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Compact ergodic groups of automorphisms

by

R. Hgegh-Krohn M.B. Landstad
University of Oslo University of Trondheim

E. Stgrmer
University of 0Oslo

Abstract. It is shown that if G is a compact ergodic
group of *-automorphisms on a unital C¥*-algebra A
then the unique G-invariant state is a trace. Hence

if A is a von Neumann algebra then it is finite.



Compact ergodic groups of automorphisms

by

R. Hgegh-Krohn, M.B. Landstad, and E. Stgrmer

1. Introduction. Let A be a unital C*-algebra, G a compact

group and a a strongly continuous representation of G as an
ergodic group of *-automorphisms of A, 1i.e. ag(x) = x for all
g €6 implies x 1is a scalar operator. It was shown in [9] that
if G 1is abelian and A a von Neumann algebra then A 1is auto-
matically finite and the (necessarily unique) G-invariant state is
a trace. Since then it has been an open problem whether the same
is true without the assumption that G be abelian, see the intro-
duction to [6]. In the present paper we solve this problem to the
affirmative by showing that if G acts ergodically on the unital
C*¥-algebra A , then the G-invariant state is a trace. In the
course of the proof of thetheorem it will be shown that if D is an
irreducible representation of G and A(D) the corresponding
spectral subspace in A , see below, then the multiplicity of D
in A(D) is not greater than the dimension of D . A consequence
of this is that if G is second countable acting on a C*-algebra
then the action is cyclic if and only if it is ergodic.

The problem solved in this paper immediately raises the problem
of classification of compact ergodic actions on C*- or von Neumann
algebras. If G 1s abelian this has been done completely in [1]
and [6], and we can from those examples find nonabelian finite
extensions of abelian ergodic actions on the hyperfinite IL,-factor.

Another construction is to let for each positive integer i, Gi be



an ergodic compact group of automorphisms on the complex n, xn,
matrices, and then let the product group G = ;E1Gi act on the
infinite tensor product of the matrix algebrasLin the obvious way.
Then the GNS-representation due to the trace gives rise to an
ergodic action of ‘G on the hyperfinite factor. This is as far
as we can go at present and we leave two basic problems open:

(1) If a compact group acts ergodically on a I,-factor M, is M
hyperfinite ? (2) Find an example of a simple compact group
acting ergodically on a ET—factor.

Many thanks go to our colleagues L.T. Gardner, C. Skau,

T. Skjelbred, and T. Sund for their many helpful comments during

our preparations of this paper.

2. Compact ergodic groups. Let A be a unital C*—algebra, G a

compact group, and suppose o 1s a strongly continuous representa-
tion of G as *-automorphisms of A ,so g-+ag(x) is norm contin-
uous for all x €A . We assume the action is ergodic on A, i.e.
ag(x) = x for all g € G only if x 1is a scalar operator. Then
for each x € A, fug(x)dg is a scalar operator w(x)1 ;, where dg
is the normalized Haar measure on G . o so defined is the unique
G-invariant state on A .

If £ € LI(G) we denote by «(f) the operator on A defined
by

a(f)(x) = !f(g)ag(x)dg .

Let D be an irreducible unitary representation of G and Xp its

normalized character xD(g) dim D Tr(Dél) » where Tr is the usual

trace on the Hilbert space of dimension dim D. Then a(xD) is a



projection of A onto a norm closed subspace A(D) of A called

the spectral subspace of D in A, see [3]. By [11, s4.4.2] A(D)

is the set of x € A such that the linear span of ag(x),_g € G, is
finite dimensional and splits into a direct sum of irreducible compo-

nents all unitarily equivalent to D .

Proposition 2.1. Let A be a unital C*-algebra, G a compact

group and a & strongly continuous representation of G as an
ergodic group of *-automorphisms of A . Let D be an irreducible
unitary representation of G, A(D) the spectral subspace of D in

A and m(D) the multiplicity of D in A(D) . Then we have’
(1) m(D) < d.

(ii) dim A(D) < d2

Proof. If E 1is an irreducible unitary representation of G either
a has no subrepresentation equivalent toc E or there is an irre-
ducible subspace VE of A such that a[VE is equivalent to E .
Then VE c A(E) , as follows from the characterization of A(E) given

above. Let D be as in the proposition. We may assume VD # 0 .

Consider A as imbedded in the Hilbert space obtained in the

GNS-representation due to the invariant state o . Thus (a,b) = w(b*a)
is the inner product on A . Let d = dimD. Then we can choose
@ 5. e5dy in VD so they form an orthonormal basis for VD . Then
the map PD defined by
d
PD(a) = I (a,ai)ai
i=1

is a projection of A onto VD , and since w 1s G-invariant

ag(PD(a)) = PD(ag(a)) for all a € A . Thus the subspace




(1—PD)(A(D)) cf A, 1 denoting the identity map, is a closed
G-invariant subspace of A orthogonal to Vo o If (1-PD)(A(D)) %0
it contains an irreducible subspace Ve [7], and E is unitarily
equivalent to D . Considering Py +PE we have found a norm contin-
uous projection onto VD +VE » and we can do this for any finite set
" of irreducible representations Di equivalent to D, such )
that the spaces VD are palilrwise mutually orthogonal.

We flx now a flnlte set J of unitarily equivalent irreducible

representations D;>...5Dy such that their irreducible subspaces

VDk of A(D) are nonzero and pairwise mutually orthogonal. We
shall show N < d , which will prove the proposition.

Choose asq € VDk , 1=1, ,d , so that they form an ortho-
normal basis for VD , and such that they have the same action

under G, i.e. there is an irreducible unitary representation

g (urs(g)) of G 1into the complex d xd matrices My satisfying

d
2.1 ag(aik) = j§1ul](g)a P k € J.

For each pair j,k € J we have

d

: * - - *
= I u (8l aX (g)a
i,r,s r] “is
- *
- g %p3 %pk
Since G 1is ergodic I a. is a scalar operator, the scalar
i 1] ik
being found by the computation
(an = Xla.,, ,a;:) = £ 8., = &..4d.
w ij 1k) 7 ik’7i3 7 3k jk
Thus we have shown
. d . .
(2.2) i§1 aijaik = ij d1 , .k € J .



Similarly we can find complex numbers cjk such that
d % )
(2.3) £ a = c., d1 , j,k € J.

.. a.
3121 1 ik Jjk

} is clearly self-adjoint, so we can find

The N xN matrix (c.
, Jk
a unitary N xN matrix (ars) such that
3 8 j.k € J
z a C, . = 8., A. , J»
1,m=1 k1 "1Im "jm Jk 7]
. . N , N
with A; € R. Let a.. = X o:_ 4a:, . Then a.,. € X Vpy , and
| 1] k=1 K ik 1] k=1
N
they form an orthonormal basis for ¥ VDk . Note that
' k=1
o (a;.) = g u. (gla!
..) = . a_ .,
g ij pzq i¥ r]
as is easily computed, hence we may replace a.. by Ar: 51=7500.,d,

ij ij
j €J, and still have that (2.1) is satisfied. We shall therefore

do this and thus assume (2.1), (2.2), and the diagonal form of (2.3)

d

-~ E:3 - N
(2.4) i§1aij asy = ijxj a1 , j.k € 7,
where Aj € R. Trom (2.4) it is clear that Aj > 0.

Denote by e the dxd matrix operator
e = { Ia; a;k} € AeM,, 1,j € {1,...,d}.

Clearly e is self-adjoint, and by (2.2) it satisfies

e? = | g g a.,a®*a .arX} ={ g a.. a. d} = de
kst1 g=q ik TskTsl Til7 7 oq ik T3k - ’

Hence e =dp with p a projection, in particular 0 <e<d 1.
Let 1 denote the normalized trace on Md . Then we t is a

state on Ae Md’ so by (2.4) we have

.1 N d
(2.5) d>wet(e) = a1 ¥ wlsx *) o=



We next assert that
* _ .
(2.6) w(aik ajl) = ‘Sij 611 Mk o i,j €{1,...,d}, k,1 €J .
i J : R . * .- i
Indeed, fix k,1 €J , and let Bl] w(alk.a]l). Then (813) is
a dxd matrix which by (2.1) satisfies
d *
= Y ou. .
S§1uis(g)ssj w(;lﬁs(g)askajl)
z @ . X
w‘“g(alk)ajl)
- ' *
= w(aik ug_l(ajl) )
= gﬁis usj(g).
Therefore the matrix (Bij) commutes with (uis(g)) for all g€ G.
Since the representation g - (uis(g)) is irreducible (Bij) is a
scalar operator, so (2.6} follows from (2.4).
Now consider the conjugate representation D to D . Since

a € A(E) 4if and only if

presentation, it is immediate from the definition of

a € A(D) if and only if

then {bi. ti=1,0..,4,

]

a(xE)(a) = a for E an irreducible re-
a(xE) that
k = . _ % %
a” € A(D) . Thus by (2.6) if bij —Aj a;;
j €J} form an orthonormal set in A(D) '

for which (2.1) is replaced by

) =

ong(bik

d
j§1uijzg)bjk'

Since g + (uij(g5) is irreducible the space spanned by

{bik t1=1,...,d}

our previous discussion for D

the b.. .
1]

d
(2.7) z

i=1

is irreducible in

*
bssbiy

A(D) for each k € J . Thus

and the a.. 1is valid for D and

i]

We have in particular by the equations (2.2) -(2.5)

= 84y n ik €7,



N
where My 0 and X My < d . Computing we find by (2.2)
351
m(gb b.¥) = aTlu(za.¥a..) = Azt a
SORE & (e & RO Ha b & T & R B

i
so that My = Ag and thevrefore

N
(2.8) Y A. < d.

Since x#+x ! > 2 whenever x>0 we have by (2.5) and (2.8) that
N
2

2N < (A.+A51) < 2d, so that N < d, as we wanted to show.

T 3= Q.E.D.

Let A, G, and o be as in Proposition 2.1. Representing A

in the GNS-representation defined by the G-invariant state ¢ we
b y

may assume w(a) = (ag;,g,) for some cyclic vector £, for A in
the Hilbert space. Furthermore there is a continuous unitary repre-

sentation g » u_ of 6 on H such that a« (a) = u_au.’ and
g g £ g

uggo =g, forall g€G, a € A. Since w 1is the unigque G-in-
variant state on A, w 1is the unique normal G-invariant state on
the weak closure A~ of A, hence by [5], G is ergodic on A~

és well as A . Since the support projection for « 1is a G-invari-
ant projection in A , it is 1, hence « is faithful on A~ , and

£, 1s a separating vector for A . Let A denote the modular

operator for £y with respect to A , and J the corresponding

1 -
conjugation, s0 a*go = Ja*ag, for all a € A", see [10]. By [8]
ugA = Aug and Jug = ugJ » € € G, hence in particular the finite

1
dimensional subspace A(D)EO is invariant under the action of A2,

so under A , recall A(D)g, = {IXD(g)ug adg £,: a€ A}. By equation

N
(2.6) we have with N = m(D) , so z V_k = A(D) ,

- —

A *® *
(hags8gsayq8y) = (378,525580) = 85y 85725

Aj(aijgo’aklgo)'




Hence aijgo is an eigenvector for A with eigenvalue Aj . Hence

we have from (2.5) and (2.8)

Corollary 2.2. Let A, G, a, D be as in Proposition 2.1. Let g

be the cyclic vector in the GNS-representation defined by the G-
invariant state w . Then &, is separating for A" , and if &

is its modular operator then A leaves the finite dimensional vector
space A(D)g, dinvariant. If A is an eigenvalue for A|A(D)g,

then both A < dimD and A ' < dimD.

We shall also need the probably well known observation

Lemma 2.3. Let M be a von Neumann algebra and G an ergodic group

of *-automorphisms of M . Suppose V 1is a nonzero globally G-
invariant linear subspace of M. If x € M, denoteby r(x) and
s(x) respectively the range and support projections of x . Then
we have

v r(x) = v s({x) =1

XeV x€ev

Proof. If o is a *-automorphism of M then o is ultraweakly

continuous, so by the construction of r(x) by spectral theory on

the positive operator xx* , we see that a(r(x)) = r(a(x)) for

x € M. Thus ¥ r(x) and v s{x) are nonzero G-invariant projec-
x€V x€eV

tions in ™M , hence are equal to 1 by ergodcity.
Q.E.D.



3. Tensor representations. In this section we shall apply Herman

Weyl's classical theory for representations of groups, to obtain

estimates for the dimensions of irreducible subspaces of powers of

G~invariant subspaces of an ergodic group & .

If V is a finite dimensional complex vector space we denote

by V(m) the tensor product Ve®ese®V (m times). If ¢ is a

representation of a group G on V , m has a corresponding repre-

sentation " of G on V(m) defined by 7(g) = m{g) @0« @n(g)

Lemma 3.1. Let V be a finite dimensional complex vector space
with dimV = n. Consider Gl(n,L) as acting on V and consider
the corresponding representation of G1(n,C) on V(m) = Veerd V.
Then any irreducible subspace U of V(m) satisfies
n(n=-1>
dimU < (1+m) 2 .
Proof. Let = denote the representation of Gl(n,f) on V. By
[2, p.192] we can decompose the representation =™ of Gl(n,C) on
V(m) into irreducible components as follows:
vim - s 1, D,
Aptesetd =m
where A = (Al,...,kn) 5 Ai is a nonnegative integer for each

i€{1,-l95nj5

_ m! _ T s
l}\ = T—}T;]— 3 hij = 1+>\i+)\j (l+]) N
. i,]
and i. is the number of boxes in the jth column in the Young

3
tableau corresponding to A [2, p.192, eq. (23)1]. lx D, means that
the irreducible representation DA is repeated lA times, and DA
is the irreducible representation of G1l(n,C) with highest weight

A = ()\135903}\n) .
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Set now 1. = xj +n-j and 1; = n=j . Then the Weyl formula,
see [2, p. 283, eq. (32)] gives that
mn(l.-1.
. j_<j( 1 J)
dlmDA =
mo(19-1%)
i<j 1 3
Hence
P n(n-1)
dimD, = I (1+——=2) < (14m) 2
. . i-7J -
1<i<jsn

Proposition 3.2. Let G be a group of *-automorphisms on a C*-

algebra A, and suppose V 1is a finite dimensional linear subspace
of A which is globally invariant under G . Let dimV = n , ahd
let for m €N, V' denote the linear subspace of A generated by
products of m elements in V . Then v™ is again globally invari-
and under G , and for each subspace U c y™ globally invariant and

irreducible under the action of G we have

n(n-1)

dimU < (1+m) z

Proof. Let g be the representation of 6 on V and 7% the

corresponding representation on V(m) .

(m)

Let jm be the m-linear
map of V onto V™ given by

Jm(x1 ® oo @xm) = Xpeeexp
Then jm intertwines the representation ™ and the action of G
on V& , l.e.

j_om™g) = m(g)oj g €G

m 7" m °? ’

(m)

Therefore jm takes invariant subspaces of V onto invariant
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subspaces of v™ .  Since the dimension of the image of a subspace

is not greater than the dimension of the subspace, it suffices to

show that for any invariant subspace U of V(m) irreducible under
the action of 7"(G) we have dimU < (1+m)ﬂ£%:ll.

Denote by 1 the representation of 61l(n,) on V , and W
the corresponding representation on V(m) . Then %8 < {™G1(n,)) .

By Lemma 3.1 any irreducible invariant subspace for 1m(Gl(n,¢)) has dimension

n(n-1)
at most (1+m) 2 . Hence any subgroup and especially 7(G)

also has the property that any irreducible invariant subspace has dimension

n(n-1) n(n-1)
at most (1+m) 2 . Thus dimU < (1+m) 2
: Q.E.D.
4. The main results.
Theorem 4.1. Let A be a unital C*-algebra, G a compact group,

and o a strongly continuous representation of G as an ergodic

group of *-automorphisms of A . Then the unique G-invariant state

on A 1is a trace.

Proof. ©Since G 1is compact A is generated by the spectral sub-
spaces A(D) , as D runs through the irreducible unitary represen-

tations of G [7]. Thus it suffices to show that each A(D) is



contained in the centralizer of the invariant state, or equivalently
by Corollary 2.2 and [10], to show that all the eigenvalues of A
restricted to A(D)g, are equal to 1, g, being the G-invariant
separating and cyclic vector in the GNS-representation due to the
invariant state. Suppose A is one of them. By Corollary 2.2 we

may assume A > 1. Let V be a G-invariant subspace of A(D)

1"

such that Aagb rag, for all a € V and such that V 1is irredu-

cible under the action of G . This is possible since Aug = ugA

for all g € G. For each m€IN, if v" is the space generated

by products of m elements in V , for each a € v, ag, is an

. . . m . . .
eigenvector for A with eligenvalue A , as 1s easily seen since

y > Alt yA-lt is an automorphism of the weak closure of A . Since

G 1is ergodic an easy induction argument based on Lemma 2.3 shows

that V™ # 0, and by Proposition 3.2 each subspace U of v

which is globaily invariant and irreducible under the action of G

n{n=-1)
has dimension dimU < (1+4m) 2 — , where n =dimV . By Corollary
o - n(n-1)
2.2 A™ <dimU, hence A" < (1+m) 2 . Thus
. n(n-1
0 < loghr 2 —=—" log (1+m) ,

which is arbitrarily small for large m, so that logi = 0, and
A = 1. Since A was an arbitrary eigenvalue for A restricted
to an arbitrary subspace A(D)g, with D an irreducible represen-
tation of G, Ao =1, and s is a trace vector for A .
Q.E.D.
If M 4is a von Neumann algebra, G a topological group and
o a representation if G as *-automorphisms of M, we say o 1is
continuous if g - p(ag(x)) is continuous on G for each p € M, ,

X € M.
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Corollary 4.2, Let M be a von Neumann algebra and G a compact

group. If there is a continuous representation of G as an ergodic

group of *—automorphisms on M then M 1is finite.

Proof. It is well known that the set A of x € M such that the

function g+agoo is norm continuous on G is a C¥*-algebra globally

invariant under G and weakly dense in M. Let ww be a normal
G-invariant state on M. Then w|A is G-invariant, hence is a
trace by Theorem 4.1. By density of A in M, w 1is a trace on M.
Since by ergodicity w is faithful, M 1is finite. Q.E.D.

The next result is a generalization of Corollary 4.2 and shows
that compact automorphism groups in general have very large fixed

point algebras.

Corollary 4.3. Let M be a von Neumann algebra of type I, G a

compact group, and a a continuous representation of G as *-auto-

G

morphisms of M . Then the fixed point algebra M~ of G in M

contains no minimal projections.

Proof. MG = {x eM :ag(x) =x, g €G} . Suppose to the contrary that

e 1is a nonzero minimal projection in MG . Then G acts ergodically
on the reduced algebra Me by ag(exe) = eag(x)e . By Corollary 4.2

Me is finite contradicting the fact that it is of type TII since

M 1s. Q.E.D.

Let A be a C*-algebra, G a group, and a a representation
of G as *-automorphisms of A . Suppose w is a G-invariant

state. We say o 1is cyclic with respect to w if there is x € A
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such that m(yag(x)) = 0 for all g € G implies y = 0. We shall
see below that if G is compact and o is a continuous represen-
tation of G as an ergodic group, then cyclicity of G means that
the orbit of XE, under G 1in the GNS-representation due to the

unique G-invariant trace, is dense in the Hilbert space.

Lemma 4.4. Let A be a unital C¥*-algebra, G a compact group
and o a strongly continuous representation of -G as *-automor-
phisms of A . Suppose w 1is a G-invariant state such that o
is cyclic with respect to w . Then a 1is an ergodic representa-
tion, and w is the unique G-invariant state.

G

Proof. Let A denote the fixed point algebra of G in A . Since

G 1is compact the adjoint of the map
y + § a_(y)dg
c &

G

of A onto A defines an affine isomorphism between the G-invari-

ant states of A and the state space of AG . Suppose there is

x € A such that w(yag(x)) = 0 for all g € G dimplies y = 0.

G

Then if y € A~ we have w(yag(x)) = m(aél(y)x) = wl(yx) , so the

functional vy -+ w(yx) is injective on AG . But this is only

G

- -l . g
possible 1f A is the scalars. Q.E.D.

The next theorem is a direct analogue for representations of
compact groups as *-automorphisms on C*ualgebras, of a result of

Greenleaf and Moskowitz on unitary representations on Hilbert space

[47.
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Theorem 4.5. Let A be a unital C*-algebra and G a second

countable compact group. Suppose a is a strongly continuous
representation of G as *-automorphisms of A . Then o is an
ergodic representation if and only if o 1s cyclic with respect

to some G-invariant state.

Proof. By Lemma 4.4 we only have to show that if o is ergodic
and w 1is the unique G-invariant state, then a 1is cyclic with
respect to w . By Proposition 2.1 if D is an irreducible repre-
sentation of G then its multiplicity in the spectral subspace A(D)
of A 1is not greater than dimD . Thus there is Xy € A(D) of
norm one such that the linear span of ag(xD) » £ € G, equals A(D) .
Indeed, in the notation of the proof of Proposition 2.1 we may
choose xD=302%2)aii for a suitable scalar ¢ >0 . Since G 1is
second countable and compact its dual G is countable, hence there
is a countable number of spectral subspaces A(D) . Number them by
A(Dk) s, kEN . Tor each k choose ka € A(Dk) of norm one as
above, and let x = k§1 Z-kka (if G is finite let the sum be
finite). Then ||x|l< 1 and x € A. We show that the linear span
of the orbit of XEq s &y being the G-invariant separating and
cyclic vector in the GNS-representation due to w , is dense in the
underlying Hilbert space H , hence in particular that o 1is cyclic
with respect to w .

Let & €H satisfy (E,ag(x)go) = 0 for.all g € G. Let u
denote the unitary representation of G on H such that
uga.ug1= ag(a) and uggo = g, for all ge€G, ac€A. Let D
be an irreducible representation of G and Xp the corresponding

normalized character. Then u(xD) = IXD(g)ug dg is the orthogonal

projection of H onto the subspace A(D)g, . Let D = D, be omne
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of the irreducible representations described above. Then
alxp)(x) = 2% . Let h €6, then alxy)(a (x)E, € ADIE, ,

hence we have

(U(XD)E, uhngo) = (E,u(xD)uh xD£0)

2°(g,a(xp)ay, (x)&,)

1]

2 xp(8) (E,ra y (x)E)dg
=0

by assumption on & . Since span{uhﬁng :heG} = A(D)EO,

0
u(xD)E = 0 for each D = D, . Since the subspaces A(Dk)r—;0 are

mutually orthogonal and spanH, & = ;

u(xn Y8 = 0.
k=1 Pk

Q.E.D.



10.

11.
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