{n}, that is, $\mathfrak{F}\left(\mathbb{R}^{n}, E\right) \hookrightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}, E\right)$, and no confusion seems likely.

It follows that

$$
\begin{equation*}
\mathcal{S} \hookrightarrow B_{p, q_{1}}^{s_{1}} \hookrightarrow B_{p, q_{0}}^{s_{0}} \hookrightarrow \mathcal{S}^{\prime}, \quad s_{1}>s_{0} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{p, q_{0}}^{s} \hookrightarrow B_{p, q_{1}}^{s}, \quad q_{0}<q_{1} \tag{3.2}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
B_{p_{1}, q}^{s_{1}} \hookrightarrow B_{p_{0}, q}^{s_{0}}, \quad s_{1}>s_{0}, \quad s_{1}-n / p_{1}=s_{0}-n / p_{0} \tag{3.3}
\end{equation*}
$$

Besov spaces are stable under real interpolation, that is, if $0<\theta<1$ then

$$
\begin{equation*}
\left(B_{p, q_{0}}^{s_{0}}, B_{p, q_{1}}^{s_{1}}\right)_{\theta, q} \doteq B_{p, q}^{s_{\theta}}, \quad s_{0} \neq s_{1} \tag{3.4}
\end{equation*}
$$

They are related to Slobodeckii and Hölder spaces by

$$
\begin{equation*}
B_{p, p}^{s} \doteq W_{p}^{s}, \quad s \in \mathbb{R} \backslash \mathbb{Z} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{p, 1}^{m} \hookrightarrow W_{p}^{m} \hookrightarrow B_{p, \infty}^{m}, \quad m \in \mathbb{Z}, \quad p<\infty \tag{3.6}
\end{equation*}
$$

Moreover, $B_{p, p}^{m} \neq W_{p}^{m}$ for $m \in \mathbb{Z}$ unless $p=2$ and E is a Hilbert space. Note that (3.4)-(3.6) imply

$$
\begin{equation*}
\left(W_{p}^{s_{0}}, W_{p}^{s_{1}}\right)_{\theta, q} \doteq B_{p, q}^{s_{\theta}}, \quad s_{0} \neq s_{1}, \quad p<\infty \tag{3.7}
\end{equation*}
$$

It is also true that

$$
\begin{equation*}
B_{\infty, 1}^{m} \hookrightarrow B U C^{m} \hookrightarrow B_{\infty, \infty}^{m}, \quad m \in \mathbb{Z} \tag{3.8}
\end{equation*}
$$

and $B_{\infty, \infty}^{m}$ is the Zygmund space \mathcal{C}^{m} for $m \in \mathbb{N} \backslash\{0\}$ (e.g., [Tri83] for the scalar case). Hence we infer from (3.4) and (3.5) that

$$
\begin{equation*}
\left(B U C^{s_{0}}, B U C^{s_{1}}\right)_{\theta, q} \doteq B_{\infty, q}^{s_{\theta}} \tag{3.9}
\end{equation*}
$$

The definition and the above properties of vector-valued Besov spaces are literally the same as in the scalar case (for which we refer to [Tri78], [Tri83], [Tri92], and [BL76]). The proofs carry over from the scalar to the vectorvalued setting by employing the Fourier multiplier theorem of Propostion 4.5 of [Ama97]. A detailed and coherent treatment containing many additional results will be given in [Ama99]. For earlier (partial) results and different approaches we refer to [Gri66], [Sch86], and [Tri97, Section 15], as well as to the other references cited in [Ama97]. Embedding theorems for vector-valued Besov and Slobodeckii spaces on an interval are also derived in [Sim90], but with s, s_{0}, and s_{1} restricted to the interval $[0,1]$.

We define the little Besov space $b_{p, q}^{s}$ to be the closure of $B_{p, q}^{s+1}$ in $B_{p, q}^{s}$. Then

$$
b_{p, q}^{s}:= \begin{cases}B_{p, q}^{s}, & p \vee q<\infty, \tag{3.10}\\ b u c^{s}, & p=\mathbb{R} \\ b=\infty, & s \in \mathbb{R} \backslash \mathbb{Z}\end{cases}
$$

and

$$
\begin{equation*}
b_{p, q}^{s} \text { is the closure of } B_{p, q}^{t} \text { in } B_{p, q}^{s} \text { for } t>s \tag{3.11}
\end{equation*}
$$

(see [Ama97, Propositions 5.3 and 5.4 and Remark 5.5(b)] and [Ama99]). Denoting by $\stackrel{d}{\hookrightarrow}$ dense embedding, it follows that

$$
\begin{equation*}
\mathcal{S} \stackrel{d}{\hookrightarrow} B_{p, q_{1}}^{s_{1}} \stackrel{d}{\hookrightarrow} B_{p, q_{0}}^{s_{0}} \stackrel{d}{\hookrightarrow} b_{p, \infty}^{s_{0}} \stackrel{d}{\hookrightarrow} \mathcal{S}^{\prime}, \quad p<\infty, \tag{3.12}
\end{equation*}
$$

if either $s_{1}=s_{0}$ and $1 \leq q_{1} \leq q_{0}<\infty$, or $s_{1}>s_{0}$ and $q_{0} \vee q_{1}<\infty$ (see [Ama97, Remark 5.5(a)]).

The following interpolation theorem for vector-valued Besov spaces will be of particular importance for us.

Theorem 3.1. Let $\left(E_{0}, E_{1}\right)$ be an interpolation couple and suppose that $s_{0} \neq s_{1}$ and $p_{0}, p_{1}, q_{0}, q_{1} \in[1, \infty)$. Then

$$
\left(B_{p_{0}, q_{0}}^{s_{0}}\left(\mathbb{R}^{n}, E_{0}\right), B_{p_{1}, q_{1}}^{s_{1}}\left(\mathbb{R}^{n}, E_{1}\right)\right)_{\theta, q_{\theta}} \doteq B_{p_{\theta}, q_{\theta}}^{s_{\theta}}\left(\mathbb{R}^{n},\left(E_{0}, E_{1}\right)_{\theta, q_{\theta}}\right)
$$

provided $p_{\theta}=q_{\theta}$.
Proof. We denote by $\ell_{q}^{s}(E)$ the subspace of $E^{\mathbb{N}}$ consisting of all $u=\left(u_{k}\right)$ satisfying

$$
\|u\|_{\ell_{q}^{s}(E)}:=\left\|\left(2^{s k} u_{k}\right)_{k \in \mathbb{N}}\right\|_{\ell_{q}}<\infty .
$$

It is a Banach space with this norm. If $\left(F_{0}, F_{1}\right)$ is an interpolation couple then

$$
\begin{equation*}
\left(\ell_{q_{0}}^{s_{0}}\left(F_{0}\right), \ell_{q_{1}}^{s_{1}}\left(F_{1}\right)\right)_{\theta, q_{\theta}} \doteq \ell_{q_{\theta}}^{s_{\theta}}\left(\left(F_{0}, F_{1}\right)_{\theta, q_{\theta}}\right) \tag{3.13}
\end{equation*}
$$

(e.g., [BL76, Theorem 5.6.2] or [Tri78, Theorem 1.18.1]). Furthermore ([Tri78, Theorem 1.18.4]),

$$
\begin{equation*}
\left(L_{p_{0}}\left(\mathbb{R}^{n}, E_{0}\right), L_{p_{1}}\left(\mathbb{R}^{n}, E_{1}\right)\right)_{\theta, p_{\theta}} \doteq L_{p_{\theta}}\left(\mathbb{R}^{n},\left(E_{0}, E_{1}\right)_{\theta, p_{\theta}}\right) \tag{3.14}
\end{equation*}
$$

From [Ama97, Lemma 5.1] we know that $B_{p, q}^{s}$ is a retract of $\ell_{q}^{s}\left(L_{p}\right)$. Hence the assertion follows from (3.13), (3.14), and [Tri78, Theorem 1.2.4] or [Ama95, Proposition I.2.3.2].

Theorem 3.1 generalizes a result of Grisvard [Gri66, formula (6.9) on p. 179] who considers the case $p_{j}=q_{j}$ and $n=1$. It should be noted that Grisvard's proof does not extend to $n>1$ since, in general, $W_{p}^{m}\left(\mathbb{R}^{n}, E\right)$ is not isomorphic to $L_{p}\left(\mathbb{R}^{n}, E\right)$.

4. Besov Spaces on X

We denote by $r_{\bar{X}} \in \mathcal{L}\left(C\left(\mathbb{R}^{n}, E\right), C(\bar{X}, E)\right)$ the operator of point-wise restriction, $u \mapsto u \mid \bar{X}$, and recall that $r_{X} \in \mathcal{L}\left(\mathcal{D}^{\prime}\left(\mathbb{R}^{n}, E\right), \mathcal{D}^{\prime}(X, E)\right)$ is the restriction operator in the sense of distribution, that is,

$$
r_{X} u(\varphi):=u(\varphi), \quad u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}, E\right), \quad \varphi \in \mathcal{D}(X)
$$

Observe that coretractions for $r_{\bar{X}}$ and r_{X} are extension operators.
The following extension theorem is of basic importance for the study of spaces of distributions on X. Here and below we set

$$
\mathcal{W}_{p}^{s}(Y, E):= \begin{cases}W_{p}^{s}(Y, E), & p<\infty \\ B U C^{s}(Y, E), & p=\infty\end{cases}
$$

for $s \in \mathbb{R}$ and $Y \in\left\{\mathbb{R}^{n}, X\right\}$.
ThEOREM 4.1. r_{X} is a retraction from $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}, E\right)$ onto $\mathcal{D}^{\prime}(X, E)$ and there exists a coretraction e_{X} for r_{X} which is independent of E. Moreover, $r_{X} \supset r_{\bar{X}}$, and r_{X} belongs to

$$
\begin{aligned}
\mathcal{L}\left(\mathcal{S}\left(\mathbb{R}^{n}, E\right), C^{\infty}(\bar{X}, E)\right) & \cap \mathcal{L}\left(\mathcal{W}_{p}^{s}\left(\mathbb{R}^{n}, E\right), \mathcal{W}_{p}^{s}(X, E)\right) \\
& \cap \mathcal{L}\left(b u c^{s}\left(\mathbb{R}^{n}, E\right), c^{s}(\bar{X}, E)\right)
\end{aligned}
$$

Furthermore, e_{X} is an element of

$$
\begin{aligned}
\mathcal{L}\left(C^{\infty}(\bar{X}, E), \mathcal{S}\left(\mathbb{R}^{n}, E\right)\right) & \cap \mathcal{L}\left(\mathcal{W}_{p}^{s}(X, E), \mathcal{W}_{p}^{s}\left(\mathbb{R}^{n}, E\right)\right) \\
& \cap \mathcal{L}\left(c^{s}(\bar{X}, E), b u c^{s}\left(\mathbb{R}^{n}, E\right)\right),
\end{aligned}
$$

and it is a coretraction for r_{X} in each case.
Proof. By a standard partition of unity argument the proof is reduced to establishing a corresponding statement if X is replaced by a half-space of \mathbb{R}^{n}. In this case the theorem is deduced by constructing an extension operator along the lines of [Ham75, Part II]. For details and generalizations we refer to [Ama99].

Now we define the Besov spaces of E-valued distributions on X by

$$
B_{p, q}^{s}(X, E):=r_{X} B_{p, q}^{s}\left(\mathbb{R}^{n}, E\right),
$$

equipped with the obvious quotient space topology.
Proposition 4.2. r_{X} is a retraction from $B_{p, q}^{s}\left(\mathbb{R}^{n}, E\right)$ onto $B_{p, q}^{s}(X, E)$ and e_{X} is a corresponding coretraction.

Proof. Fix $s_{0}<s<s_{1}$ and put $\theta:=\left(s-s_{0}\right) /\left(s_{1}-s_{0}\right)$. Then

$$
\left(\mathcal{W}_{p}^{s_{0}}\left(\mathbb{R}^{n}, E\right), \mathcal{W}_{p}^{s_{1}}\left(\mathbb{R}^{n}, E\right),\right)_{\theta, q} \doteq B_{p, q}^{s}\left(\mathbb{R}^{n}, E\right)
$$

thanks to (3.7) and (3.9). By Theorem 4.1 the diagrams of continuous linear maps

$$
\mathcal{W}_{p}^{s_{j}}\left(\mathbb{R}^{n}, E\right) \xrightarrow{r_{X}} \mathcal{W}_{p}^{s_{j}}(X, E)
$$

are commutative. Hence the assertion follows by interpolation.

Corollary 4.3. Assertions (3.1)-(3.12) as well as Theorem 3.1 remain valid if \mathbb{R}^{n} is replaced by X, provided we substitute $C^{\infty}(\bar{X}, E)$ and $\mathcal{D}^{\prime}(X, E)$ for \mathcal{S} and \mathcal{S}^{\prime}, respectively.

Proof. This is deduced from Proposition 4.2 by standard arguments.
In the following (4.x), where $\mathrm{x} \in\{1, \ldots, 12\}$, denotes the analogue of formula (3.x) with \mathbb{R}^{n} replaced by X, as well as \mathcal{S} and \mathcal{S}^{\prime} replaced by $C^{\infty}(\bar{X}, E)$ and $\mathcal{D}^{\prime}(X, E)$, respectively.

Now it is easy to prove the following compact embedding theorem.

Theorem 4.4. Suppose that $E_{1} c E_{0}$. Then

$$
B_{p, q}^{s_{1}}\left(X, E_{1}\right) c B_{p, q}^{s_{0}}\left(X, E_{0}\right), \quad s_{1}>s_{0}
$$

Proof. Fix $\sigma_{0}<s_{0}<s_{1}<\sigma_{1}$ and $\sigma \in(0,1)$ such that $\sigma_{0}<0$ and $\sigma<\sigma_{1}-n / p$. Then we infer from (4.1)-(4.3) and (4.5), (4.6) that

$$
B_{p, q}^{\sigma_{1}}\left(X, E_{1}\right) \hookrightarrow B_{\infty, \infty}^{\sigma_{1}-n / p}\left(X, E_{1}\right) \hookrightarrow C^{\sigma}\left(\bar{X}, E_{1}\right)
$$

and

$$
C\left(\bar{X}, E_{0}\right) \hookrightarrow L_{p}\left(X, E_{0}\right) \hookrightarrow B_{p, q}^{\sigma_{0}}\left(X, E_{0}\right) .
$$

Since, by the Arzéla-Ascoli theorem, $C^{\sigma}\left(\bar{X}, E_{1}\right)$ is compactly embedded in $C\left(\bar{X}, E_{0}\right)$, it follows that $B_{p, q}^{\sigma_{1}}\left(X, E_{1}\right) \hookrightarrow B_{p, q}^{\sigma_{0}}\left(X, E_{0}\right)$. Now the assertion is a consequence of (4.4) and the Lions-Peetre compactness theorem for the real interpolation method.

Corollary 4.5. (i) Suppose that $E_{1} \hookrightarrow E_{0}$. If $s_{1}>s_{0}$ and $s_{1}-n / p_{1}>$ $s_{0}-n / p_{0}$ then

$$
B_{p_{1}, q_{1}}^{s_{1}}\left(X, E_{1}\right) \hookrightarrow b_{p_{0}, q_{0}}^{s_{0}}\left(X, E_{0}\right) .
$$

(ii) Suppose that

$$
E_{1} \hookrightarrow E_{0} \quad \text { and } \quad\left(E_{0}, E_{1}\right)_{\theta, p_{\theta}} \hookrightarrow E
$$

If $s_{\theta}>s$ and $s_{\theta}-n / p_{\theta}>s-n / p$ then

$$
B_{p_{0}, q_{0}}^{s_{0}}\left(X, E_{0}\right) \cap B_{p_{1}, q_{1}}^{s_{1}}\left(X, E_{1}\right) \hookrightarrow b_{p, q}^{s}(X, E) .
$$

Proof. (i) Since X is bounded, it is obvious that

$$
C^{m}(\bar{X}, E) \hookrightarrow W_{p}^{m}(X, E) \hookrightarrow W_{\bar{p}}^{m}(X, E), \quad 1 \leq \bar{p}<p, \quad m \in \mathbb{Z}
$$

Thus it is an easy consequence of (4.1), (4.5), (4.7), and (4.9) that

$$
B_{p, q}^{s}(X, E) \hookrightarrow B_{\bar{p}, q}^{s}(X, E), \quad 1 \leq \bar{p}<p
$$

Fix $p \in\left[1, p_{1}\right]$ and $s \in\left(s_{0}, s_{1}\right)$ such that $t:=s-n\left(1 / p-1 / p_{0}\right)<s$ and suppose that $s_{0}<\sigma<\tau<t$. Then we infer from (4.1)-(4.3), Theorem 4.4, and the above embedding that

$$
\begin{aligned}
B_{p_{1}, q_{1}}^{s_{1}}\left(X, E_{1}\right) \hookrightarrow B_{p, q_{1}}^{s}\left(X, E_{1}\right) & \hookrightarrow B_{p_{0}, q_{1}}^{t}\left(X, E_{1}\right) \hookrightarrow B_{p_{0}, q_{0}}^{\tau}\left(X, E_{1}\right) \\
& \hookrightarrow B_{p_{0}, q_{0}}^{\sigma}\left(X, E_{0}\right) \hookrightarrow b_{p_{0}, q_{0}}^{s_{0}}\left(X, E_{0}\right)
\end{aligned}
$$

where the last embedding follows from (4.11).
(ii) Fix $\sigma_{j}<s_{j}$ such that $s-n / p<\sigma_{\theta}-n / p_{\theta}$. Then

$$
B_{p_{0}, q_{0}}^{s_{0}}\left(X, E_{0}\right) \cap B_{p_{1}, q_{1}}^{s_{1}}\left(X, E_{1}\right) \hookrightarrow B_{p_{0}, p_{0}}^{\sigma_{0}}\left(X, E_{0}\right) \cap B_{p_{1}, p_{1}}^{\sigma_{1}}\left(X, E_{1}\right)
$$

Since

$$
B_{p_{0}, p_{0}}^{\sigma_{0}}\left(X, E_{0}\right) \cap B_{p_{1}, p_{1}}^{\sigma_{1}}\left(X, E_{1}\right) \hookrightarrow B_{p_{j}, p_{j}}^{\sigma_{j}}\left(X, E_{j}\right), \quad j=0,1
$$

interpolation gives

$$
\begin{aligned}
B_{p_{0}, p_{0}}^{\sigma_{0}}\left(X, E_{0}\right) \cap B_{p_{1}, p_{1}}^{\sigma_{1}}\left(X, E_{1}\right) & \hookrightarrow \\
& \left.=B_{p_{\theta}, p_{\theta}}^{\sigma_{p_{\theta}, p_{0}}^{\sigma_{0}}}\left(X,\left(E_{0}, E_{1}\right)_{\theta, p_{\theta}}^{\sigma_{0}}\right), B_{p_{1}, p_{1}}^{\sigma_{1}}\left(X, E_{1}\right)\right)_{\theta, p_{\theta}}
\end{aligned}
$$

where the last equality follows from Theorem 3.1 and Corollary 4.3. Now it suffices to apply (i). [

5. Sobolev-Slobodeckil Spaces on X

As an easy consequence of the preceding results we obtain the following vector-valued version of the Rellich-Kondrachov theorem.

THEOREM 5.1. Suppose that $E_{1} \hookrightarrow E_{0}$. If $s_{1}>s_{0}$ and $s_{1}-n / p_{1}>s_{0}-n / p_{0}$ then

$$
W_{p_{1}}^{s_{1}}\left(X, E_{1}\right) \hookrightarrow W_{p_{0}}^{s_{0}}\left(X, E_{0}\right)
$$

If $0 \leq s<s_{1}-n / p_{1}$ then

$$
W_{p_{1}}^{s_{1}}\left(X, E_{1}\right) \hookrightarrow c^{s}\left(\bar{X}, E_{0}\right) .
$$

Proof. Fix $\sigma_{0}, \sigma_{1} \in\left(s_{0}, s_{1}\right)$ with $\sigma_{1}>\sigma_{0}$ such that $\sigma_{1}-n / p_{1}>\sigma_{0}-n / p_{0}$. Then (4.5), (4.6), and Corollary 4.5(i) imply

$$
W_{p_{1}}^{s_{1}}\left(X, E_{1}\right) \hookrightarrow B_{p_{1}, p_{1}}^{\sigma_{1}}\left(X, E_{1}\right) \hookrightarrow b_{p_{0}, p_{0}}^{\sigma_{0}}\left(X, E_{0}\right) .
$$

Now the assertion follows from (4.10) and (4.5).
It is also easy to prove a compact embedding theorem involving intersections of Sobolev-Slobodeckii spaces as well as interpolation spaces E_{θ}.

Theorem 5.2. Suppose that

$$
\begin{equation*}
E_{1} \hookrightarrow E_{0} \quad \text { and } \quad\left(E_{0}, E_{1}\right)_{\theta, p_{\theta}} \hookrightarrow E \hookrightarrow E_{0} . \tag{5.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
W_{p_{0}}^{s_{0}}\left(X, E_{0}\right) \cap W_{p_{1}}^{s_{1}}\left(X, E_{1}\right) \hookrightarrow W_{p}^{s}(X, E), \tag{5.2}
\end{equation*}
$$

provided

$$
\begin{equation*}
s<s_{\theta} \quad \text { and } \quad s-n / p<s_{\theta}-n / p_{\theta} . \tag{5.3}
\end{equation*}
$$

If $0 \leq s<s_{\theta}-n / p_{\theta}$ then

$$
\begin{equation*}
W_{p_{0}}^{s_{0}}\left(X, E_{0}\right) \cap W_{p_{1}}^{s_{1}}\left(X, E_{1}\right) \hookrightarrow c^{s}(\bar{X}, E) \tag{5.4}
\end{equation*}
$$

Proof. Since $E_{1} \hookrightarrow E_{0}$, interpolation theory guarantees that

$$
E_{1} \hookrightarrow\left(E_{0}, E_{1}\right)_{\vartheta, p_{\vartheta}} c\left(E_{0}, E_{1}\right)_{\theta, 1}, \quad \theta<\vartheta<1 .
$$

Hence (4.2) and the second part of (5.1) show that $\left(E_{0}, E_{1}\right)_{\vartheta, p_{\vartheta}} \hookrightarrow E$. Fix $\vartheta \in(\theta, 1)$ sufficiently close to θ such that $s-n / p<s_{\vartheta}-n / p_{\vartheta}$ if (5.3) holds, and such that $s<p_{\vartheta}-n / p_{\vartheta}$ if $s_{\theta}-n / p_{\theta}>0$. Now the assertion is an easy consequence of Corollary 4.5 (ii) and (4.1), (4.5), and (4.6).

Remarks 5.3.
(a) Suppose that H is a Hilbert space. Then u belongs to $W_{2}^{s}\left(\mathbb{R}^{n}, H\right)$, where $s \in \mathbb{R}^{+}$, iff $u \in L_{2}\left(\mathbb{R}^{n}, H\right)$ and

$$
\left(\xi \mapsto|\xi|^{2 s} \widehat{u}(\xi)\right) \in L_{2}\left(\mathbb{R}^{n}, H\right)
$$

with \widehat{u} denoting the Fourier transform of u. Thus assumption (5.1), modulo Theorem 5.2, generalizes a result of J.-L. Lions (cf. [Lio61, Théorème IV.2.2] and [Lio69, Théorème I.5.2]), who considers the case $n=1, p=2$, and $s_{1}=0$ with E, E_{0}, and E_{1} being Hilbert spaces satisfying $E_{1} \hookrightarrow E \hookrightarrow E_{0}$.
(b) Theorem 1.1 also improves Corollary 9 of [Sim87] which, for $n=1$, guarantees the validity of (5.2)-(5.4) for $s=0$.
(c) Observe that there are no sign restrictions for s, s_{0}, and s_{1} in (5.3). Hence the first part of Theorem 5.2 is also valid if $s_{0}<0$, for example. In this connection it is important to know that, similarly as in the scalar case, Sobolev-Slobodeckii spaces of negative order can be characterized by duality.

More precisely: Denote by $\dot{W}_{p}^{s}(X, E)$ the closure of $\mathcal{D}(X, E)$ in $W_{p}^{s}(X, E)$. Then, given a reflexive Banach space F,

$$
W_{p}^{-s}(X, F) \doteq\left[\dot{W}_{p^{\prime}}^{s}\left(X, F^{\prime}\right)\right]^{\prime}, \quad 1<p<\infty
$$

and

$$
W_{1}^{-s}(X, F) \doteq\left[c^{s}\left(\bar{X}, F^{\prime}\right)\right]^{\prime}, \quad s \in \mathbb{R}^{+} \backslash \mathbb{N}
$$

with respect to the duality pairing induced by

$$
\begin{equation*}
\left\langle u^{\prime}, u\right\rangle:=\int_{X}\left\langle u^{\prime}(x), u(x)\right\rangle_{F^{\prime}} d x, \quad u, u^{\prime} \in \mathcal{D}(X, E) \tag{5.5}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{F^{\prime}}: F \times F^{\prime} \rightarrow \mathbb{K}$ is the duality pairing between F and F^{\prime}.
Consequently, if $1<p<\infty$ then a subset \mathcal{V} of $W_{p}^{-s}(X, F)$ is bounded iff there exists a constant c such that

$$
\begin{equation*}
|\langle v, \varphi\rangle| \leq c\|\varphi\|_{s, p^{\prime}}, \quad \varphi \in \mathcal{D}\left(X, F^{\prime}\right), \quad v \in \mathcal{V} \tag{5.6}
\end{equation*}
$$

Similarly, a subset \mathcal{V} of $W_{1}^{-s}(X, F)$ is bounded iff (5.6) holds for all $\varphi \in C^{\infty}\left(\bar{X}, F^{\prime}\right)$. In concrete situations, estimates of this type are often rather easy to establish.

Proof. Note that (5.5) extends by continuity from $\mathcal{D}(X, F) \times \mathcal{D}\left(X, F^{\prime}\right)$ to a bilinear form on $W_{p}^{-s}(X, F) \times W_{p^{\prime}}^{s}\left(X, F^{\prime}\right)$ and from $\mathcal{D}(X, F) \times C^{\infty}\left(\bar{X}, F^{\prime}\right)$ to such a form on $W_{1}^{-s}(X, F) \times c^{s}\left(\bar{X}, F^{\prime}\right)$. For a proof of the duality assertions we refer to [Ama99, Chapter VII]. \quad]
(d) Suppose that (5.1) is satisfied and $\alpha \in \mathbb{N}^{n}$. Then

$$
\partial^{\alpha}: W_{p_{0}}^{s_{0}}\left(X, E_{0}\right) \cap W_{p_{1}}^{s_{1}}\left(X, E_{1}\right) \rightarrow W_{p}^{s}(X, E) \text { compactly }
$$

provided

$$
s<s_{\theta} \quad \text { and } \quad s-n / p<s_{\theta}-|\alpha|-n / p_{\theta} .
$$

If $0 \leq s<s_{\theta}-|\alpha|-n / p_{\theta}$ then

$$
\partial^{\alpha}: W_{p_{0}}^{s_{0}}\left(X, E_{0}\right) \cap W_{p_{1}}^{s_{1}}\left(X, E_{1}\right) \rightarrow c^{s}(\bar{X}, E) \text { compactly }
$$

This generalizes Théorème 2 of [Aub63] as well as Simon's extension of it [Sim87, Corollary 10].

Proof. Since

$$
\partial^{\alpha} \in \mathcal{L}\left(W_{p_{0}}^{s_{0}}\left(X, E_{0}\right) \cap W_{p_{1}}^{s_{1}}\left(X, E_{1}\right), W_{p_{0}}^{s_{0}-|\alpha|}\left(X, E_{0}\right) \cap W_{p_{1}}^{s_{1}-|\alpha|}\left(X, E_{1}\right)\right)
$$

the assertion follows from Theorem 5.2.

6. Proof of Theorem 1.1

In order to derive Theorem 1.1 from the preceding results we need some preparation.

Lemma 6.1. Set

$$
V:=V_{p_{0}, p_{1}}\left(E_{0}, E_{1}\right):=\left\{v \in L_{p_{1}}\left((0, T), E_{1}\right) ; \partial v \in L_{p_{0}}\left((0, T), E_{0}\right)\right\}
$$

Then $V \doteq W_{p_{0}}^{1}\left((0, T), E_{0}\right) \cap L_{p_{1}}\left((0, T), E_{1}\right)$.
Proof. It is clear that V is a Banach space and that

$$
W_{p_{0}}^{1}\left((0, T), E_{0}\right) \cap L_{p_{1}}\left((0, T), E_{1}\right) \hookrightarrow V
$$

Moreover,

$$
V \hookrightarrow C\left([0, T], E_{0}\right) \hookrightarrow L_{p_{0}}\left((0, T), E_{0}\right)
$$

where we refer to [Tri78, Lemma 1.8.1], for example, for a proof of the first embedding. Now the assertion is obvious.

Put $X_{h}:=X \cap(X-h)$ for $h \in \mathbb{R}^{n}$ and suppose that $p<\infty$. Also set

$$
[u]_{\theta, p, \infty}:=\sup _{\substack{h \in \mathbb{R}^{n} \\ h \neq 0}} \frac{\|u(\cdot+h)-u\|_{L_{p}\left(X_{h}, E\right)}}{|h|^{\theta}}
$$

and, given $m \in \mathbb{N}$,
$N_{p}^{m+\theta}(X, E):=\left(\left\{u \in L_{p}(X, E) ;\left[\partial^{\alpha} u\right]_{\theta, p, \infty}<\infty,|\alpha|=m\right\},\|\cdot\|_{m+\theta, p, \infty}\right)$,
where

$$
\|u\|_{m+\theta, p, \infty}:=\|u\|_{p}+\max _{|\alpha|=m}\left[\partial^{\alpha} u\right]_{\theta, p, \infty}
$$

Then $N_{p}^{s}(X, E), s \in \mathbb{R}^{+} \backslash \mathbb{N}$, are the Nikol'skii spaces of E-valued distributions on X. The proof for the scalar case (e.g., [Tri78, Section 2.5.1]) carries over to the vector-valued case to show that

$$
\begin{equation*}
N_{p}^{s}(X, E) \doteq B_{p, \infty}^{s}(X, E), \quad s \in \mathbb{R}^{+} \backslash \mathbb{N} \tag{6.1}
\end{equation*}
$$

(cf. [Ama99, Section VII.3].
Proof of Theorem 1.1. Clearly, we can assume that $p_{0} \vee p_{1}<\infty$.
Let (1.7) be satisfied. Then (1.2), (1.3), and Lemma 6.1 imply that \mathcal{V} is bounded in $W_{p_{0}}^{1}\left((0, T), E_{0}\right) \cap L_{p_{1}}\left((0, T), E_{1}\right)$. Hence the assertion is entailed by Theorem 5.2.

Suppose that assumption (1.8) is fulfilled. Then (6.1) shows that \mathcal{V} is bounded in $B_{p_{0}, \infty}^{s_{0}}\left((0, T), E_{0}\right)$. Hence it is bounded in $B_{p_{0}, \infty}^{s_{0}}\left((0, T), E_{0}\right)$ $\cap L_{p_{1}}\left((0, T), E_{1}\right)$ by (1.6). Thus (4.1) and (4.6) imply that \mathcal{V} is bounded in $B_{p_{0}, \infty}^{s_{0}}\left((0, T), E_{0}\right) \cap B_{p_{1}, p_{1}}^{s_{1}}\left((0, T), E_{1}\right)$ for each $s_{1}<0$. Now the assertion follows from Corollary 4.5 (ii) by means of the arguments used in the proof of Theorem 5.2. प

7. Final Remarks

So far we have not put any restriction, like reflexivity for example, on the Banach spaces under consideration. However, in order to prove an n-dimensional analogue to Lemma 6.1 we need such an additional assumption. For this we recall that a Banach space F is a UMD space if the Hilbert transform is a continuous self-map of $L_{2}\left(\mathbb{R}^{n}, F\right)$. Every UMD space is reflexive (but not conversely), and every Hilbert space is a UMD space. The class of UMD spaces enjoys many useful permanence properties. For example, each closed subspace of a UMD space is again a UMD space. For details and more information we refer to [Ama95, Subsection III.4.5].

Example 7.1. Suppose that Ω is an open subset of some euclidean space. Then $W_{p}^{s}(\Omega)$ and every closed linear subspace thereof are UMD spaces, provided $1<p<\infty$.

Proof. If $m \in \mathbb{N}$ then $W_{p}^{m}(\Omega)$ is well-known to be isomorphic to a closed linear subspace of the M-fold product of $L_{p}(\Omega)$, where $M:=\sum_{|\alpha| \leq m} 1$. Hence $W_{p}^{m}(\Omega)$ is a UMD space by Theorem III.4.5.2 in [Ama95]. Consequently, $\dot{W}_{p}^{m}(\Omega)$ is a UMD space as well. Thus $W_{p}^{-m}(\Omega)=\left[\dot{W}_{p^{\prime}}^{m}(\Omega)\right]^{\prime}$ is also a UMD space, as follows from part (v) of Theorem III.4.5.2 in [Ama95]. Finally, part (vii) of that theorem, together with (3.5) and (3.7), implies the assertion. ■

If F is a UMD space then the Sobolev-Slobodeckii spaces $W_{p}^{s}(X, F)$ possess essentially the same properties as their scalar ancestors, provided $1<p<\infty$. This is seen, for example, by the following proposition.

Proposition 7.2. Suppose that F is a UMD space and $1<p<\infty$. Then, given $s \in \mathbb{R}$ and $m \in \mathbb{N}$,

$$
u \mapsto\|u\|_{s, p}+\sum_{|\alpha|=m}\left\|\partial^{\alpha} u\right\|_{s, p}
$$

is an equivalent norm for $W_{p}^{s+m}(X, F)$.
Proof. If F is a UMD space then Mikhlin's multiplier theorem is valid in $L_{p}\left(\mathbb{R}^{n}, F\right)$ for $1<p<\infty$ (and scalar symbols) (e.g., [Ama95, Theorem III.4.4.3]). Thus the well-known proof for scalar Sobolev spaces extends to the vector-valued setting in this case.

Corollary 7.3. Suppose that E_{0} is a UMD space and $1<p_{0}<\infty$. Then $W_{p_{0}}^{m}\left(X, E_{0}\right) \cap L_{p_{1}}\left(X, E_{1}\right)=\left\{u \in L_{p_{1}}\left(X, E_{1}\right) ; \partial^{\alpha} u \in L_{p_{0}}\left(X, E_{0}\right),|\alpha|=m\right\}$ for $m \in \mathbb{N}$ and $1 \leq p_{1} \leq \infty$.

Lastly, we show that, in practice, the assumption that we can squeeze an interpolation space between E and E_{1} is no serious restriction. In other words: in most applications assumption (1.6) is satisfied.

Remark 7.4. In concrete applications it is most often the case that $E_{j}:=W_{r_{j}}^{\sigma_{j}}(\Omega)$ for $j=0,1$ and $E:=W_{r}^{\sigma}(\Omega)$, where Ω is a bounded smooth open subset of $\mathbb{R}^{d}, \quad \sigma_{0}$ and σ_{1} are real numbers with $\sigma_{0}<\sigma<\sigma_{1}$, and $r, r_{0}, r_{1} \in[1, \infty)$. Thanks to the classical Rellich-Kondrachov theorem $E_{1} \hookrightarrow E_{0}$. Suppose that $\sigma_{0}-d / r_{0}<\sigma-d / r<\sigma_{1}-d / r_{1}$. Fix $\vartheta \in(0,1)$ such that

$$
\sigma-d / r<\sigma_{\vartheta}-d / r_{\vartheta}<\sigma_{1}-d / r_{1}, \quad \sigma<\sigma_{\vartheta}<\sigma_{1}
$$

and $\sigma_{\vartheta} \notin \mathbb{Z}$. Then we infer from (4.1) and (4.7) that

$$
E_{1} \hookrightarrow\left(E_{0}, E_{1}\right)_{\vartheta, 1} \hookrightarrow\left(E_{0}, E_{1}\right)_{\vartheta, r_{\vartheta}} \doteq W_{r_{\vartheta}}^{\sigma_{\vartheta}}(\Omega) \hookrightarrow E,
$$

since, by making σ_{1} slightly smaller and σ_{0} slightly bigger, if necessary, we can suppose that $W_{r_{j}}^{\sigma_{j}}(\Omega)=B_{r_{j}, r_{j}}^{\sigma_{j}}(\Omega)$ for $j=0,1$.

For simplicity, we presupposed throughout that X be smooth. However, everything remains valid if we drop this hypothesis and assume instead that r_{X} possesses a coretraction with the properties stated in Theorem 4.1. This is known to be the case for a much wider class of subdomains of \mathbb{R}^{n}. We do not go into detail but refer to [Ama99]. The same observation applies to Ω, of course.

References

[Ama95] H. Amann, Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory, Birkhäuser, Basel, 1995.
[Ama97] H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186 (1997), 5-56.
[Ama99] H. Amann, Linear and Quasilinear Parabolic Problems, Volume II: Function Spaces and Linear Differential Operators, 1999. In preparation.
[Aub63] J.-P. Aubin, Un théorème de compacité, C.R. Acad. Sc. Paris, 256 (1963), 50425044.
[BL76] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer Verlag, Berlin, 1976.
[Dub65] J.A. Dubinskii, Weak convergence for elliptic and parabolic equations (Russian), Math. USSR Sbornik, 67 (1965), 609-642.
[Gri66] P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications. J. Math. Pures Appl., 45 (1966), 143-290.
[Ham75] R. Hamilton, Harmonic Maps on Manifolds with Boundary, Lecture Notes in Math. \#471, Springer Verlag, New York, 1975.
[Lio61] J.-L. Lions, Equations Différentielles Opérationelles et Problèmes aux Limites, Springer Verlag, Berlin, 1961.
[Lio69] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, 1969.
[LM72] J.-L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, Springer Verlag, Berlin, 1972.
[Lun95] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Equations, Birkhäuser, Basel, 1995.
[Mig95] S. Migorski, A counterexample to a compact embedding theorem for functions with values in a Hilbert space, Proc. Amer. Math. Soc., 123 (1995), 2447-2449.
[Sch86] H.-J. Schmeisser, Vector-valued Sobolev and Besov spaces, In Sem. Analysis 1985/86, pages 4-44. Teubner Texte Math. 96, 1986.
[Sim87] J. Simon, Compact sets in the space $L^{p}(0, T ; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
[Sim90] J. Simon, Sobolev, Besov and Nikolskii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval, Ann. Mat. Pura Appl., 157 (1990), 117-148.
[Tri78] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978.
[Tri83] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
[Tri92] H. Triebel, Function Spaces II, Birkhäuser, Basel, 1992.
[Tri97] H. Triebel, Fractals and Spectra Related to Fourier Analysis and Function Spaces, Birkhäuser, Basel, 1997.

Institut für Mathematik
Universität Zürich
Winterthurerstr. 190
CH-8057 Zürich
Switzerland
E-mail: amann@math.unizh.ch
Received: 15.05.98
Revised: 25.09.98

