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Abstract

Routing on the Internet is policy-based, meaning that each node is free to decide how to assign

costs to paths. This freedom is important since the nodes are autonomous, competing organiza-

tions whose path preferences may be dictated by external factors (such as economic or political)

rather than simply by path length. Although shortest-path routing is well-understood, little is

known about the complexity of policy routing. The only known algorithms for policy routing

use routing trees – for each destination, construct a routing tree and forward packets along it.

A negative result of Griffin et al. shows that routing tree-based algorithms (including the

Internet routing algorithm, BGP) may not converge when arbitrary policies are used, and de-

ciding whether they will is NP-complete. Yet there are no better algorithms known for policy

routing; one possible reason is that the problem is much harder than shortest-path routing.

We study the complexity of policy routing with forbidden-set policies – each node specifies

a set of forbidden nodes and wants to route on paths that avoid them. We begin by proving

some new intractability results and reviewing known ones about routing tree-based algorithms.

We show that routing trees are both impractical (they may not exist) and intractable (deciding if

they exist is NP-complete) for forbidden-set policies on tree-like networks. We also prove the

first communication complexity results for deciding if stable routing trees exist – for general

policies, we show that communication exponential in the network size is needed. This implies

that routing trees are a bad choice, even for some simple policy routing problems.

We describe the first compact forbidden-set routing schemes that do not suffer from non-

convergence. For degree-d n-node graphs of treewidth t, our schemes use space Õ(t2d) bits per

node; a trivial scheme uses O(n2) and routing trees use Õ(n) per node1. We also show how to do

forbidden-set routing on planar graphs between nodes whose distance is less than a parameter l.
We prove a lower bound on the space requirements of forbidden-set routing for general graphs,

and show that the problem is related to constructing an efficient distributed representation of all

the separators of an undirected graph. Finally, we consider routing while taking into account

path costs of intermediate nodes and show that this requires large routing labels. We also study

a novel way of approximating forbidden-set routing using quotient graphs of low treewidth.

1These results have since been improved and extended [CT07]
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CHAPTER 1

Introduction

1.1 Introduction

A fundamental task for any communications network is routing – the process of discovering

paths between nodes in the network and using them for communication. Without a path con-

necting two nodes, they cannot send packets to each other and so the problem of deciding

reachability is crucial to any routing algorithm. The basic job of any routing algorithm is to

allow nodes to route on paths having low cost – but what do we mean by a low-cost path? The

usual view of routing is to assign weights to edges, and define the cost of a path as the sum of

its edge costs. This is known as the shortest-path routing problem.

We study a problem motivated by routing in networks having the following properties:

1. There is no centralized control, so all decisions should be made using local information.

2. The nodes are autonomous, meaning they are free to make their own independent deci-

sions (we shall explain later what these decisions are).

3. The network is large, so nodes cannot store a piece of information for every other node,

i.e. we want o(n) space per node.

The Internet is an example of such a network – each node may be an independent orga-

nization with its own economic aims, possible competing with other organizations to provide

connectivity in the network. We shall not be interested in the economics of Internet routing, but

we shall be interested in the routing problems that such a situation creates. We begin by de-

scribing at a high level, how Internet routing is done. Later on, we shall use this as an abstract

model for routing in which we can prove various results.

The main protocol used for routing on the Internet is known as the Border Gateway Protocol

(BGP). It works roughly as follows: a node advertises to its neighbours the route it currently

uses to each destination. A node with many neighbours will thus learn about many routes to

some destination j. It then selects one of these routes as the route that it will use to send data to

j; subsequently, it can advertise this route to all of its neighbours. This process repeats until the

set of routes stabilises (and so the protocol converges), and each node discovers at least one route

7



8 Chapter 1. Introduction

to every destination (if such a route exists). Since there may be many possible routes to choose

from, a crucial decision a node must make is route selection: given all the currently available

routes to a destination j, which one should it choose? In the early days of the Internet (when it

was known as ARPANET), each node simply chose the shortest available path [MW77]. In this

case, the algorithm we have just described can be seen as a distributed algorithm for solving

the shortest-path problem, and indeed it is possible to show that this algorithm will converge in

finite time and every node will discover the shortest path to every destination.

However, today’s Internet no longer consists of machines owned and run by a single organ-

isation; instead it consists of independent competing organisations whose routing preferences

are influenced by external factors other than path length, such as commercial relationships with

other organizations in the network. For this reason, shortest-path routing is often not appro-

priate or desirable (the shortest path from u may go via another organization that u wishes to

avoid). BGP allows nodes complete freedom to pick routes according to local routing policies,

and this leads us to the policy routing problem – each node has a policy that defines how it

assigns costs to paths, and each node wants to route on paths that are of low cost to itself. Very

little is known about the complexity of policy routing, in contrast to the problem of shortest-

path routing, which is very well-understood. Our aim is to develop an understanding of policy

routing, and how to design good algorithms for routing with specific classes of policies.

1.2 Chapter 3: Routing trees

We begin by discussing a simple but widely-used method of routing, that we shall refer to as a

‘routing tree’-based scheme. Imagine that we want to send packets on shortest paths between

nodes. A routing tree for a node v is simply a spanning tree rooted at v. Imagine that we con-

struct a forest of routing trees, one for each node in the network. Then to route to a destination

v, we find its routing tree and forward the packet along the edges of the tree until it reaches the

root. The set of shortest paths to each node v is a routing tree for v. Therefore we can construct

the forest by running an efficient distributed shortest-path algorithm, and storing at each node

the parent node for each routing tree. This scheme uses space O(n) at each node for a network

of n nodes (from now on, we shall use n to denote the number of nodes).

For routing in autonomous networks with no centralized control, we need our routing trees

to satisfy an additional property, called stability. A routing tree is stable if no node in the tree

can switch to a lower cost path without creating a cycle in the tree. Throughout the thesis, we

shall assume that stable routing trees are the only ones that we can use for routing. The reason

for this is that if the nodes are autonomous, then given the choice between a path of high cost

and a path of low cost to a destination, we have to assume that they will pick the low cost

path for routing to that destination. The collection of shortest paths to some node has a useful

property, sometimes referred to as the principle of optimality: any subpath of a shortest path is

a shortest subpath. This property implies that a shortest-path routing tree will always be stable,

if all nodes prefer shorter paths over longer paths. In modelling policy routing, we shall assume

that each node u has a policy cu that assigns a nonnegative cost cu(P ) to each path P . Clearly,

it is possible to construct a set of policies so that the principle of optimality no longer holds. In

this case, it is natural to ask if we can still construct stable routing trees.

Griffin et al. [GSW02] answered this question in the negative. Furthermore, they showed

that given a set of policies (encoded in a particular way) and a network, it is NP-complete to

decide whether there exists a stable routing tree to some fixed destination. This intractability
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result is particularly surprising because it models how routing actually happens on the Internet

– not only is it possible that the BGP algorithm may not converge to a solution (i.e. a set of

stable routing trees), but it is NP-complete to decide if it will do so. Why then do we still use

BGP? The main answer is that it still works ‘in practice’, but as the Internet grows and we

become more reliant on it as a means of communication, this answer will eventually not be a

good enough one.

In light of this hardness result, there are two natural ways in which we might hope to attack

the problem, if we wish to construct useful algorithms for the policy routing problem. One di-

rection is to restrict the class of policies allowed in the hope that the reduction in expressiveness

will permit an efficient algorithm. Another direction is to restrict the class of networks.

Feigenbaum et al. [FKMS05] investigated the first direction. They studied the simple class

of next-hop preferences where the cost of a path depends only on its next-hop. They showed that

a stable routing tree always exists and so deciding solvability is trivial. Gao and Rexford [GR00]

suggested that next-hop preferences capture the effect of ASes having different commercial

relationships with neighbouring ASes. However, there are many desirable classes of policies

that cannot be expressed in terms of next-hop preferences. For example, the government of

country X may want to avoid any path that goes through some other country Y , perhaps because

X is afraid that Y may do bad things to its packets, or because it does not want Y to know

who it is communicating with. This motivates the forbidden-set routing problem, introduced

by Feigenbaum et al. [FKMS05]: each node u has a forbidden set S(u) ⊆ V (G) of nodes,

and the cost cu(P ) of a path P from u is the number of nodes it contains from S(u), i.e.

cu(P ) = |S(u) ∩ P |. In addition to being a relevant and interesting class of routing policies,

the problem is interesting from a graph theory point of view, since there is no path P from u to

v with cu(P ) = 0 iff S(u) separates u and v in G.

In Chapter 3, we further the study of routing trees for the policy routing problem. Our main

results are following.

• We show that deciding if there exists a stable routing tree where the nodes use forbidden-

set preferences is NP-complete, even on bounded treewidth graphs. This shows that even

if we severely restrict both the class of policy and the class of networks, deciding solv-

ability is still intractable. This rules out the possibility of using a single routing tree for

policy-based routing, even in simple cases.

• We show that a small change in policy can give a huge change in complexity of deciding

solvability – it is trivial for next-hop preferences but NP-complete for two-hop prefer-

ences. We conjecture that there exists a dichotomy theorem for SPP solvability, i.e. for a

given class of policy, it is either NP-complete or trivial.

• We prove the first communication complexity results for solvability; in particular, any

distributed algorithm must communicate 2Ω(n) bits over at least Ω(n) edges in the worst-

case. We also prove lower bounds for the class of forbidden-set preferences.

• Finally, we consider labeling the nodes so that they can verifiably and locally check if the

current path assignment is a stable routing tree. We show an Ω(n) lower bound on the

proof size and give a proof labeling scheme of size O(n), hence this is tight in the worst

case.

These results suggest that routing trees are not a good idea for policy routing, even for simple

networks (bounded treewidth) and simple policies (forbidden-set).
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1.3 Chapter 4: Towards compact forbidden-set routing

In Chapter 4 we forget about using routing trees, and try to develop a model that will allow us to

construct efficient routing schemes for the forbidden-set routing problem. The results of Griffin

et al. [GSW02] show that for policy routing, it may be impossible to construct a stable routing

tree and so it is not always possible to route on lowest-cost paths using this method.

Consider the following simple (non-tree-based) scheme for policy routing. Each node w
stores a table where the entry (u, v) specifies the next hop from w on the path from u to v of

lowest cost to u. When a node u wants to send a packet to destination v, it writes into the header

of the packet the string 〈u, v〉. Now when some node w receives this packet, it looks up the entry

〈u, v〉 to find the next link for this packet. This way, each node can route on its lowest-cost path

to each destination. However, the downside is that each router now stores O(n2) entries in its

local routing table, which is too demanding in a large network. With a routing tree, all the

sources whose paths pass through the same node w to the same destination v must agree to use

the same path from w and therefore each node can store O(n) entries. However, we know that

stable routing trees are not guaranteed to exist, so we cannot always route on lowest-cost paths

(even though the path clearly exists in the network!).

The above scheme can be seen as a simple instance of the following model of routing. Each

node is assigned a data structure (called its routing table) and a label, which identifies the node

to other nodes. Routing is then done as follows: if node u wants to route to v it writes v’s

label into the packet header. Nodes can then use their routing tables and v’s label to decide how

to forward the packet through the network. This model is known as compact routing and was

introduced in a series of papers by Peleg and Upfal [PU89] who showed how to do stretch-k
routing using nO(1/k) bits per label. Cowen [Cow99] showed how to route on stretch-3 shortest

paths using Õ(n2/3) bits per node1. These are both substantial improvements on the O(n) space

required by simply using routing trees. Indeed, a routing scheme is said to be compact if the

space requirement at each node is o(n), i.e. sublinear in the number of nodes in the network.

For more details about localized and compact data structures for shortest-path routing, we refer

the reader to the excellent survey paper by Gavoille and Peleg [GP03]. In fact, it is known that

compact routing is almost-optimal for approximate shortest-path routing: Thorup and Zwick

[TZ01b] have given a scheme that routes on paths of stretch three (a path has stretch k if its

length is within a factor k of optimal) using routing tables of size Õ(n1/2) and O(log n)-bit

labels. By a proven conjecture of Erdos, related to the girth of a graph, this space requirement

is optimal to within logarithmic factors.

The question we wish to answer is the following: for the special case of forbidden-set rout-

ing, can we do better than space O(n2) per node, while still being able to route on all forbidden-

set-avoiding paths? We answer this in the positive by constructing a compact routing scheme

that routes on the shortest path u− v that avoids S(u). Our main results are the following. Let

k be the size of the largest forbidden set, i.e. k = maxu |S(u)|, and let d be the degree of G.

• We show how to do forbidden-set routing on trees using O(k log n) bits per node. How-

ever, the problem on trees is simple since a set S is a separator of u, v in T iff at least one

element of S lies on the unique path between u, v.

• For the class of bounded cliquewidth graphs, we can construct a forbidden-set routing

scheme using O(dk log2 n) bits per node and labels of size O(log n) bits. However, the

1f(n) = Õ(g(n)) if ∃c ≥ 0 such that f(n) = O(g(n) logc n)
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b e g

da
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S(a) = {d}

f

S(b) = {e, a}

Figure 1.1: The only good path from a to g is marked in bold. The same path in reverse is not

a good path from g to a

hidden constant may be a tower of exponentials in the cliquewidth, making the scheme

quite impractical, but nevertheless hinting at the existence of more efficient schemes.

• For graphs of treewidth t, we give a forbidden-set routing scheme using O(t2dk log2 n)-
bit labels.

• We give a space lower bound of Ω(n) bits per node for any forbidden-set routing scheme

in general graphs.

We argue that for policy-based routing on the Internet, compact routing schemes are bet-

ter than using routing trees. Since no routing trees are ever constructed, our routing schemes

can send packets on all lowest-cost paths between nodes, whenever they are reachable in the

network. In contrast, packets can be sent only if a stable routing tree exists where the source

node is not assigned the empty path (and deciding if such a tree exists is NP-complete even

with forbidden-set policies on bounded treewidth graphs). So far nothing is known about the

viability of compact routing schemes for policy routing. In particular, it may be that the space

requirements are higher than Ω(n) per node. The idea of using compact routing on the Internet

has been suggested elsewhere. For example, Krioukov et al. [KFY04] suggest that existing

compact routing schemes perform excellently for Internet-like topologies. However, this ig-

nores the freedom offered by policy routing, which is the main attraction of BGP. Until there

exists a scheme that can handle policy routing (even for restricted policies such as forbidden-

set), there will remain no viable alternative to BGP. We believe that our algorithms take us an

important step closer towards this goal, and also provide some interesting and difficult questions

along the way.

1.4 Chapter 5: Handling intermediate nodes

In the previous chapter, we constructed forbidden-set routing schemes under the assumption that

intermediate nodes will always forward packets, even if the path on which they are forwarding

the packets is costly to them. We call a path good if all its subpaths have zero cost. An example

of this is shown in Figure 1.1. Note that for shortest-path routing this is not an important

concern, because every subpath of a shortest path is itself a shortest path. The problem of

routing on good paths can be seen to model a common situation in BGP routing: if nodes
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only advertise paths of zero cost (to themselves), then no node will ever discover a non-good

path. It is important to note that this ‘goodness’ property is implicit in stable routing trees –

if u has a lower cost path available than its current one then it will choose it, regardless of the

preferences of other nodes that may need to route through u (although this may be restricted by

the requirement that the new path does not create a cycle). Since we are interested in compact

routing schemes, we ask ourselves the following question: what difference does routing on only

good paths make to the complexity of routing schemes for the forbidden-set routing problem?

In Chapter 5, we show that the answer is somewhat negative – taking into account the costs

of intermediate nodes makes the problem much more difficult. Let k be the size of the largest

forbidden set, i.e. k = maxk |S(u)|. Our main results are the following.

• We show that if the forbidden sets are of size at most k then on trees, labels of size

Ω(
√

n + k log n) are required to decide if there is a good path between two nodes. This

should be compared with the O(log n) bound shown in Chapter 4 for simply routing on

zero-cost paths to the source node.

• We prove an almost-optimal Õ(
√

kn) upper bound and show various time-space tradeoffs

for centralized versions of the problem.

• We also show that routing can be done using Õ(k)-bit routing tables and labels, but a

packet may traverse Ω(n) edges before being returned if a good path does not exist.

Our results imply that it may not be practical to construct forbidden-set routing schemes that

take into account costs incurred by intermediate nodes, unless we are willing to sacrifice features

such as the ability to decide if there exists a good path before sending the packet.

1.5 Chapter 6: Approximating forbidden-set routing

We finish by considering an approach to approximating forbidden-set routing. We partition

the network into connected clusters and instead of choosing arbitrary subsets of nodes, the

forbidden sets are a subset of these clusters. This has the effect of avoiding whole clusters

rather than individual nodes. We define the problem of obtaining a cluster graph with good

graph-theoretic properties, and motivate the problem of obtaining a cluster graph with bounded

treewidth. We show that if we can construct a cluster graph having small treewidth, then we can

apply our forbidden-set routing schemes from Chapter 4 to it. This may be of interest when the

network lends itself naturally to clustering.

We begin by considering an approach inspired by the work of Feigenbaum et al. [FKMS05]

– they considered a relaxed version of shortest-path routing where each link has a number of

objective values associated with it, representing for example its delay, its bandwidth and other

metrics. All nodes agree on these values, in the same way that all nodes agree on the weights

of edges for shortest-path routing. Each node has an individual cost function, which is a convex

combination of the objective values assigned to edges (for example, one node may be interested

in paths minimizing the sum of delays, while another may be interested in paths minimizing

another metric). They showed that using a small number of routing trees (instead of a single

routing tree) is sufficient for all nodes to route on almost-optimal paths. Their scheme does

not immediately imply a space-efficient routing scheme, though. We shall show how to use

their construction to build a space-efficient compact routing scheme with a small increase in
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the approximation factor. We can then observe that this multiple objective cost problem can be

seen as a special case of clustering the network and assigning costs to clusters. Since we are

interested in forbidden-set routing, it is natural to ask if we can cluster the graph so as to obtain

efficient forbidden-set routing algorithms for it.



CHAPTER 2

Preliminaries

In this chapter, we give some useful preliminary definitions and background to areas and basic

results that we shall frequently refer to.

2.1 Graph theory

We assume familiarity with basic concepts in graph theory; see [Wil86] for a good reference

text on graph theory. We shall model the network by an undirected simple graph G = (V,E)
having n nodes and m edges. The size of a graph is the number of nodes in the graph. Given

a graph G, its node set is denoted V (G) and its edge set E(G). The degree of a node u in

G is denoted by degG(u) and the maximal degree of a node of G is denoted by ∆(G). The

neighbourhood of a node u ∈ V (G) is denoted by NG(u) = {v ∈ V (G) : {u, v} ∈ E(G)} and

the neighbourhood of a set of nodes S ⊆ V (G) is denoted by N(S) =
⋃

s∈S N(s)\S. We shall

drop the subscripts when it is clear which graph we are referring to. The transitive closure, or

reachability graph of a graph G is denoted by G∗.

A path is a sequence of nodes such that from each of its nodes there is an edge to the next

node in the path, and no nodes are repeated. The length of a path is the number of edges

contained in the path. A cycle is a path, except that the start and end nodes are the same. A

graph is acyclic iff it contains no cycles of length > 1. We shall denote the empty path by ǫ.
If P = v1, . . . , vk and Q = vk, . . . , vr then PQ = v1, . . . , vr is the concatenation of P and Q
(ǫP = P = Pǫ). A Hamiltonian path is one that visits each node of the graph exactly once. A

graph that contains a Hamiltonian path is called Hamiltonian. The distance from u to v in G is

the length of the shortest path from u to v and is denoted by dG(u, v).

A separator (cut) is a set of nodes (edges) whose removal disconnects the graph into con-

nected subgraphs. A cut is denoted by (X,Y ) where X,Y ⊆ V (G) and the value (or size) of

the cut is the number of edges needed to partition the graph into (X,Y ). A graph is k-connected

(k-edge-connected) iff it remains connected after removing any k − 1 nodes (edges). A graph

is k-connected iff it contains k node-disjoint paths between any two nodes. The connectivity

κ(G) of a graph G is the minimum number of nodes needed to disconnect G. By convention,

Kn has connectivity n− 1 and a disconnected graph has connectivity 0.

14
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Figure 2.1: An example of a graph and a tree decomposition of width 2

2.1.1 Graph layouts

A linear layout, or layout, of an undirected graph G = (V,E) with n nodes is a bijective

function φ : V → {1, . . . , n}. Given a layout φ of a graph G and an integer i, we define the set

L(i, φ,G) = {u ∈ V |φ(u) ≤ i} and the set R(i, φ,G) = {u ∈ V |φ(u) > i}. We shall use L(i)
and R(i) when φ and G are obvious. The edge cut at position i of φ is defined as

Θ(i, φ,G) = |{{u, v} ∈ E|u ∈ L(i) ∧ v ∈ R(i)}|.

A common way to represent a layout is to align the nodes horizontally, mapping each node u
to its position φ(u). The cutwidth of a layout is maxi∈{1,...,n} Θ(i, φ,G) and the cutwidth of a

graph is the minimum cutwidth over all possible layouts of G, denoted by cw(G).

2.1.2 Treewidth

Many problems have efficient algorithms when restricted to trees. The notion of treewidth,

introduced by Robertson and Seymour [RS86] as part of their work on graph minors, captures

the idea that a graph may be ‘tree-like’. It is often possible to construct efficient algorithms for

difficult problems, when restricted to small treewidth graphs. We shall make frequent reference

to the concept of treewidth, so we define it here for reference. A tree decomposition of a graph

G = (V,E) is a pair (X,T ) where T = (I, F ) is a tree and each node of i of T is associated

with a subset Xi ⊆ V with the following properties.

1. The Xi’s cover the nodes of G, i.e.
⋃

i∈I Xi = V ;

2. For every edge {v, w} ∈ E, there is some node i ∈ T where v, w ∈ Xi;

3. For every v ∈ V , the set {i ∈ I|v ∈ Xi} is a connected subtree of T .
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The width of a tree decomposition (X,T ) is defined as maxi∈I |Xi| − 1. The treewidth of

a graph G is the minimum width over all tree decompositions of G, and we shall denote it by

tw(G). For example, trees have treewidth one and cliques have unbounded treewidth. Figure

2.1 shows an example of a graph and a tree decomposition. In some cases, T will be considered

to be a rooted tree, in which case a specific node of T shall be its root. A tree decomposition

with T a rooted tree is called a rooted tree decomposition. For a node i ∈ I , we call the set Xi

the bag of i. More details about the history and uses of treewidth can be found in the paper by

Bodlaender [Bod93b].

2.2 Labeling schemes

Implicit in any distributed algorithm is a representation of the network, and many network

representations are inherently global; for example each node is assumed to know the entire

network. A common distributed representation of a graph is to assign nodes unique identifiers

from {1, . . . , n} and then store at each node the identifiers of its neighbours. In such a scheme,

answering a query such as ‘what is the distance between u and v?’ may require access to data

distributed across the entire network, e.g. by running a shortest path algorithm. Another idea

is to use a completely local representation of the network, for example having each node know

the entire graph. The problem is that both these representations are inefficient: the first has high

query time and second has high space requirements at each node.

Labeling schemes were introduced in [KNR92]. Assume that P (x1, . . . , xk) is some graph

property on nodes x1, . . . , xk that we want to answer, e.g. P (x1, x2) = d(x1, x2) or P (x1, . . . , xk) =
1 iff the subgraph induced by x1, . . . , xk is a clique. A P -labeling scheme (L, f) consists of

two things:

1. A marker algorithm that takes as input the graph and assigns a label L(v) to each node v
(L is called a labeling of the nodes);

2. A decoder algorithm f such that f(L(x1), . . . , L(xk)) = P (x1, . . . , xk).

The size of a labeling is the maximum size of a label given to some node. For a family of graphs

G we denote a labeling scheme by (L, f), where L is the labeling computed by the marker on

the particular graph G ∈ G and f is the decoder algorithm (that depends only on the marker

algorithm, not the particular G ∈ G).

The labeling L can be viewed as a distributed data structure, with the decoder as a distributed

algorithm that answers P (x1, . . . , xk) using data only stored at x1, . . . , xk. If the labels are short

then they can be given as part of the query, by using them in place of the traditional lg n-bit

node identifier (e.g. in packet headers). We shall be interested in the maximum label size rather

than the total label size since the graph given to the marker algorithm is unknown and so any

node could be assigned a label of the maximum size, which would require that each node has

sufficient memory to store it. Clearly, a good bound on the individual label size gives a good

bound on the total size but not the other way around. It is also clear that labels of unrestricted

size can be used to encode any desired property (by storing the entire graph). For a labeling

scheme to be useful the labels should be short (say of length polylogarithmic in the number of

nodes), and the time to answer a query given the labels be small (also polylogarithmic).
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2.2.1 An example – adjacency labeling

We now give an example of adjacency labeling in trees, to give a better understanding of the

local nature of these schemes. Adjacency labeling schemes were first introduced in [KNR92] for

the implicit representation of graphs. In particular, a labeling scheme using 2 log n-bit labels

for the class of trees was given, which we now describe. Given an n-node tree T , labels are

assigned to nodes as follows. Choose a root and associate a unique identifier ID(v) ∈ {1 . . . n}
with each node v ∈ T , then assign a node v with parent w the label (ID(v), ID(w)) (the root r
is assigned the label (ID(r), 0)). Now, given two labels (ID(v), ID(w)) and (ID(v′), ID(w′)),
the nodes v, v′ are neighbours iff either ID(v) = ID(w′) or ID(v′) = ID(w). The scheme can

be extended to families of graphs having separators of bounded size such as c-decomposable

graphs (e.g. bounded genus graphs and bounded treewidth graphs).

Another basic result in the area of graph labeling concerns distance labeling schemes. A

distance labeling scheme is a labeling scheme (L, f) where f(u, v) is the distance between two

nodes u, v in the graph. It has been shown [KNR92] that a class of 2Ω(n1+ǫ) n-node graphs must

use adjacency labels (and thus distance labels) whose total combined length is Ω(n1+ǫ) bits.

Hence, at least one label must be of Ω(nǫ) bits. More specifically, for the class of all unweighted

graphs, any adjacency (and hence distance) labeling scheme must assign some node a label of

size Ω(n) bits.

Given the Ω(n) lower bound for general graphs, a large amount of research has tackled the

problem of constructing approximate distance labeling schemes. Thorup and Zwick [TZ01a]

give a distance labeling scheme with approximation factor 2k−1 using Õ(kn1/k) bits per label,

which is essentially optimal by a 1963 girth conjecture of Erdos that has been proven for certain

small values of k including k = 2.

2.3 Communication complexity

In Chapters 3 and 4 we shall make use of results from communication complexity. Therefore,

we give some basic concepts here but for further information and details of proofs, we refer the

reader to the excellent and interesting book [KN97] by Kushilevitz and Nisan.

Let X,Y, Z be arbitrary finite sets and let f : X × Y → Z be an arbitrary function. There

are two players, Alice and Bob, who wish to evaluate f(x, y) for some inputs x ∈ X and

y ∈ Y . The difficulty is that Alice only knows x and Bob only knows y. Thus, to evaluate the

function, they will need to communicate with each other. The communication will be carried

out according to some fixed protocol P (which depends only on the function f ). The protocol

consists of the players sending bits to each other in turn, until the value of f(x, y) can be

determined. We are usually only interested in the amount of communication between Alice and

Bob, so we ignore the internal computations each of them makes. Thus, Alice and Bob are

assumed to both have unlimited computational power. The cost of a protocol P on input (x, y)
is the number of bits communicated on that input. The cost of a protocol P is the worst case

cost of P over all inputs (x, y). The communication complexity of f is the minimum cost of a

protocol that computes f .

Although we assume that the players have unlimited computational power, the way that the

choices are made at each step of the protocol can have an impact on the amount of communica-

tion required. The deterministic communication complexity of a function f , denoted D(f), is

the minimum cost of any deterministic protocol that computes f , i.e. one that makes no random
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choices and computes the answer deterministically. The randomized communication complex-

ity is defined similarly, except that the protocols used by the players are randomized, and the

result must be known with a sufficiently high probability. The book [KN97] gives several exam-

ples of functions whose deterministic complexity is Ω(n), yet there exist randomized protocols

that use only O(log n) bits of communication (for example, the set equality function).

We shall also be interested in nondeterministic communication protocols. In a nondeter-

ministic protocol, we can imagine the presence of an all-powerful prover who knows the inputs

of both players (and hence the answer). Therefore, the communication required is equiva-

lent to that needed to verify a nondeterministic guess of the answer. For example, consider

the disjointness function DISJ on n-bit strings where DISJ(P,Q) = 1 iff P ∩ Q = ∅. If

DISJ(P,Q) = 1 then there exists an index i such that Pi = Qi. The prover can tell both

players i and they can verify that Pi = Qi with O(log n) bits of communication. We define

the nondeterministic communication complexity of a function f is the minimum cost of any

nondeterministic protocol that verifies that f(x, y) = 0 for any x ∈ X, y ∈ Y , and is denoted

N0(f). Similarly, the co-nondeterministic communication of a function f is the minimum cost

of any nondeterministic protocol that verifies that f(x, y) = 1 for any x ∈ X, y ∈ Y , and is

denoted N1(f).

2.4 Boolean circuits

In Chapter 3 we make use of boolean circuits and boolean functions in proving some of our

lower bound results for the complexity of finding stable routing trees. Results on the complexity

of boolean functions also underly some of our results in the last section of Chapter 3. Therefore

we now give a brief overview of the main (mostly simple) concepts that we shall use; for more

details and related results in this deep and interesting area, we refer the reader to the book by

Clote and Kranakis [CK02].

A boolean circuit is a directed acyclic graph with labeled nodes as follows:

• Input nodes have fan-in 1 and are labeled with a variable xi or a constant in {0, 1}.

• Gate nodes have fan-in k > 0 and are labeled with a boolean function ∧(AND), ∨(OR),

¬(NOT) on the k inputs. In the case that the label is ¬, the fan-in is restricted to be 1.

• Output nodes have fan-out 0.

A boolean formula is a boolean circuit having only one output gate. The edges of a circuit are

called wires. The depth of a circuit is the maximum distance from an input to an output gate.

It is important to note that any circuit can be modified, by using de Morgan’s laws, to push all

the negations to the input gates, without changing the depth of the circuit. Therefore, we will

assume wlog that all gates are one of ∧,∨, and that the negated versions of each variable are

available as inputs, i.e. x1 and x1. Similarly, adjacent gates of the same type can be combined

together, so we assume wlog that a circuit contains levels alternating between ∨ and ∧ gates.

A Πk
d formula is a boolean formula of depth d where the top level gate (the output) is a ∧ gate,

and with fan-in bounded by k. A Σk
d formula is defined similarly, except that the top level gate

is a ∨ gate. Π1 and Σ1 formulae are single literals and correspond to input gates in the circuit.

Figure 2.2 shows an example of a Π3 formula.
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Figure 2.2: A Π3 formula ((x1 ∧ x2) ∨ (x2 ∧ x3)) ∧ ((x2 ∧ x3) ∨ (x2 ∧ x3))



CHAPTER 3

Routing Trees

In this chapter we consider policy-based routing using routing trees. The chapter is structured in

two parts. In the first part, we use the formalism of routing algebras and the stable paths problem

to show hardness results on the computational complexity of policy-based routing using routing

trees, even for simple policies. These extend other results due to Feigenbaum et al. [FKMS05]

and Griffin et al. [GSW02].

In the second part of the chapter, we consider the stable paths problem as a problem in

distributed computing and prove the first communication complexity lower bounds for it. In

the final section, we describe the notion of proof labeling schemes, which provide a distributed

representation of a solution that is locally verifiable. We prove a lemma that lets us use our

communication lower bounds to give lower bounds on the proof size of deciding solvability of

a stable paths problem.

The aim of this chapter is to convince the reader that routing trees are not practical for

policy-based routing, even for seemingly simple policies such as forbidden-set routing.

3.1 The stable paths problem

That BGP is not guaranteed to converge was first observed by Varadhan et al. [VGE96]. More

recently, Griffin et al. [GSW02] introduced the stable paths problem (SPP) as a tool to model

the instabilities that can arise from using routing tree-based algorithms such as BGP. They use

the following motivating analogy: If Dijkstra’s algorithm solves the shortest path problem then

BGP solves the stable paths problem.

We now describe the stable paths problem. Let G = (V,E) be an undirected rooted graph,

with the root having identifier 0. All nodes wish to establish a path to the root. For each node

v ∈ V , the set of permitted paths from v to the root is denoted by Σv. Each node has a total

order (Σv,⊑v) over its permitted paths. We assume that for all v, Σv contains the empty path

ǫ, and ǫ ⊑v σ for all σ ∈ Σv, i.e. any nonempty path is preferable to the empty path. A stable

paths instance is written S = (G, Σ,⊑) where Σ = {Σv} and ⊑= {⊑v}.
A path assignment π is a function that assigns a permitted path π(v) ∈ Σv to each node

v ∈ V (the root’s assigned path is π(0) = ǫ0). We say that a path P = v1 . . . vr0 assigned to

v = v1 is consistent with a path assignment π if for all vi ∈ P, vi 6= v implies that the path

20
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Figure 3.1: An instance of the stable paths problem. The nodes’ path preferences are ordered

from most preferred to least preferred, and the routing tree representing the solution is marked

with bold edges.

π(vi) is a subpath of P . A path assignment π is valid if for all v, the path π(v) is consistent with

π. Intuitively, the assigned paths of a valid path assignment are confluent, i.e. they form a tree

rooted at node 0.

Valid assignments are important as this is how routing takes place over the Internet; routers

examine the destination of incoming packets and simply forward them to the next hop on the

route to that destination, which is the parent in the tree rooted at the destination. The problem

is that even though π may be valid, some node v might prefer (perhaps for economic reasons)

another path P ′ ∈ Σv to its assigned path P = π(v). Therefore, as long as P ′ is also consistent

with π, v may (at its own will) switch to using P ′. We say that an assignment π is stable at node

v if there is no other permitted path in Σv consistent with π that v prefers over π(v). A path

assignment π is stable, or is a solution to S, iff it is stable at every node. Stable routing trees

are important since we assume that the only routing trees that we can use for routing are those

corresponding to stable path assignments. A stable paths instance S = (G, Σ,⊑) is solvable

if there exists a solution to S, and unsolvable otherwise. We can now define the problem SPP-

SOLVABILITY:

Problem SPP-SOLVABILITY

Input: A stable paths instance S = (G, Σ,⊑).
Output: Is S solvable?

The main difference between the stable paths problem and the shortest paths problem is that

the latter always has a unique solution, while the former may have one, none or many solutions.

As an example, consider the network in Figure 3.1. A stable solution is indicated with bold

edges. Note that node 5 prefers path 5210 to the empty path, but the path 210 is not part of this

solution, so node 5 is assigned the empty path. It is easy to see that there is no stable solution

where node 5 is assigned a nonempty path – node 3 will always prefer (and be able to switch

to) path 30 and so node 1 will always be able to choose path 130 over 10. Therefore node 2
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will have to choose path 20 and so node 5 will be assigned the empty path. Also, note that

although node 2 prefers the path 210 to the path 20, it will never be able to use this path in a

stable solution because node 3 will always be able to choose path 30 and so node 1 will always

be able to choose path 130.

3.1.1 Results of this chapter

Compared to the shortest paths problem, very little is known about the complexity of the sta-

ble paths problem. Griffin et al. [GSW02] showed that deciding SPP-SOLVABILITY is NP-

complete for general graphs. Given this result, there are two natural ways that we could hope

to reduce the complexity. We could restrict the class of policies allowed, in the hope that the

reduction in expressiveness will permit efficient algorithms. Another direction is to restrict the

class of networks allowed, in the hope that this will allow more efficient algorithms.

Feigenbaum et al. [FKMS05] investigated restricting the policy. They studied the class

of next-hop preferences where the cost of a path can depend only on the next-hop on the path.

They showed that deciding solvability is trivial since a stable routing tree always exists. Gao and

Rexford [GR00] suggest that next-hop preferences capture the effect of ASes having different

commercial relationships with neighbouring ASes, in the sense that the cost of a path depends

only on whether the next-hop is a customer or provider etc. (they do not capture transit policies

where the next-hop depends on the previous hop). There are many useful policies that cannot

be expressed in terms of next-hop preferences. For example, a node u may wish to avoid any

route that goes through node v, perhaps because v is a competitor who may drop u’s data or due

to some economic agreement between them. This leads to the forbidden-set routing problem:

each node u has a forbidden set S(u) ⊆ V of nodes where the cost to u of a path is the number

of nodes it contains from S(u). Forbidden-set preferences capture a fundamental yet expressive

class of routing policies, so showing that we can handle them efficiently would be an important

positive result. Our main results are the following:

• We show (by a simple extension of a result of [FKMS05]) a strongly negative result –

deciding solvability for forbidden-set preferences on bounded treewidth graphs is NP-

complete. Thus, even if we severely restrict both the class of policy and the class of

graphs, the problem of deciding solvability is still intractable. This almost certainly rules

out the possibility of using a single routing tree for policy-based routing.

• We show that a small change in policy can give a huge change in complexity of decid-

ing solvability – deciding solvability of an SPP is trivial for next-hop preferences but

NP-complete for the class of two-hop preferences. We conjecture that there exists a di-

chotomy theorem for the problem of deciding solvability, i.e. for a given routing algebra

it is either NP-complete or trivial.

• We prove that any distributed algorithm that decides if there is a set of stable paths must

communicate 2Ω(n) bits across each of at least Ω(n) edges in the worst-case. We also

prove lower bounds for the communication complexity of solvability using forbidden-set

preferences.

• Finally, we consider labeling the nodes so that they can verifiably and locally decide

whether the current routing tree is stable, and prove an Ω(n) lower bound on the label
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size. We show that this is tight in the general case by giving a proof labeling scheme

using O(n)-bit labels.

3.2 Routing algebras

In this section we describe the formalism of routing algebras introduced by Sobrinho [Sob03].

We then describe how they naturally generate instances of the stable paths problem. This allows

us to completely separate the complexity of the policy from the complexity of the graph used.

Note that the path preferences ⊑ over Σ implicitly encode information about the graph and the

policy. The advantage of using the routing algebra formalism is that it separates policy and net-

work. This will enable us to understand what makes certain policy classes hard by studying their

algebraic properties, independent from the class of graphs used. In the work presented here, we

do not study the link between algebraic features of policies and the complexity of the SPPs that

they generate. Our main use for routing algebras is to succinctly and accurately describe the

policy classes that were are interested in studying. As related work, Chau et al. [kCGG06]

have investigated how the algebraic features of policies affect the convergence properties of

Bellman-Ford-style iterative algorithms. However, the general problem of understanding how

the algebraic properties of routing algebras relate to the convergence properties of algorithms

and their complexity is still an open problem.

We shall now introduce routing algebras. Routing algebras can be thought of as generalising

shortest-path routing in the following way. Consider Figure 3.2(a): there is a path from v to w
of weight m and node u has an edge to node v of weight n, hence u has a path to w of weight

at most n + m. Now let us generalise this as in Figure 3.2(b). Each edge has a label l ∈ L,

and each path is described by a signature σ ∈ Σ. We assume that there is a special ‘zero’

signature ǫ ∈ Σ (similar to the zero element of a group) that denotes the empty path. Paths are

composed using the binary operator ⊕ : L × Σ → Σ (paths are assumed to begin at the root,

and are extended towards the source node). Finally, there is a totally-ordered set of weights

(W,≤) and a cost function f : Σ → W . We can now define a routing algebra A as the tuple

A = (L, Σ, ǫ,⊕, (W,≤), f).

3.2.1 Generating stable paths problems

Routing algebras naturally generate instances of the stable paths problem. Given a routing

algebraA and a rooted graph G with edges labelled from L, we say thatA generates an instance

A(G) of a stable paths problem as follows. For every path from a node in G to the root node,

its signature is generated by recursively applying ⊕ to the labels along the path. Every node

then ranks its paths to the root using the cost function f , and a node prefers a path P with

signature σ to a path P ′ with signature σ′ iff f(σ) ≤ f(σ′). We can now define the problem

of solvability, restricted to SPP instances that are generated by some routing algebra. Let A =
(L, Σ, ǫ,⊕, (W,≤), f) be a routing algebra.

Problem A-SPP-SOLVABILITY

Input: An undirected rooted graph G with edges labeled from L
Output: Is the stable paths problem instance A(G) solvable?
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Figure 3.2: How path lengths are computed in the shortest path setting (a), and how path

signatures are computed in the routing algebra setting (b).

3.2.2 Next-hop routing

We now present a routing algebra for the next-hop policy routing problem. In this case, the

cost of a path can depend only on the next hop on the path. Feigenbaum et al. [FKMS05]

studied the class of next-hop preferences and showed that deciding solvability is trivial since a

stable routing tree always exists. The reason for this is that we can take the labeled rooted graph

and build a minimum weight spanning tree rooted at the root of the graph. Such a tree always

exists, and by the optimality property of minimum spanning trees (that every subpath of an

optimal path is also an optimal subpath), this tree includes the minimum weight edge adjacent

to each node. The class of next-hop preferences capture the effect of ASes having different

commercial relationships with neighbouring ASes, and this model was suggested by Gao and

Rexford [GR00] as a policy class for BGP routing where convergence would be guaranteed.

The figure below shows a routing algebra NH for next-hop preferences. The algebra takes

weights assigned to edges (representing the next-hop preferences) and computes the cost of a

path from a node to the destination by setting the cost of the path to be equal to the cost of

the first edge on the path. This operation is implemented by the composition operator ⊕, as

described in Figure 3.2.

L = N

Σ = N

W = (N,≤)

f(c) = c

l ⊕ c = l

Figure 3.3: A routing algebra NH for the next-hop preferences routing problem

Any SPP instance generated by a next-hop preferences algebra is always solvable [FSS04],
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Figure 3.4: The bad triangle gadget. There is no stable set of paths that form a tree rooted at

the center node, due to the cyclic preferences of the outer nodes.

thus the complexity of deciding if there exists a stable routing tree, i.e. NH-SPP-SOLVABILITY,

is trivial.

3.2.3 Two-hop routing

We now consider a class of policies that we call two-hop preferences. Here, each node can rank

paths based only on the first two hops on each path. It might seem natural that this provides a

small degree of extra expressiveness over next-hop preferences, but here we prove the surprising

result that deciding solvability of two-hop preference SPPs is NP-complete. This shows that

there is a complete change in the character of the problem in going from next-hop to two-hop

preferences, and so there must be some important property of the algebra that permits this.

To prove this, we make use of the following important construction of [FKMS05] known as

‘bad triangle’, which is a variation of the bad gadget construction introduced by Griffin et al.

[GSW02]. The bad triangle is shown in Figure 3.4. It is not difficult to see that this network has

no stable solution, and that the preferences can be ordered using the first two hops. Consider any

routing tree that has the center node r as its root, for example aa′0, cbb′0, bb′0 (we can assume

that the inner nodes all go directly to the center). Since node b prefers path baa′0 to bb′0, it will

switch to baa′0 without creating a cycle. But now c takes the path via a, which is less preferred

than the path cc′0, so c will switch to this path. But now a will prefer to switch to the path acc′0,

which will force b to switch to bb′0, which will in turn force c to switch back to cbb′0. This

process clearly continues for ever, and for any possible routing tree. Therefore the bad triangle

has no stable routing tree to its center. However, it is important to note that if we are using the

bad triangle as part of a larger network and at least one of a, b, c has an alternative path to the

centre (for example, using some external path) that is more preferred than any path in the bad

triangle then we say that this ‘breaks’ the bad triangle. It can be seen that this allows all other

nodes in the triangle to have paths to the centre node using edges only from the bad triangle.

We can now prove our main result for two-hop routing preferences.

Theorem 3.2.1 LetA be a routing algebra for two-hop preferences. ThenA-SPP-SOLVABILITY

is NP-complete.

Proof. The proof is by a reduction from the 3-SAT problem, which is known to be NP-complete

[GJ90]. Given a 3CNF formula, we shall take the clauses and encode them into bad triangle

gadgets, one for each clause (for this reduction we shall ignore the nodes a′, b′, c′ in the bad
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Figure 3.5: Encoding a 3-SAT instance into an SPP instance using 2-hop preferences. The

SPP is solvable iff the formula is satisfiable.

triangle). We shall then take these gadgets and connect them to the destination via a long chain

of nodes. The network is shown in Figure 3.5. The clauses are encoded by the edges between

the bad triangles and the yi nodes as follows. For each node v in a bad triangle, there is an

edge (v, yi) iff v represents either of the literals xi or xi. Assume v represents the literal xi.

Then v prefers any path through the bad triangle to any path containing xi, and vice-versa if v
represents the literal xi. We claim that there is a solution iff the 3-CNF formula f is satisfiable.

Let (v1, v2, v3, c) be a bad triangle, with node c at the centre (the bad triangle can be con-

structed using 2-hop preferences). Assume that v1 represents the literal xi, v2 is xj and v3 is xk.

Then v3’s path preferences are as follows (remembering that we can only order paths based on

the first two hops):

v3 yk xk > v3 v2 c > v3 c · > v3 yk xk > v3 v1 yi > v3 v2 yj

and similarly for v1, v2 (using the bad triangle preferences). The order expresses that v3 prefers

to route through xk than to route through the bad triangle (the second and third items), which

are preferred to routing through xk. The last item says that v3 prefers to go through the bad

triangle than to escape through the other yi nodes.

Claim 1: Any satisfying assignment for f gives a solution to the SPP instance.

Proof. Assign the yi nodes paths consistent with the satisfying assignment, as in [FKMS05].

Then each bad triangle will have at least one node that has its most preferred path through the

yi’s, so the other nodes can then route through their bad triangles.
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Claim 2: Every solution to the SPP instance gives a satisfying assignment for f .

Proof. We will prove that if there are no satisfying assignments then there is no solution. If f
has no satisfying assignment then there is no assignment of paths to the yi nodes such that every

bad triangle has at least one node with its top preference path available (since f is unsatisfiable).

Assume now that in some bad triangle, some node v3 breaks up the triangle by going via its yi

node. Then the other two nodes v1, v2 will prefer to route via the bad triangle rather than escape

via v3 and yi. But then v3 would now prefer to go via the bad triangle. Hence no bad triangle

will be broken up and there is no solution.

The above claims establish that f is satisfiable iff the SPP instance is solvable.

Remark. The original 3-SAT reduction in [GSW02, Theorem V.1] also only uses two-hop

preferences.

The above result raises several interesting questions: why does changing from next-hop to

two-hop preferences result in a completely different character of problem, and in general, what

makes deciding solvability of some stable paths problems hard and others easy? This is an open

problem, and something that is outside the scope of this thesis.

3.3 Forbidden-set routing

There are many natural and desirable classes of policy that cannot be expressed using next-hop

preferences, or even using two-hop preferences. For example, the government of country X
may want to avoid any path that goes through some other country Y , perhaps because X is

afraid that Y may do bad things to its packets, or because it does not want Y to know who

it is communicating with. Another example is that nodes may have economic agreements to

not forward traffic for each other, and so they should avoid paths passing through each other’s

networks. This motivates the forbidden-set routing problem, introduced by Feigenbaum et al.

[FKMS05]: each node u has a forbidden set S(u) ⊆ V (G) of nodes, and the cost cu(P ) of

a path P from u is the number of nodes it contains from S(u), i.e. cu(P ) = |S(u) ∩ P |. In

addition to being an interesting class of routing policies, the problem is interesting from a graph

theory point of view, since there is no path P from u to v with cu(P ) = 0 iff S(u) separates u
and v in G.

We shall begin by presenting a routing algebra for the class of forbidden-set preferences,

in Figure 3.6. Applying the algebra to a graph G can be described as follows – for a directed

edge e = (x, y), let cu(e) = 1 iff v ∈ S(u), and 0 otherwise. A label l ∈ L assigned to an

edge e contains two things – the first endpoint of the edge and a vector describing the cost cu(e)
of the edge e to each node u in the network. We shall use this vector to add up the cost of a

path to each individual node, then finally project out the component that we are interested in.

A signature σ ∈ Σ contains the first node on the path described by σ, and the cost of the path

to each node. The operator ⊕ accumulates the costs by doing component-wise addition on the

cost vectors, and sets the new first node on the path. Finally, the function f projects out the

element of the cost vector corresponding to the current first node on the path.

In their paper, Feigenbaum et al. [FKMS05] considered a similar problem but using costs

taken from {0, 1, 2}. They showed that deciding solvability of the resulting SPP is NP-complete.

We now show how a simple extension to this result shows that FS-SPP-SOLVABILITY is also
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L = {1, . . . , n} × {0, 1}n
W = (Z,≤)

Σ = {1, . . . , n} × Zn

(u, c)⊕ (v, d) = (u, c + d)

f((v, d)) = dv

Figure 3.6: A routing algebra FS for the forbidden-set routing problem

NP-complete, and hence constructing stable routing trees for forbidden-set preferences is an

intractable problem for general graphs.

3.3.1 Forbidden-set solvability is NP-complete

In this subsection we show that FS-SPP-SOLVABILITY is NP-complete by a reduction from

Π2-SAT. In the second part of the chapter we use this reduction to characterise the commu-

nication complexity of deciding solvability by proving a lower bound on the communication

complexity of deciding Π2-SAT. Recall that for each family of boolean circuits, there is an

associated satisfiability decision problem:

Problem Π2-SATISFIABILITY

Input: A Π2 formula f , given as a circuit.

Output: Is f satisfiable?

The above problem is known to be NP-complete [GJ90]. We now show how to encode Π2-SAT

into forbidden set routing preferences. We make use of the bad triangle presented earlier for the

two-hop preferences reduction. Feigenbaum et al. [FKMS05] show how the bad triangle can be

expressed using fs-preferences: set S(a) = {a′, b, b′}, S(b) = {b′, c, c′} and S(c) = {c′, a, a′}.
It can be verified that this corresponds to the bad triangle constructs for the case of two-hop

preferences earlier, so it follows that this small network also has no stable solution.

Theorem 3.3.1 FC-SPP-SOLVABILITY is NP-complete.

Proof. The proof is by reduction from 3-SAT. The proof is essentially that of Feigenbaum et

al., except that we show that we only need costs in {0, 1} instead of {0, 1, 2}. We feel that the

proof is quite important, therefore we state it in full. Given a set of variables {x1, . . . , xn} and

a set of clauses {C1, . . . , Cm}, where clause Ci contains three literals xi1, xi2, xi3, we construct

a stable paths instance with fs-preferences, which is solvable iff the 3-CNF formula φ = (x11 ∨
x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) ∧ . . . ∧ (xm1 ∨ xm2 ∨ xm3) is satisfiable.

The network is constructed as in Figure 3.7 with the destination node 0. Each clause Ci is

represented by a bad triangle as described above, with the three outer nodes vi1, vi2, vi3 repre-

senting the three literals of the clause. If vij corresponds to the literal xk, then {xk, x
′
k} is in

vij’s forbidden set (this corresponds to setting vij’s subjective cost of xk to 2 in [FKMS05]). If

it corresponds to xk, then {xk, x
′
k} is in vij’s forbidden set.

We now show that any stable solution gives a satisfying assignment to the formula. In

this case, the assignment shall consist of all the literals on the path from yn to 0 in the stable
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Figure 3.7: The reduction from 3-SAT to FS-SPP-SOLVABILITY

solution. Since no path can contain both xi and xi, and every stable solution contains a path

through the yi nodes, the assignment constructed in this way is valid. Now we show that it is

also a satisfying assignment. Since each bad triangle is unsolvable, there must be at least one

node in each bad triangle that has a route to 0 through the yi nodes. Each node vjk could always

route to 0 through its centre cj , using a path of cost 1, and so it only routes through the yi if this

is a path of zero cost, which is the case only if the literal corresponding to vjk is true. Since

there exists such a node for every bad triangle, every clause is satisfied and so the assignment is

a satisfying assignment.

We now show that any satisfying assignment to the formula gives a stable solution. We can

find this stable solution by constructing a path using the true literals of the assignment, from

yn to 0. We then assign to all nodes vjk corresponding to a true literal the long route through

yn. This route has zero cost to vjk, and so it cannot strictly prefer any other route. Since the

satisfying assignment has at least one true literal in each clause, at least one node in every bad

triangle has a path of zero cost from yn to 0, and so each bad triangle is ‘broken up’, leaving the

remaining nodes to route to r on stable paths through their bad triangle centres.

3.3.2 NP-completeness on bounded treewidth graphs

We now show that deciding FS-SPP-SOLVABILITY is NP-complete on graphs of bounded

treewidth. This implies that forbidden-set routing using routing trees is almost certainly im-

practical even for very restricted classes of graphs that appear in practice (for example, even if

we wanted to do fs-routing only on the Internet backbone and if the backbone was strongly tree-

like). This shows that the problem has a very difficult core; for comparison, many NP-complete

problems such as maximum independent set are solvable in linear time on bounded treewidth
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Figure 3.8: A tree decomposition of the forbidden set reduction graph. The Ti represents the

nodes of the ith bad triangle, each containing 7 nodes. Since each bag contains at most 8

nodes from G, the graph has treewidth at most 7.

graphs.

Theorem 3.3.2 FS-SPP-SOLVABILITY is NP-complete on graphs of treewidth at least 7.

Proof. Figure 3.8 shows a suitable tree decomposition of the graph used in the reduction of

Theorem 3.3.1 with treewidth 7, and this completes the proof (the definition of treewidth can be

found in the preliminaries in Chapter 2).

We now pause to consider the results of this chapter so far. The main message is that even

with simple tree-like networks (treewidth at most 7) and simple policies (forbidden-set), the

problem of deciding if there exists a stable routing tree remains NP-complete.

3.4 Communication complexity of solvability

In this second part of the chapter, we shall consider the stable paths problem as a problem in

distributed computing, and prove the first communication complexity lower bounds for it. We

then describe the notion of proof labeling schemes, which provide a distributed representation

of a solution that is locally verifiable. We prove a lemma that lets us use our communication

lower bounds to give lower bounds on the proof size of deciding solvability of a stable paths

problem.

We begin by proving a communication complexity lower bound for SPP-SOLVABILITY.

The lower bound relies on a construction that gives a large set of long stable paths, and this

is based on a recursive construction of the DISAGREE gadget that was used by Griffin et al.

[GSW02] in their original reduction from 3-SAT to SPP-SOLVABILITY. The idea of the con-

struction is as follows. The DISAGREE gadget has nodes x, x and the root 0. Both x and x
prefer to go through each other to reach the root, but are also happy to go direct to the root.

Hence there are exactly two stable states. We say that the gadget is in the configuration x if all
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Figure 3.9: The two stable states of the DISAGREE gadget.
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Figure 3.10: The construction 3-DISAGREE. The path preferences are recursively constructed

from right to left, with the most preferred path at the top of each list.

paths to 0 pass through x, and in the configuration x if all paths to 0 pass through x, as in Figure

3.9.

The gadget j-DISAGREE is constructed by joining together j DISAGREE gadgets as fol-

lows. Let 1-DISAGREE be equal to DISAGREE, and form j-DISAGREE by adding a copy of

DISAGREE on {xj, xj} to (j − 1)-DISAGREE and using the node xj−1 in place of the root

node. We will say that the nodes x1, x2, . . . , xj form the spine of j-DISAGREE. Figure 3.10

shows 3-DISAGREE.

Now we define the policies of the nodes in j-DISAGREE. Let Σx1 = (x1x10, x10) and

Σx1 = (x1x10, x10), as for DISAGREE. Recursively define Σxi
and Σxi

as follows:

Σxi
=
(
xixiΣxi−1

, xiΣxi−1

)
Σxi

=
(
xixiΣxi−1

, xiΣxi−1

)

where xiΣxi−1
is the order obtained by prefixing all the paths in Σxi−1

by xi and then adding

them in their original order. The construction is a recursive extension of DISAGREE, where xi

prefers all paths to 0 that pass through xi (in the order that xi−1 prefers them) to those not passing

through xi and vice-versa. The next lemma proves the main property of this construction.
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Figure 3.11: The construction bad gadget

Lemma 3.4.1 The SPP defined by n-DISAGREE has 2n distinct stable states where each path

has length n.

Proof. We show an injection between the powerset of {1, . . . , n} and the set of stable path

assignments to nodes in Tn (the function is actually a bijection but we do not require this). For

a set X ⊆ {1, . . . , n}, if i ∈ X then assign the ith DISAGREE gadget of the construction the

configuration x, otherwise assign it the configuration x (see Figure 3.9). It is clear that this path

assignment forms a tree rooted at the node 0, that each path through the structure has length at

least n, and that there are 2n distinct assignments (the set of configurations of the gadgets).

We show that every such assignment is stable by induction on the length of the spine. The

assignment to 1-DISAGREE is stable since it is just the gadget DISAGREE. Assume the as-

signment π to j-DISAGREE specified by the injection is stable. Assume that the (j+1)th DIS-

AGREE gadget is placed in the configuration x (the case x is similar). Then node xj+1 is

assigned the path xj+1π(xj) and node xj+1 is assigned the path xj+1xj+1π(xj). Since π(xj)
is part of a stable assignment, the only thing that could make the new assignment unstable

is for the (j+1)th gadget to switch to configuration x, but this cannot happen as the assigned

configuration x is already stable.

We are now ready to prove the lower bound by an approximability-preserving reduction

from set-disjointness. We will make use of the bad gadget [GSW02], as shown in Figure 3.11.

The useful property of bad gadget is that it has no stable path assignment, and hence no solutions

to the stable paths problem on it.

Figure 3.12 shows the network used for the lower bound. It is built by taking the bad gadget

and adding a path so that if the sets are not disjoint then the bad gadget can be broken up, and

then SPP becomes solvable.

We shall encode a large set into the path preferences ΣC of node C as follows. For some

set X ∈ 2{1,...,n} and an element X ∈ X , define the path PX as PX(i) = xi if i ∈ X and

PX(i) = xixi otherwise1. We encode X by adding for every X ∈ X the path C(PX0) to ΣC , in

any order. The set of paths at C includes all the paths going to the root node 0, including those

not in the set X . However, C prefers the path C0 (avoiding n-DISAGREE) over any path that

passes through n-DISAGREE but represents an element not in X .

1We use 2S to denote the powerset of S
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Figure 3.12: The reduction from set-disjointness to SPP-SOLVABILITY, for n = 3 and the sets

X = {{2, 3}, {3}}, Y = {{1, 2}, {3}, {2}} ⊆ 2{1,2,3} . A stable solution is shown by the bold

edges.

The node y3 encodes a set Y in a similar way – for every Y ∈ Y we add the path y3CPY 0.

In addition, we add to Σy3 the bad gadget paths y3y4y2y00, y3y00, y3C0 and the empty path ǫ in

that order, so that the paths corresponding to Y are preferred to any path that goes through the

center y0 of the bad gadget and y1 prefers to go through the bad gadget than taking the shortcut

path C0.

The idea is that if there is no valid assignment π that is stable at node y3 then the system

reduces to bad gadget, hence there is no assignment that is stable at y3, hence no assignment is

stable. The next lemma completes the proof by giving the reduction from the set-disjointness

problem.

Lemma 3.4.2 Consider the reduction (as in Figure 3.12), for two arbitrary sets X,Y ⊆ 2{1,...,n}.

The sets X,Y are not disjoint iff there exists a stable path assignment.

Proof. We first prove the ⇐ direction: every solution gives a counterexample to disjointness.

Let π be a solution, i.e. a stable assignment where π(u) is the path assigned to node u. Then

π(y3) must pass through the DISAGREE gadget (otherwise π would not be a solution since one

side of the network would reduce to bad gadget). Therefore, C must have a path through the

DISAGREE gadget that it prefers to the path C0. Hence the paths y3π(C) and π(y3) must be

equal, and this represents an element in the intersection of the two sets.

Now consider the⇒ direction: not-disjoint implies there exists a solution. If the sets are not

disjoint then there must exist some (not necessarily stable) path assignment such that y3π(C)
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and π(y3) are equal. By Lemma 3.4.1, there exists a path assignment that is stable at all the

nodes in n-DISAGREE that is consistent with π(C). Hence a stable solution π exists.

We say that a distributed algorithm solves a problem if it terminates in finite time with at

least one node knowing the answer. We do not need to consider the communication model in our

lower bounds (and so they hold for both synchronous and asynchronous models); all we require

is that some node knows the answer. In this sense, our bounds are purely information-theoretic.

In the following proof, we require that all the nodes in one part (corresponding to either Alice

or Bob) know the answer, but it also holds for the case when a single node knows the result,

since it can broadcast the result using only O(n) bits of communication. We can use Lemma

3.4.2 and the communication complexity of set-disjointness [KN97] to prove the following.

Theorem 3.4.3 Any distributed algorithm that computes SPP-SOLVABILITY with probability

at least 2/3 must send at least Ω(2n/2) bits across O(1) links in the worst case.

Proof. Let there be two players Alice and Bob where Alice knows only the set P and Bob knows

only the set Q. Partition the network into two parts by cutting the edges {C, y1}, {y0, 0}. Now

Alice and Bob can respectively construct their parts of the network knowing only their set. Now

assume that Alice and Bob run a protocol that decides SPP-SOLVABILITY with probability p.

We show that they can solve set-disjointness on sets of size 2n, with the same probability p. It

is known that any protocol that solves disjointness on sets of size r with probability at least 2/3
must use Ω(r) bits [KN97]. Since the construction of Figure 3.12 contains 2n + O(1) nodes,

this gives a lower bound of Ω(2n/2) for networks of size n.

Remarks. The theorem implies that any distributed algorithm must incur high congestion,

since an exponential number of bits must be sent over a constant number of edges. Assuming

that it takes one unit of time to send one bit, we also get a strong lower bound on the time

to solve the problem, since the cut between the two parts of the network is of constant size

(even assuming that all nodes are computationally unbounded). Note that if messages are of

unbounded size the number of rounds required is constant, since each node can simply send its

entire list of preferred paths.

3.4.1 Communication complexity of FS-SPP-SOLVABILITY

In this subsection we prove a lower bound on the communication complexity of deciding solv-

ability when forbidden-set preferences are used. We first extend the reduction of Theorem 3.3.1

to encode satisfiability of Π3 formulae. The original construction only encoded Π2 formulae,

but it can be easily verified that if we use forbidden sets of size 2k, then this corresponds to

adding a level of AND gates at the bottom level of the circuit, i.e. Πk
3 formulae. Without affect-

ing the solvability of the construction, we can partition its nodes into two sides A and B, with

the chain of xi’s and yi’s in A, and half the bad triangles in A and the other half in B. We add

extra nodes y′
n, 0

′ in B and edges {y′
n, yn}, {0′, 0}, with all the bad triangles in B connecting to

y′
n instead of yn. This ensures that the cut (A,B) contains at most two edges.

Now, any balanced partition of the clauses between two players Alice and Bob corresponds

to a balanced partition of the bad triangles as above. Therefore, any distributed algorithm

that computes FS-SPP-SOLVABILITY must communicate at least Ω(g(n)) bits across the cut

(A,B), where g(n) is the communication complexity of Πk
3-SAT.
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Finally, we can replace the two edges in the cut (A,B) by two lines each of n/2 edges

without affecting either the solvability of the construction, or the forbidden sets required. Di-

etzfelbinger [Die97] proves a version of the linear array conjecture implying that asymptoti-

cally, no distributed algorithm can do any better than to simply use these new nodes as relays,

and therefore must send at least Ω(g(n)) bits over at least Ω(n) edges. We shall show that

g(n) = Ω(n log n) in the deterministic case, which implies the following lower bound.

Lemma 3.4.4 Any deterministic distributed algorithm that computes FS-SPP-SOLVABILITY

must communicate at least Ω(n log n) bits over Ω(n) edges in the worst case.

To prove this lemma, we now prove a lower bound on the communication complexity of

deciding Πk
3-SAT. Consider some Πk

3 formula f = f1∧f2 on n variables with at most n clauses,

and give Alice f1 and Bob f2. Nothing appears to be known about the communication com-

plexity of deciding satisfiability of f .

In fact, we conjecture that in the deterministic case, nothing can beat the simple protocol of

Bob sending his whole formula f2 to Alice. Since each clause of a Πk
2 formula can be described

with log
(
2n
k

)
= O(k log(n/k)) bits, this simple protocol uses at most O(nk log(n/k)) bits.More

precisely, we conjecture that the following holds.

Conjecture 3.4.5 Let P be any two-party deterministic protocol that decides satisfiability of

any Πk
3 formula on n variables with at most n gates, where the top gate is an AND, and the

gates have unbounded fan-in except for the bottom level, which have fan-in at most k. Then

there exists a formula f = f1 ∧ f2 such that P communicates at least Ω(nk log(n/k)) bits on

the input (f1, f2).

Conjecture 3.4.6 Let P be as above but for Πk
2 formulae on n variables with at most n gates,

i.e. in k-CNF. Then the same lower bound as above holds.

We can prove the conjectures in the case that f is a Π2
2 formula with n variables and n

clauses. For larger k > 2, the problem Πk
2-SAT is at least as hard as Π2

2-SAT and so the same

lower bound applies. Since the trivial protocol uses communication linear in k, this means that

the trivial protocol is asymptotically optimal for deciding Πk
2-SAT with constant k.

We now state the lower bound in terms of the number of gates and wires of a boolean func-

tion as this leads to an appealing way of describing the current bounds. Any boolean function

with m wires and n gates can be described using at most cm log n bits for some constant c, yet

we can only show a lower bound of Ω(n log n) bits. Therefore, this gap is due to some gates

being connected to many wires (which occurs when the fan-in is large). Note that Πk
2 formulae

with large values of k have a large number of wires.

Lemma 3.4.7 Let P be a deterministic two party protocol for deciding satisfiability of a for-

mula with m wires and n gates. Then there exists a formula f = f1 ∧ f2 such that P communi-

cates at least Ω(n log n) bits on the input (f1, f2).

Proof. We give two proofs of the lemma; the first one can only prove a lower bound of

Ω(n log n) bits but is simpler to state, and the second proof is more general and may help

to prove the conjecture in more general cases.

For the first proof, we appeal to the Ω(n log n) bits communication lower bound for deciding

st-connectivity, which was proved in [HMT88]. We can reduce from st-connectivity to 2-SAT

as follows:
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• Make one variable for each node in the graph.

• If the edge (u, v) is in the graph, include the clause (u⇒ v), i.e. (v ∨ u).

• Also, include the clauses (s) ∧ (t).

Then the formula is satisfiable if and only if there is no path from s to t in the graph. The lower

bound in [HMT88] holds for sparse graphs (where the number of edges is linear in the number

of nodes). It can be seen that the reduction described above produces formulae with a number

of clauses linear in the number of edges in the graph. It follows from the result of Hajnal et al.

[HMT88] that we can find a constant c such that the communication complexity of 2-SAT is at

least cn log n, where the formulae have at most n variables and at most n clauses (and so they

have at most n gates and c′n wires, for some constant c′).
The above lower bound is for 2-SAT, and we want to get a stronger bound for k-SAT, where

the number of wires is k times the number of gates. With this in mind, we give a reduction from

a partition problem that we now describe.

A partition of a set S is a set {S1, . . . Sk} of disjoint subsets, called blocks, of S whose

union is S. We say that a partition P refines a partition Q iff every block of P is contained in

some block of Q, i.e. ∀Pi ∈ P , ∃Qj ∈ Q such that Pi ⊆ Qj . The join of two partitions P,Q is

denoted P ∨ Q, and is the finest partition R such that both P and Q are refinements of R (i.e.

R refines every partition R′ that is also refined by both P and Q). The problem PARTITION is

as follows:

Problem PARTITION:

Input: Two partitions P,Q of {1, . . . , s}
Output: Are elements 1,2 in the same block in the partition P ∨Q?

We can construct a reduction to Π2
2-SAT as follows. Alice has a partition P and Bob has a

partition Q. Given a partition P = {P1, . . . , Pk} of {1, . . . , n}, order its blocks (the order can

be chosen arbitrarily) and let P (i) = j iff i ∈ Pj . Alice then constructs a formula f1 as follows.

For each i ∈ {1, . . . , n} with P (i) = j then add the two clauses (yi ∨ xj)∧ (xj ∨ yi) to f1. Bob

constructs a formula f2 in the same manner with the partition Q, but uses variables zi in place

of the xi. Let f = f1∧f2, then f is a 2-CNF formula and f1, f2 can each be constructed with no

communication between Alice and Bob. Now, the elements 1,2 are in the same block in P ∨Q
iff the formula (f ∧ y1 ∧ y2) is unsatisfiable.

The idea of the construction can be easily explained with an example. Consider the two

partitions P = {{1, 3}, {2, 4}} and Q = {{1, 4}, {2}, {3}}. We construct the formulae as

follows:

f1 = (y1 ∨ x1) ∧ (x1 ∨ y1) ∧ (y3 ∨ x1) ∧ (x1 ∨ y3)

∧ (y2 ∨ x2) ∧ (x2 ∨ y2) ∧ (y4 ∨ x2) ∧ (x2 ∨ y4)

f2 = (y1 ∨ z1) ∧ (z1 ∨ y1) ∧ (y4 ∨ z1) ∧ (z1 ∨ y4)

∧ (y2 ∨ z2) ∧ (z2 ∨ y2) ∧ (y3 ∨ z3) ∧ (z3 ∨ y3).

Now we can test satisfiability of f1∧ f2∧ y1∧ y2 by deciding whether 1,2 are in the same block

in P ∨ Q. The intuition is that a ‘path’ from element 1 to element 2 will force the variables

y1, y2 to take the same value in any satisfying assignment of the formula. Since y1 is true, this
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forces x1 to be true, which forces y3 to be true (since 1,3 are in the same block in P ). Since

y3 is now true, this forces z1 to be true (since the first block of Q also contains the element 1).

This in turn forces y4 to be true (since Q contains the block {1, 4}), which forces x2 to be true.

Finally, y2 becomes true, which contradicts the clause y2 we already had, and so the formula

cannot be satisfiable. It is useful to think of the xi as communicating within the same formula

fi, and the yi as communicating between the two different formulae.

It is known [HMT88, Reference [8]] that the deterministic communication complexity of

deciding PARTITION on sets of size s is log(Bs − Bs−1) = Ω(s log s) where Bs is the sth

Bell number. It follows that any two-party deterministic protocol that decides satisfiability of

a 2-CNF formula on n variables and with O(n) clauses, must communicate at least Ω(n log n)
bits.

Combined with the reduction described above, this proves Lemma 3.4.4.

Remarks. Since a Π2 formula is a special case of a Π3 formula, with fan-in 1, the previous

lower bounds immediately apply to Π1
3 formulae. However, there is hope that we can prove the

conjecture for Π3 formulae, as they are more expressive than Π2 formulae. We have tried to

prove the conjecture for larger values of k but without much success.

The following idea may be helpful. With Π3 formulae, we can express each block of a

partition of {1, . . . , n} with a single clause, rather than using 1 clause per element (as in the Π2-

SAT reduction above). Therefore, a reduction from PARTITION to Π3-SAT can be obtained as

follows. Recall that the jth block of a partition P is denoted Pj . For each block Pj ∈ P , Alice

adds the following two clauses to f1:


xj ∨

∧

k∈Pj

yk


 ∧


xj ∨

∧

k∈Pj

yk


 .

Bob does the same for Q, using variables zi in place of the yi. The same claim holds as for the

original reduction, except that we now only use two clauses per block of each partition, whereas

the reduction to Π2-SAT uses two clauses per element.

We can consider the nondeterministic communication complexity of the problem, which

will be useful later. It is known [KN97] that the deterministic and nondeterministic communi-

cation complexities are related by D(f) = O(N0(f)N1(f)) (recall that D,N0, N1 are the de-

terministic, nondeterministic and co-nondeterministic communication complexities). Lemma

3.4.7 proves that D(Π2-SAT) = Ω(n log n), where the formula has at most n clauses and n
variables. Observe that N1 = O(n) (the complexity of verifying that a formula is satisfi-

able) since a satisfying assignment (if one exists) can be described with O(n) bits. Therefore,

N0 = Ω(n log n)/N1 = Ω(log n) bits.

3.4.2 A randomized lower bound

We can show an Ω(n) randomized lower bound for Πk
2-SAT by a reduction from the set dis-

jointness problem.

Lemma 3.4.8 Let P be a two party randomized protocol for deciding Πk
2-SAT. There exists an

input such that P communicates at least Ω(n) bits on this input.

Proof. Assume that m = 2l is a power of two. The proof is by reduction from set-disjointness

on sets of size m. Assume that Alice has a set P ⊆ {0, . . . ,m−1} and Bob has a set Q ⊆
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{0, . . . ,m−1}, and there exists a randomized protocol P that computes f(φ1, φ2) = 1 if φ1∧φ2

is satisfiable and 0 otherwise, where φ1, φ2 are Πk
2 formulae. Assume that the protocol has error

probability p.

We can associate a subset Y ⊆ {0, . . . ,m−1} with its characteristic Boolean function fY :
{0, 1}l → {0, 1} by setting f(y) = 1 iff y ∈ Y . Alice constructs the CNF formula φP for the

truth table of fP corresponding to the characteristic function of her set P by making a clause

for every 0-entry in the table, i.e. at most 2l = m clauses each of size l. This is done as follows:

for an assignment of values to the yi’s such that f(y1, . . . , yl) = 0, add a clause containing xi

if yi = 1, and xi if yi = 0 (each clause is a disjunction of literals). Therefore, the clause is not

satisfied iff the element does not appear in Y . So, for a setting of variables corresponding to an

element in Y , all the clauses are satisfied. Therefore the formula φP ∧ φQ is satisfiable iff there

is an element common to both P and Q, i.e. they are not disjoint. Similarly, Bob constructs the

CNF formula φQ corresponding to the characteristic function of his set Q.

This gives a protocol to decide disjointness with the same error probability p. The lemma

follows since the randomized communication complexity of disjointness on sets of size n is

Ω(n) bits [KN97].

3.4.3 Communication complexity of (Σk
2 ∧ Σk

2)-SAT

As an interesting aside we can show that the communication complexity of deciding satisfiabil-

ity of (Σk
2 ∧ Σk

2) formulae, i.e. the conjunction of two k-DNF formulae, is exponentially lower

than for k-CNF formulae when k = O(1). This is quite surprising.

We can decide satisfiability of a formula f1 ∨ f2 (where Alice has f1 and Bob has f2) using

a single bit, regardless of the complexity of f1, f2. It might be tempting to blame the high

communication complexity on that fact that the formula f is split at a conjunction rather than a

disjunction. We now show that this is not the case, by giving an efficient protocol for deciding

satisfiability of f1 ∧ f2, where f1, f2 are each k-DNF formulae. The problem is as follows:

Problem (Σk
2 ∧ Σk

2)-SAT

Alice’s Input: A k-DNF formula f1 on n variables {x1, . . . , xn} having ≤ n clauses.

Bob’s Input: A k-DNF formula f2 on n variables {x1, . . . , xn} having ≤ n clauses.

Output: Is f1 ∧ f2 satisfiable?

Lemma 3.4.9 The deterministic communication complexity of (Σk
2 ∧ Σk

2)-SAT is O(log n), for

fixed k.

Proof. We give a recursive protocol for the conjunction of two k-DNF formulae, for any con-

stant k. We prove the existence of our protocol by inductively constructing a protocol for

deciding satisfiability of the conjunction of two k-DNF formulae, by assuming that we have a

protocol for satisfiability of the conjunction of two (k − 1)-DNFs, which (inductively) satisfies

our time bound. This will give a communication bound that depends exponentially on k.

A k-DNF formula f is bad iff there is a set of at most k variables so that every term of f
contains as a literal one of these variables (appearing either negated or unnegated). If f is not

bad, we call it good. We make use of the following lemma.

Lemma 3.4.10 If f1 is a good k-DNF and f2 is a non-empty k-DNF, then f1 ∧ f2 is satisfiable.
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Proof. Pick an arbitrary term t of f2. If f1 ∧ f2 is not satisfiable then every term u of f1 must

contain a variable from t (occurring negated in u iff it occurs unnegated in t). But then f1 is

bad.

The protocol is as follows. We assume that Alice and Bob both remove any inconsistent

terms in their formulae before beginning the protocol. Alice first checks if her formula is good.

If it is, f1 ∧ f2 is satisfiable unless f2 is empty, in which case it is unsatisfiable. They use O(1)
bits of communication to discuss this. We then do the corresponding check with Alice and Bob

switching roles. So we can henceforth assume that both f1 and f2 are bad, so by the lemma

there is a set S1 of at most k variables, occurring in every term of Alice’s formula and a set S2

of at most k variables, occurring in every term of Bob’s formula. Alice now sends S1 to Bob

and Bob sends S2 to Alice, using O(k log n) bits of communication in total. They now run the

protocol for (k − 1)-DNFs on the 22k subproblems corresponding to fixing the variables in the

set S1 ∪ S2, trying all possible truth assignments. They output “satisfiable” if and only if one of

these runs says “satisfiable”.

For the communication complexity bound, let C(n, k) = O(k log n)+22kC(n, k−1), which

gives C(n, k) = k24k2
log n. Therefore for fixed k the protocol uses O(log n) bits.

3.5 Proof labeling schemes

Solvability of an SPP is a global property of the network, yet in a large network we would

like to be able to verify that the assigned routing tree is indeed a solution, by using only local

information. For example, if each node i is assigned a path π(i), we would like to construct

a distributed representation of π in order that we can locally and verifiably check if the path

assignment π is stable. This is the idea of proof labeling schemes, which were introduced by

Korman et al. [KKP05].

Imagine that there is some graph property P that we want to verify (e.g. can the current

graph be coloured with k colours?) and that we have a candidate solution (e.g. a colouring of the

nodes) that is encoded by giving each node a local state and a label. We assume that the decoder

algorithm, when run at a node v, can observe the state of v and the labels of v’s neighbours.

The decoder must be able to verifiably check if the property holds, i.e. the neighbours cannot

convince a node that the property holds if in actual fact it does not.

3.5.1 Definition

We now define proof labeling schemes as in [KKP05]. A marker algorithm M is an algorithm

that given a graph G, assigns a label L(v) to each node v. For a marker algorithm and a node,

let Adj′L(v) be a set of fields, one field per neighbour. Each field corresponding to an edge

e = (v, u) contains the label L(u). Let AdjL(v) = 〈sv, L(v), Adj′L(v)〉. Informally, AdjL(v)
contains the labels given to all of v’s neighbours, along with the edges connecting v to them. It

also contains v’s state and label L(v).
A decoder algorithm D is an algorithm that can be run separately at each node. When D is

run at a node v, its input is AdjL(v) and its output is denoted by D(v, L). The idea is that the

decoder algorithm, when run at a node v, can see v’s state in addition to the labels for v and all

its neighbours.

Let f be some boolean function over a family of graphs G. A proof labeling scheme π =
(M,D) for f over G consists of a marker algorithm M and a decoder algorithm D, such that
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the following properties hold:

1. For every graph G ∈ G, if f(G) = 1 then D(v, L(M,G)) = 1 for every node v ∈ G,

where L(M,G) is the labeling produced by M on G.

2. For every graph G ∈ G, if f(G) = 0 then for any labeling L there exists a node v ∈ G
such that D(v, L) = 0, i.e. the property cannot be verified at some point in the network.

The size of a proof labeling scheme π is the maximum number of bits assigned to some label

over all graphs G ∈ G and nodes v ∈ G. For a family G of graphs and a function f , the proof

size of f on G is the smallest size of any proof labeling scheme for f on G.

3.5.2 Proof size and communication complexity

We now prove a lemma that relates the size of any proof labeling scheme for a problem to

the communication complexity of any protocol for the same problem, when played between

two players. We combine this with our communication complexity results for the problem of

deciding solvability of a stable paths instance (SPP-SOLVABILITY) to obtain lower bounds for

the size of proof labeling schemes for SPP-SOLVABILITY.

Let f be a boolean graph property on graphs G ∈ G for some family G (in our case later on,

f will be the property ‘is a particular routing tree on G stable?’). We shall partition the nodes

of G between two players Alice and Bob, in order to construct the two-party communication

problem associated with f and G. Let (X,V \ X) be a (not necessarily balanced) partition of

the nodes of G. Denote by N(X,V \X)(f,G) the nondeterministic communication complexity of

the best protocol for f on the family G, when run on the graph G and this partition of nodes. To

avoid confusion, we use Adj(X) for the neighbours of X , and Ãdj(X) = Adj(X) ∩ (V \X)
for the set of neighbours of nodes in X that are in the other side of the partition. We can now

prove the main result of this section.

Lemma 3.5.1 Let f be a graph property on a family of graphs G. The proof size of f is at least

max
G∈G

max
X⊆V

N(X,V \X)(f,G)−O(1)

|Ãdj(X) ∪ Ãdj(V \X)|
,

and the total label size is at least maxG∈G maxX⊆V N(X,V \X)(f)−O(1).

Proof. Let G ∈ G be a graph. Let L(v) be the label assigned to node v by the marker algorithm

M , and let D be the corresponding decoder algorithm. Given a labeling of the nodes and

a partition (X,V \ X) of nodes, we construct a reduction showing how we can use a proof

labeling scheme for f on G to construct a two party nondeterministic protocol to solve f on G,

when the players are given nodes X and V \X .

Alice is given the nodes X and Bob is given V \ X as in Figure 3.13, and they each non-

deterministically guess a labeling for their nodes. Note that Alice and Bob can independently

run the decoder algorithm on the nodes in their part of the graph that have no neighbours in the

other side. Therefore we can assume that D(v, L) = 1 for all the nodes in (X \ Ãdj(V \ X))

and (V \X)\ Ãdj(X), since Alice and Bob can discuss this using O(1) bits of communication.

Now they just need to run the decoder on the remaining nodes, as follows. Bob sends the labels

L(Ãdj(X)) to Alice who runs the decoder on the remaining nodes in X , and then Alice sends
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X (Alice) V \X (Bob)

Ãdj(X)
Ãdj(V \X)

Figure 3.13: Illustrating Lemma 3.5.1

to Bob L(Ãdj(V \X)) who runs the decoder on the remaining nodes of V \X . They can then

discuss with O(1) bits whether the decoder failed on any node of G, and hence compute f(G).

The protocol that is described above has nondeterministic communication complexity at

most |L(Ãdj(X))|+|L(Ãdj(V \X))|+O(1) on the graph G, since the labels are communicated

by simply sending their bit string representations. It follows that for any graph G ∈ G that is

partitioned into (X,V \X),

∑

v∈V

|L(v)|+ O(1) ≥ |L(Ãdj(X))|+ |L(Ãdj(V \X))|+ O(1) ≥ N(X,V \X)(f,G),

which gives the lower bound on the total label size. For the individual label size, we can

divide the above inequality by |Ãdj(X) ∪ Ãdj(V \X)|. Therefore at least one node in the set

Ãdj(X) ∪ Ãdj(V \X) must be assigned a label of size at least

max
X⊆V

N(X,V \X)(f,G)−O(1)

|Ãdj(X) ∪ Ãdj(V \X)|

bits. Finally, we take the maximum of this quantity over all graphs G ∈ G, since the size of a

proof labeling scheme is the maxmimum label size over all graphs G ∈ G.

Remarks. The bound on individual size can be improved if a smaller number of labels are

sent, since the middle term in the inequality concerns fewer nodes and so the denominator can

be made smaller. A better strategy may be possible in e.g. bounded treewidth graphs.

Intuitively, since the marker algorithm can examine the whole graph in order to construct the

proof labeling, the marker algorithm can be thought of as playing the role of the ‘all-powerful

prover’ in nondeterministic complexity [KN97]. In this way the bound on the label size fol-

lows naturally from the bound on the communication required for Alice and Bob to verify a

nondeterministic guess of a solution to f(G).

The lemma implies that in order to get a good lower bound on the proof size of f , we should

look for a partition involving few nodes having edges in both sides of the partition, yet where

the function f still has high nondeterministic communication complexity on this partition.
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3.5.3 Proof labeling schemes for solvability

We now apply the above lemma to some of our communication complexity lower bounds, to

obtain lower bounds on the proof size for deciding solvability in networks.

Lemma 3.5.2 The proof size of SPP-SOLVABILITY is Ω(n) bits.

Proof. Theorem 3.4.3 shows that we can solve disjointness on Ω(2n/2)-element sets by a re-

duction to SPP-SOLVABILITY. A closer look at the reduction shows that the SPP is solvable

iff the two sets are not disjoint. Since the decoder algorithm can only decide locally if the

graph property f does not hold (since the property holds globally iff there is no node where

it does not hold locally, i.e. there is no node that has a proof of non-solvability), we need to

consider the communication complexity of proving that two r-element sets are disjoint, i.e. the

co-nondeterministic complexity N1(DISJ) = Ω(log r) bits [KN97].

Since the reduction in Theorem 3.4.3 is from sets of size Ω(2n/2), it follows from Lemma

3.5.1 that the total label size is at least Ω(n) bits. For the proof size, the network partition used

in the reduction has at most O(1) nodes having edges in both sides and so the proof size is also

Ω(n).
The lower bound is almost tight since we can construct a proof labeling scheme using

O(n log n) bits per label. Assume that T = {πi} is a stable routing tree where the path

πv is assigned to node v. Let p(v) be the parent of v in T (p(v) = ǫ iff v is the root or

πv = ǫ, i.e. v is assigned the empty path). We construct the labels L(v) = π(v), and the state

sv = (cv, π(v), p(v)), i.e. v’s cost function, v’s path and the parent of v in T .

The decoder algorithm is given AdjL(v) = 〈sv, L(v), Adj′L(v)〉 and outputs D(v, L) = 1 iff

all of the following hold, and 0 otherwise.

1. p(v) is a neighbour of v in G (for the root, assume that ǫ is a neighbour of v);

2. v ◦ L(p(v)) = π(v) (the paths form a confluent routing tree);

3. For all neighbours u of v in G such that v 6∈ L(u), we have cv(L(v)) ≤ cv(v ◦ L(u)) (the

path assignments are stable and switching cannot create a cycle).

Note that the function cv(·) can be computed by consulting v’s local state. We now claim

that the scheme satisfies both properties of a proof labeling scheme:

Claim. Let π be a stable solution and let L be the labeling computed as above for π. Then there

is no node v where D(v, L) = 0.

Proof. Assume that π is a stable solution and that there is some node v such that at least one of

the three properties above fails to hold. Then we show that L, which equals π, is not a solution

– a contradiction.

If the first property fails then the set of paths π does not exist in G and so π is not a solution.

If the second property fails then the set of paths of π, which are the same as L, do not form a

confluent routing tree. If the third property fails then there exists a neighbour u of v such that v
would prefer the path via u, and switching would not create a cycle. Therefore if any of these

properties fail to hold then the labeling L is not a solution.

Claim. If the SPP is unsolvable then for any labeling L there exists a node v with D(v, L) = 0.

Proof. If the SPP is unsolvable then by definition there does not exist a stable solution π. Now

consider any labeling L. We show that there is a node v such that D(v, L) = 0.
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We can assume wlog that the labeling is a valid path assignment, i.e. the paths form a

confluent rooted tree, rooted at 0. If this were not the case then some node would clearly fail

at properties 1 or 2. Therefore we can assume that both properties 1 and 2 hold at all nodes. It

remains to show that property 3 fails at some node v. Assume, to the contrary, that property 3

holds at all nodes under the labeling L. But then all nodes have a path (possibly the empty path)

that they would not switch from. By definition, this is exactly a stable path, and so there must

be some node v where D(v, L) = 0.

It is important to note that the above lower bounds are independent of the distributed repre-

sentation of a solution.

Proof size of unsolvability

We can also consider the problem of deciding unsolvability of an SPP, i.e. the function SPP-

UNSOLVABILITY, which is the negation of the function for SPP-SOLVABILITY.

Lemma 3.5.3 The proof size of SPP-UNSOLVABILITY is Ω(2n/2) bits.

Proof. We use the same construction as for the previous lemma, but now the function is true

iff the SPP is unsolvable iff the two sets are not disjoint. Therefore, the decoder outputs true iff

no node has a proof of solvability. In this case, we need to consider the complexity of proving

that two sets are not disjoint, i.e. the nondeterministic complexity N0(DISJ). It is known that

N0(DISJ) = Ω(r) [KN97] for r-element sets. Applying Lemma 3.5.1 as in the previous proof

shows that the proof size is Ω(2n/2) bits.

Intuitively, the proof size of unsolvability is so high because a node must be able to reject a

false proof, which is at least as hard as verifying a proof of solvability of the SPP.

3.5.4 Forbidden-set preferences

For the forbidden-set routing algebras, Theorem 3.3.1 gives a reduction from Π3-SAT where

the formula is satisfiable iff the network is solvable. The discussion following Lemma 3.4.7

implies that N0(Π3-SAT) = Ω(log n) bits. A similar argument to Lemma 3.5.2 shows that the

proof size of FS-SPP-SOLVABILITY is Ω(log n) bits (the reduction in Theorem 3.3.1 can be

modified to have O(1) nodes having edges in both sides by adding two extra nodes 0′ connected

to 0, and y′
n connected to yn, where 0, yn are in one side and 0′, y′

n are in the other side and

all previous connections from the bad triangles to 0, yn are now connected to 0′, y′
n instead.

This modification does not affect the solvability of the construction.) We have been unable to

improve the O(n) upper bound of the general protocol. Therefore it is open as to whether there

exists a more compact distributed representation of a solution (and hence a better proof labeling

scheme) for FS-SPP-SOLVABILITY.

3.6 Discussion

At this point it is worth discussing the results for the three routing algebras we have considered:

forbidden-set, two-hop and next-hop. First let us consider the complexity of deciding solvability

– of all these, only next-hop routing does not give an NP-complete problem, but it is trivial as

there always exists a solution. This gives the following open problem.
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• Fully characterise the relationship between the algebraic properties of A and the com-

putational (or communication) complexity of A-SPP-SOLVABILITY. The results of this

chapter show only that some algebras generate hard instances (NP-complete, or exponen-

tial communication) and others generate easy instances (trivial).As yet, there is no known

algebra A where A-SPP-SOLVABILITY is neither trivial nor NP-complete.

We conjecture that for any non-trivial routing algebra (an algebra is non-trivial if it can gen-

erate both solvable and unsolvable SPP instances), the problem of deciding solvability is NP-

complete. In addition to the strong negative results in this chapter, this would be a strong ar-

gument against the use of stable routing trees for policy-based routing. Feamster et al.[FJB05]

have also considered the additional problem of verifying if an iterative algorithm will converge

on a collection of policies from any initial state. They call this property safety and show that any

SPP that is both solvable and safe must have policies that are essentially equivalent to ranking

based on path lengths.

Now we consider the communication complexity of deciding solvability. Let us call an

SPP instance generated using the forbidden-set algebra FS a sparse instance if the size of each

forbidden set is bounded, and dense otherwise. In the case of sparse forbidden-set instances,

Lemma 3.4.4 implies that no deterministic distributed algorithm for deciding solvability can

do better than sending all the forbidden sets to a central node, using a spanning tree of the

network. For dense instances, it is open as to whether the policies can be compressed to save

communication (and hence space in a proof-labeling scheme), by utilising redundancy in the

policies. Also, it is an interesting open question as to whether one can do better (in both the

sparse and dense cases) by using randomization.

However, for next-hop algebras, constructing a solution (with minimum cost) reduces to

constructing a (minimum cost) spanning tree and therefore it is possible to do useful intermedi-

ate computation in the network in order to save communication. For two-hop algebras, there is

still an Ω(n log n) bits communication bound on the associated two-party game, but the stretch-

ing trick that we used for the forbidden-set case fails, because it would require policies that

could distinguish between paths, based on nodes at a distance Ω(n) from the source node.



CHAPTER 4

Towards Compact Routing

4.1 Introduction

In the previous chapter, we showed several intractability results for the problem of constructing

and verifying stable routing trees for forbidden-set routing. In this chapter, we shall forget

about using routing trees and try to construct alternative routing schemes. To do this, we study

the model of compact routing, for which good schemes are known for shortest-path routing.

We then show how to construct compact routing schemes to solve for the forbidden-set routing

problem for various classes of graphs.

Routing tree-based schemes construct a forest of routing trees, one for each destination,

and forward packets along the tree for each destination. Therefore, each node stores one port

number for each destination, i.e. O(n log n) bits. A routing tree is stable iff no node can switch

to a strictly lower-cost path without creating a cycle. The difficulty with routing tree-based

schemes is that since nodes are free to choose paths, we have to assume that stable routing trees

are the only ones that can exist. Unfortunately, stable trees may not exist and deciding if they

do is intractable, both in communication and computation. Our goal is to route on all lowest-

cost paths while still having low space requirements, preferably sublinear in n (we will show

that this is impossible for general graphs, but possibly achievable for some restricted classes of

graphs).

4.2 Motivation

Shortest-path routing can be done by storing at each node w a table that lists for every destina-

tion v, the next-hop on the shortest path from w to v. It is easy to see that the paths used for

routing in this way form a forest of shortest-path trees rooted at each destination. Since every

subpath of a shortest path is also a shortest path, a shortest-path routing tree is always stable.

The results of Griffin et al. [GSW02] show that for policy-based routing it may be impossible

to construct a stable routing tree, so it is not always possible to route on lowest-cost paths using

this method. Consider the following simple scheme for policy-based routing. Each node w
stores a table where the entry (u, v) specifies the next hop from w on the path from u to v of

45
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lowest cost to u. When a node u wants to send a packet to destination v, it writes into the header

of the packet the string 〈u, v〉. Now when some node w receives this packet, it looks up the en-

try 〈u, v〉 to find the next link for this packet. This way, each node can route on its lowest-cost

path to each destination. However, the downside is that each router now stores O(n2) entries in

its local routing table, which is too demanding in a large network. With a routing tree, all the

sources whose paths pass through the same node w to the same destination v must agree to use

the same path from w and therefore each node can store at most O(n) entries.

The central question we want to answer is this: can we reduce the space to below O(n2) per

node, while still being able to route on all lowest-cost paths? Consider the case of shortest-path

routing; it is known [GPPR04] that Ω(n) bits are required if we wish to route on exactly shortest

paths, but this can be reduced if we are willing to accept approximately-shortest paths. We say

that a path has stretch k if it has cost within a factor k of the optimal path. Proven cases of a

conjecture of Erdos imply that any scheme that routes on paths of stretch three must use space

Ω(n1/2) at some node (as remarked in [TZ01b]).

A promising direction is to make use of a compact and localized representation of the graph

– each node is assigned a data structure (called its routing table) and a label, which identifies

the node to other nodes. Routing is then done as follows: if node u wants to route to v it writes

v’s label into the packet header. Nodes can then use their routing tables and v’s label to decide

how to forward the packet through the network. This is known as compact routing and was first

introduced by Peleg and Upfal [PU89]. More details about localized data structures for routing

can be found in the excellent survey paper by Gavoille and Peleg [GP03]. Compact routing has

been extremely successful for approximate shortest-path routing: Thorup and Zwick [TZ01b]

gave an almost-optimal stretch-3 scheme using routing tables of size Õ(n1/2) and O(log n)-bit

labels1 where each routing decision takes just constant time.

We argue that for policy-based routing on the Internet, compact routing schemes are better

than using routing trees. Since no routing trees are constructed, compact routing schemes can

send packets whenever two nodes are reachable. In contrast, packets can be sent only if a stable

routing tree exists where the source node is not assigned the empty path (and deciding if such

a tree exists is NP-complete even with forbidden-set policies on bounded treewidth graphs).

So far nothing is known about the viability of compact routing schemes for policy routing. In

particular, it may be that the space requirements are higher than Ω(n) per node.

The idea of using compact routing on the Internet has been suggested elsewhere, for example

[KFY04]. However, the suggestion is to make use of the schemes for approximate shortest-path

routing. The freedom offered by policy routing is important and therefore until a scheme exists

that can handle policy routing (even for restricted policies such as forbidden-set), there will

remain no viable alternative to BGP.

4.3 Preliminaries

We now introduce the model of routing that we will use for this and subsequent chapters.

Readers familiar with compact routing may wish to skip this section. A routing scheme is a

distributed algorithm for delivering packets between processors in a network. Assume that a

labeling of the nodes of the network has been given. Each packet has a header that contains the

label of the destination of the packet and perhaps some additional information that can be used

1f(n) = Õ(g(n)) if ∃c ≥ 0 such that f(n) = O(g(n) logc n)
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Figure 4.1: A model of a router

to guide the routing of the packet. Each edge adjacent to a processor is identified by its port

number. Each processor stores a local data structure called the routing table. When a processor

receives a packet on an incoming port, it uses its routing table, the incoming port number and

packet header to decide whether the packet has reached its destination or, if not, which outgoing

port the packet is to be sent on and what the new header should be.

Let G be a graph representing a communication network. We shall assume that G is con-

nected, undirected and unweighted. Each node of G has an identifier ID(u) ∈ {1, . . . , n}.
However, the routing scheme uses a routing label L(u) to identify u. The difference between

the identifiers and labels is that the labels may be used to encode additional information about

nodes, which may enable more efficient routing strategies to be used. Given a graph with labels

L(·), a routing function R on G is a distributed algorithm for routing on G. The algorithm builds

a path from the source to the destination by selecting, at each intermediate node, the next link on

which to forward the packet. More precisely, R = (P,H) where P is the port function and H is

the header function. For any two distinct nodes u, v, R computes a route u = u0u1 . . . ur = v,

a sequence h0h1 . . . hr of headers, and a sequence p0p1 . . . pr of output port numbers. The port

numbers identify the links connected to a given node, and may be particular to that node; for

example a link connecting x to y may have a different port number in x to its port number in

y. The port numbers at a node u are uniquely chosen from {1, . . . , deg(u)}. The restriction of

R to u is called u’s local routing function, and this is what we shall refer to as u’s local data

structure.

Figure 4.1 shows the model of a router that we use. A message arriving at a node ui through

an input port qi is given a new header hi+1 = H(ui, qi, hi) and is forwarded on the output port

pi = P (ui, qi, hi). We require that q0 = pr = 0, and h0 = L(v), i.e. the initial header provided

by the source is the label for the destination node.

A routing strategy is an algorithm that computes, for a graph G, a routing function R on

G. Therefore, the strategy consists of a preprocessing stage that assigns labels to nodes and

constructs the distributed data structures necessary. A routing scheme can be thought of as an

implementation of a function. An oblivious routing function is a routing function that only

depends on the header, and not the input port. A direct routing function is an oblivious routing

function that only depends on the destination, and therefore h0 = h1 = · · · = hr = L(v). The

routing functions we shall consider are all oblivious, and some of them are also direct. Direct
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routing has the advantage that it is usually faster, as routing decisions can be made quickly. A

routing scheme is said to be compact if the local data structures are sublinear in size, i.e. o(n)
bits, and the packet headers are all polylogarithmic in size, i.e. at most logc n bits for some

constant c.

4.4 Deciding if there exists a zero-cost path

We begin by considering a simpler problem than routing. The path cost labeling problem is

as follows: given a graph G and costs {cu(v)}, assign labels L(v) to nodes so that given only

L(u), L(v), we can compute the minimum cost cu(P ) of a path P from u to v. We shall call

such a label a path cost label for the costs {cu}. Throughout the chapter, we shall assume that

the costs represent forbidden-set policies, i.e. cu(P ) = |S(u) ∩ P | for a path P from u to v, so

we will refer to the forbidden sets S(u) instead of the costs. In the zero-cost path problem, we

are only interested in whether there is a path P of zero cost from u to v. Let dG(u, v) represent

the (unweighted) distance between u, v in the graph G. Then the zero-cost path problem is

equivalent to deciding whether S(u) is a separator of u, v in G. This relationship implies that

our problem may also be of interest from a graph theory perspective – constructing small zero-

cost labels is equivalent to constructing an efficient distributed localized representation of all

the separators of a graph.

The motivation for this problem is that any routing scheme that can route on approximately

lowest-cost paths must be able to distinguish between the case where there exists a path of zero

cost and when there is no zero-cost path. The problem is analogous to deciding reachability in

graphs (labels of size O(log n) bits suffice to decide reachability in undirected graphs – simply

label each node with the identity of its connected component). We can now state our first result.

Let k be an upper bound on the size of a forbidden set, i.e. k ≥ maxu |S(u)|.

Theorem 4.4.1 Let nodes have forbidden-set policies of maximum size k, with cost as defined

above. Then any undirected graph G has zero-cost path labels of size O(k∆(T ) log n) bits,

where ∆(T ) is the degree of a minimum degree spanning tree of G. Given the labels, we can

decide whether there is a zero-cost path in time O(log k∆(T )).

We shall prove Theorem 4.4.1 by first proving a similar result for the case where the sets

S(u) are sets of edges rather than nodes. In this case, we are interested in deciding if a set S(u)
is a cut between u, v in G. First we shall assume that the sets S(u) are edges instead of nodes,

so we are interested in the problem of detecting cuts. Assume also that |S(u)| ≤ k. An Euler

tour of a graph is a cycle that traverses each edge exactly once, although it may visit a node

more than once. Euler’s theorem says that a graph has an Euler tour iff every node has even

degree. We can assume that G is Eulerian by doubling up each edge into its two directed edges,

so deleting an edge from G corresponds to deleting two edges from its Euler tour. For each node

u, partition the tour into at most 2k − 1 intervals corresponding to deleting the set S(u). Now

build an auxiliary graph H(u) on the intervals where two intervals are adjacent iff they both

have an occurrence of the same node. Now we consider reachability in the graph H(u). Let

R(u) be the set of nodes of H(u) that can be reached from an interval containing an occurrence

of node u. (It is easy to see that all the nodes in H(u) whose intervals contain an occurrence of

the same node v, form a clique in H(u). Therefore for a node v in G, we can arbitrarily pick a

node of H(u) containing an interval of v in order to determine reachability in H(u).)
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The label for node u contains two things:

1. The set of intervals R(u) (using O(k log n) bits);

2. The position P (u) on the Euler tour of some (arbitrarily-chosen) occurrence of node u
(using O(log n) bits).

Now, given two labels L(u), L(v), we check whether P (v) is contained in an interval of R(u).
If not, then S(u) is a uv-cut in G. The intervals R(u) can be stored in an interval search tree

(a binary search tree where the key for an interval is its lower limit) so that we can make the

decision in time O(log k) (assuming that O(log n)-bit comparisons take constant time).

Proof of Theorem 4.4.1. If S(u) is a set of nodes, things are harder (it seems). We could

delete all adjacent edges to a node, but this would incur a factor of ∆(G), the maximum degree

of a node in G. Alternatively, if G has a Hamiltonian cycle, we can use the Hamiltonian cycle

in place of the Euler tour, but cutting nodes instead of edges. For more general graphs, we can

do the following. Construct a minimum-degree spanning tree T of G (i.e. a tree whose maximal

degree is smallest), and then construct the Euler tour of the tree T (this tour contains at most

2(n− 1) edges after doubling up the edges of T ). Now, we can build the auxiliary graph H(u)
where two intervals are adjacent iff at least one of the following holds:

1. both intervals both have an occurrence of the same node;

2. one interval contains an occurrence of u and the other an occurrence of v, and the edge

(u, v) is in E(G) \ E(T ).

The set R(u) and the labels are constructed as for the edge case. Now, each node appears at

most ∆(T ) times in the tour, so R(u) contains at most O(k∆(T )) intervals. Therefore the labels

are of size at most O(k∆(T ) log n) bits. As for the edge case, we can store the set R(u) in an

interval search tree, so the decoder takes time O(log k∆(T )) = O(log n).
Note that finding a minimum-degree spanning tree is NP-hard – G has a Hamiltonian cycle

iff it has a spanning tree with degree two. So for the ring, we can use the above construction to

find labels of size O(k log n). Graphs of bounded independence number, 1/O(1)-tough graphs

and almost all r-regular graphs (for fixed r ≥ 3) have spanning trees of bounded degree, so

they have labels of O(k log n) bits. There are many cases where the bound is far from tight;

for example, the n-star has O(1)-bit labels (we just need to store whether each forbidden set

contains the center node) but any spanning tree has degree Ω(n). We believe that it is possible

to improve the space bound (possibly at the expense of a higher running time), but we have been

unable to do so.

4.5 A forbidden-set routing scheme

We now consider the forbidden-set routing problem, i.e. routing packets on paths that avoid

the source node’s forbidden set. Imagine how we might use the cost labels constructed in the

previous section to guide the routing of packets through the network. We begin with an example

– consider the network of Figure 4.2 where node u wants to send a packet to v on a path that

avoids nodes b, e. Should u first send the packet to a or c? Either node is not in the forbidden

set of u, so assume that u sends it to c. Now c has to decide where next to send it. We can write

the set {b, e} into the packet header so that c knows not to forward it to b. Perhaps we can also
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Figure 4.2: Motivating distance separator labels. Consider a packet from u that arrives at d

with destination v, and forbidden set {b, e}. Where should d forward the packet? The distance

separator labels allow d to compute the distances to v in G \ {b, e} from each of its neighbours.

It can then forward the packet to the neighbour that minimizes this distance.

write into the packet header the route that the packet has taken so far (although this will violate

our requirement of small packet headers). Then c knows that the packet just came from u, so

the only alternative is to send to d. But then what should it do? Should the packet go to a or

to f? The problem is that d does not know that a cannot reach v while avoiding b, e, without

returning to d. One possible solution is to construct a flooding protocol, where each node sends

the packet to all its neighbours except those in the set S(u). Although this would ensure that the

packet reaches the destination if there exists a zero-cost path, it is extremely inefficient in terms

of communication complexity and congestion. We want a forwarding protocol where packets

are only forwarded, not replicated.

4.5.1 Distance separator labels

This motivates the following approach: what if we could construct labels in a different way,

so that intermediate nodes w can decide which of their neighbours cannot reach the destination

without returning to the current path? We could then guarantee that the packet always makes

progress towards the destination, i.e. the distance in G \ S to the destination always decreases.

Definition 4.5.1 (Distance separator label) A distance separator label is a label L(v) such that

given L(u), L(v) and L(s1), . . . , L(sk), we can compute dG\S(u, v), where S = {s1, . . . , sk}.

If S is a separator of u, v in G then by definition, dG\S(u, v) = ∞, and we shall define

dG\S(u, s) = ∞ for all s ∈ S. We shall call such labels distance separator labels since they

measure the distance in a graph with a given set of nodes removed. Finally, note that we are



4.5. A forbidden-set routing scheme 51

interested in measuring the unweighted distances in G \ S, not the path costs using the cu(v).
The distances in G \ S will be used to guide the packet through the network.

Imagine that we have assigned distance separator labels to nodes in an undirected graph G,

and each node knows its forbidden set S(u) ⊆ V (G) (the separator labels are constructed with-

out any knowledge of these sets). Also assume that each node u knows the distance separator

label for each of its neighbours u1 . . . ud, with |L(ui)| ≤ l for all ui. We can then route on a

shortest zero-cost path from u to v in G as follows: the source node u writes the labels L(v) and

L(s) for each s ∈ S(u) into the packet header. It then sends the packet to its neighbour ui that

minimizes the distance dG\S(u)(ui, v). This is done by consulting the distance separator labels

(if all the distances are ∞ then u declares that there is no zero-cost path). Each intermediate

node w does a similar thing – it examines the incoming packet and forwards it to the neighbour

wi that minimizes the distance dG\S(u)(wi, v) (without changing the packet header).

If there exists a path of zero-cost from u to v, this scheme always routes packets on the

shortest zero-cost path, i.e. a path not containing any element of S(u) and having length equal

to dG\S(u)(u, v). This is because a packet is always forwarded to a node that is closer to the

destination in G \ S(u) than the current node. If u, v are not connected in G \ S(u) then u can

detect this since dG\S(u)(ui, v) =∞ for all its neighbours ui. Since each node u stores the label

for itself, the labels for each of its neighbours and each element of S(u) (using O(lk∆(G)) bits)

and the packet headers contain the label of the destination and the labels of S(u) (using O(lk)
bits), we have shown the following.

Lemma 4.5.2 Assume that a family of graphs G have distance separator labels of size l bits and

forbidden sets of size at most k. Then every graph G ∈ G has a forbidden-set routing scheme

using O(lk∆(G))-bit routing tables and O(lk)-bit packet headers. Packets are sent on shortest

paths in G \ S(u).

Remarks. It is important to note that we need exact distances; approximate distances will

not suffice. If the labels only return c-approximate distances, i.e. a distance d̂G\S(u, v) where

(1/c)d̂G\S(u, v) ≤ dG\S(u, v) ≤ cd̂G\S(u, v),

then the scheme may create routing loops (since the packet header does not store the route).

Figure 4.3 gives a simple example of this. With exact distances, the distance labels ensure that

the scheme does not create loops in the routing. It is not clear if we can make use of approximate

distance labels for routing, without using large packet headers to store the path taken so far.

Our job is now to find efficient distance separator labels for various graph families, in order

to construct forbidden-set routing schemes using the above lemma.

4.5.2 A lower bound

Before continuing, we give a lower bound on the size of labels required by any forbidden-set

routing algorithm. The lower bound is for the problem of deciding if there exists a zero-cost

path between two nodes, but this is also a lower bound for any forbidden-set routing algorithm

that can decide if there exists a zero-cost path before sending the packet. The lower bound is

approximately linear in the size of the forbidden sets, and also holds for trees. Therefore, for

small k, say O(log n), it might be possible to construct routing schemes with sublinear space

requirements.
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Figure 4.3: How routing loops can occur using approximate instead of exact distances. The

distances shown are 2-approximate distances to the destination e, but there is a routing loop

a, b, c, . . .

Theorem 4.5.3 Any forbidden-set routing algorithm on n-vertex trees with forbidden sets of

size at most k must assign labels of size at least Ω(k log n/k) bits in the worst case.

Proof. Consider a tree with root u and n children u1 . . . un. Each ui can independently select

as its forbidden set an arbitrary subset of size k of {u1, . . . , un}. For every distinct collection of

forbidden sets {S(u1), . . . , S(un)}, it can be seen that there exists a distinct pair of nodes ui, uj

whose reachability has changed. Each of these requires a different set of labels to be assigned

to the graph, so at least Ω
((∑k

i=0

(
n
i

))n)
= Ω((n/k)nk) distinct labelings of the graph are

required. Taking logs and dividing by n, it follows that at least one of these nodes must receive

a label of size Ω(k log n/k) bits. We can also prove a bound for the case where S(·) is a set of

edges – let each S(ui) independently choose a subset of the n edges and then the same argument

also applies.

4.6 Distance separator labels

In the previous section we motivated the construction of efficient distance separator labels,

by showing how they can be used to construct a reasonably efficient distributed forbidden-

set routing scheme. In this section we try to construct efficient (by which we mean of size

polylogarithmic in the number of nodes in the graph) distance separator labels.

4.6.1 Trees

We shall show how to exploit the very simple structure of trees, namely that there is a unique

path between each pair of nodes, to construct efficient separator labels for them. Assume that
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we have a rooted tree (the root can be chosen arbitrarily, since it is not important for deciding

if a node is a separator of two nodes – the unique path is the same regardless of the root). It

is well-known that we can assign labels of size 2⌈log n⌉ bits to nodes, so that given the labels

L(x), L(y) we can decide in constant time if x is an ancestor of y [KNR92]. This is done as

follows. Do a depth-first traversal from the root, labeling each node v with its identifier ID(v)
in the depth-first traversal. For each node w, let fw be the descendant of w with the largest

identifier. The ancestor label for v is defined as L(v) = (ID(v), fv). A node v is a descendant

of w iff ID(v) ∈ [ID(w), fw].
We also need the related concept of the least common ancestor. A node w is the least

common ancestor (LCA) of two nodes u, v iff w is the unique node that is furthest from the

root and on both the paths from u and v to the root. Peleg [Pel00] showed that we can assign

O(log2 n)-bit labels such that given L(u), L(v) we can deduce the LCA of u, v. We can also

deduce its ancestor label by storing a mapping from the identifiers of ancestors stored in a label

to their ancestor labels with a constant increase in label size. More recently, Alstrup et al.

[AGKR02] showed the following theorem.

Theorem 4.6.1 ([AGKR02]) There is a linear-time algorithm that labels the nodes of a rooted

tree T with distinct labels of length O(log n) bits such that from the labels of u, v ∈ T we can

compute in constant time the label of LCA(u, v).

Remarks. It should be noted that the difference between the schemes of Alstrup and Peleg

is that Alstrup’s scheme only computes the LCA label for the LCA, whereas Peleg’s scheme

computes the identifier of the LCA. Peleg has also shown a lower bound of Ω(log2 n) for any

labeling scheme that computes the identifier of the LCA node. We shall be able to make use of

Alstrup’s scheme, and therefore use only O(log n)-bit labels.

Our scheme relies on the following observation: a node w is a uv-separator in T iff LCA(u, v)
is an ancestor of w and w is an ancestor of either u or v. A set S = s1, . . . , sk is a uv-separator

in T iff at least one member of S is a uv-separator in T , so to see if S is a separator we can

test each member of S independently. We can solve this using Alstrup’s LCA labeling scheme

as follows. Let J be the LCA label for node u. Then we compute the LCA label for the node

LCA(u,w) and check if it equals J . If so, u is an ancestor of w. Therefore Alstrup’s LCA

labels suffice to decide the ancestor relation.

The separator label for u is simply Alstrup’s LCA label for u in T . Given L(u), L(v) and

L(s1), . . . , L(sk), we compute the LCA label for LCA(u, v) using the scheme of Alstrup et

al. [AGKR02] and then test if each si is a uv-separator of T using the observation described

above. Therefore the label has O(log n) bits. To construct distance separator labels for T , we

can combine any distance labeling scheme [GPPR04] for trees with the separator labels. To

compute the distance dT\S(u, v), use the separator labels to decide whether dT\S(u, v) = 0; if

not, then dT\S(u, v) = dT (u, v), so we can use the distance labeling scheme. Peleg et al. showed

that unweighted trees have distance labeling schemes using O(log2 n) bits per label (and this

is known to be tight). By combining these two scheme, we get distance separator labels using

O(log2 n) bits. This is asymptotically optimal, since there is a lower bound of Ω(log2 n) bits

for distance labeling in trees [GPPR04].

Interestingly, the size of the distance separator label is dominated by the size of the distance

label, not the separator label. It is an interesting question whether we can do better if we accept

approximate distances in distance separator labels. In general, there are an exponential number

of possible separators, so at this stage it is not obvious whether the scheme for trees can offer
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much insight into how to deal with more general graphs.

4.6.2 Bounded cliquewidth graphs

We now consider the class of bounded cliquewidth graphs. The cliquewidth of a graph is a

measure of its complexity, closely related to treewidth but more powerful since every graph

having bounded treewidth has bounded cliquewidth but the converse is not true (cliques have

cliquewidth two but unbounded treewidth). For a given graph its cliquewidth is defined as the

minimum number of distinct labels required to construct the graph by only using the following

operations:

• create a node with a given label;

• p→ q: relabel all the nodes having some label p to another label q;

• p× q: connect every node having label p to all the nodes having label q.

We can therefore represent a graph by its algebraic expression, or term tree where the leaves

are labelled nodes of the graph and the interior nodes of the tree represent either a relabelling

operation p→ q or a join operation p× q.

Many graph problems can be formulated in monadic second-order logic (MS), by using

logical operations (∧,∨,¬), quantification (∀,∃), membership tests (∈,⊆) and adjacency tests

({u, v} ∈ E) over subsets (X1, X2, . . .) of nodes of a graph. As an example, consider the

following graph property.

“is the subgraph of G induced by Z connected?”

Partition(U, V, Z) ≡ (Z = U ∪ V ) ∧ (U ∩ V = ∅) ∧ (U 6= Z) ∧ (V 6= Z)
Adjacent(U, V ) ≡ ∃u, v(u ∈ U ∧ v ∈ V ∧ ({u, v} ∈ E(G)))
Connected(Z) ≡ ∀U, V (Partition(U, V, Z) =⇒ Adjacent(U, V ))

A property P is said to be MS-definable if it can be expressed in MS logic. A graph property

is a property where the variables denote the nodes of the graph under consideration. Courcelle

and Vanicat showed that for any MS-definable graph property, we can construct small labels

that can be used to efficiently decide the property:

Lemma 4.6.2 ([CV03]) Let q be an integer and P (x1, . . . , xn) an MS-definable graph property.

Let G a graph with n nodes cliquewidth at most q. Then we can assign to nodes of G labels of

size O(log n) bits so that given only L(x1), . . . , L(xk), we can decide P (x1, . . . , xk) in worst-

case time O(k log n). The constants in the big-oh notation depend only on q and P .

We now show that the property required by distance separator labels is MS-definable, which

will enable us to appeal to the above result.

Lemma 4.6.3 Bounded cliquewidth graphs have separator labels of size O(log n) bits, and a

decoder with worst-case time complexity O(k log n).

Proof. We first show that the graph property “a set of nodes is a uv-separator” is MS-definable.

We can use the property Connected to construct the following property.

“is the subgraph induced by Z connected and x, y ∈ Z?”

Connected(x, y, Z) ≡ (x ∈ Z ∧ y ∈ Z ∧ Connected(Z))
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Now we can express our desired property of deciding if there is a zero-cost path from x to y.

We can do this by testing if there exists a set of nodes S such that S does not contain a forbidden

set and there exists a path through only the nodes of S from x to y.

“is there a path x to y that avoids nodes in Z?”

Path(x, y, Z) ≡ ∃S((Z ∩ S = ∅) ∧ Connected(x, y, S))

It is clear that the property Path(x, y, Z) is MS-definable, and it is not difficult to check that

Path(x, y, Z) holds iff Z is not a uv-separator in G.

In the same paper, Courcelle and Vanicat defined an optimization version min(ϕ) of an

MS-definable property ϕ. Here, there is a free variable that denotes a set of nodes and the

cardinality of the set denoted by the free variable is minimized. Using this, we can compute

distance separator labels by appealing to the following theorem.

Lemma 4.6.4 ([CV03]) Let q be an integer and P (x1, . . . , xn) an MS-definable graph property.

Let G a graph on n nodes with cliquewidth at most q. Then we can assign to nodes of G
labels of size O(log2 n) bits so that given only L(x1), . . . , L(xk), we can compute the value

min P (x1, . . . , xk) in worst-case time O(k log2 n). The constants in the big-oh notation depend

only on q and P .

Combining this with the routing scheme in Lemma 4.5.2 gives the following result.

Theorem 4.6.5 Bounded cliquewidth graphs have a forbidden-set routing scheme, with routing

tables of size O(∆(G)k log2 n) bits and packet headers of size O(k log2 n) bits.

Proof. We just need to show how to define the property of distance separator labels as a monadic

second-order logic optimization property over the graph nodes. This is easily done using the

following:

“what is dG(u, v)?”

dG(u, v) + 1 = min(ϕ) where ϕ(u, v, Z) ≡ Connected(Z) ∧ (u ∈ Z) ∧ (v ∈ Z)

“what is dG\S(u, v)?”

dG\S(u, v) + 1 = min(ϕ) where

ϕ(u, v, S, Z) ≡ Connected(Z) ∧ (u ∈ Z) ∧ (v ∈ Z) ∧ (S ∩ Z = ∅)

In both cases, the cardinality of the set Z is one greater than the length of the path. Combining

the distance separator labels with the routing scheme in Lemma 4.5.2 gives the stated result.

Remarks

The bounded-clique width scheme suffers from two major problems:

1. A clique decomposition of the graph needs to be given to the algorithm. Unfortunately, it

is known that given a graph G and a positive integer q, the problem of deciding if G has

clique width at most q is NP-complete [FRRS06], for arbitrary values of q. However, a

result of Oum [iO05] gives, for fixed q, a cubic algorithm that computes a clique decom-

position of width 2O(q), which is enough if we are only interested in graphs having clique

width bounded by some fixed integer.
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Figure 4.4: The cograph generated by the term +(s,×(y, +(z,×(+(u, v), +(w, t))))) and its

term tree. The set {y, w, t} is a uv-separator.

2. The hidden constant in the label size is huge – if h is the number of quantifier alternations

in the formula for P , then the constant is a tower of exponentials in the clique width,

having height O(h) :

222···2
q

The second problem is due to the tree automaton approach used by Courcelle and Vanicat to

construct the labels. Since their result is for general MS-definable properties, a result of Grohe

and Frick [FG04] implies that (unless P=NP), this tower of exponentials is unavoidable. There-

fore, although the general scheme is somewhat impractical for our specific problem of distance

separator labels, it is important since it shows that labels whose size is only polylogarithmically-

dependent on n are possible. Our aim will now be to try to reduce the dependence on the

cliquewidth (or other graph parameter) to polynomial or even linear for various, often more

specific, families of graphs. We do this by exploiting the simple structure offered by separators

in graphs.

4.6.3 Cographs

Before tackling graphs with small tree width, we warm up by considering cographs, which

are graphs having clique width at most two. The family of cographs can be defined using two

operations:

• disjoint union: for graphs G,H on disjoint vertices, G + H is the graph formed by the

union of the edges and vertices of G and H .

• complete product: G×H is the graph formed by taking the union of G and H and adding

edges {u, v} for all u ∈ G, v ∈ H .

We can write the algebraic expression for a cograph as a term tree as in Figure 4.4. Each node

is labeled by its access path from the root, which describes how to reach the node in the term

tree. In the figure, we get L(u) = +2 × 2 + 2 × 1 + 1 where the numbers 1,2 indicate which

child to take at each level in the path. These labels are of size O(h) bits where h is the height

of the term tree.

Let T be a term tree defining a cograph G. Given the labels for two nodes u, v and k nodes

S = {s1, ..., sk}, the set S is a uv-separator iff
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• The least common ancestor w = LCA(u, v) is labeled with ‘+’, and;

• For every ancestor z of w labeled ‘×’, with zi the child of z whose subtree contains w, all

the descendants of z3−i must be in S.

From L(u), L(v) we can find w, z and hence check the first property. We can then examine the

access paths for s1, . . . , sk and check the second property by seeing if these paths contain the

entire subtree rooted at zi (since we know that the term tree is a binary tree). As an example,

consider Figure 4.4 and deciding whether S = {y, w, t} is a separator of u, v. The LCA of u, v
is labeled with ‘+’, and for the highest node labeled ‘×’, we have y ∈ S. For the other ancestor

labeled ‘×’, we also have that w, t ∈ S. Therefore S is a uv-separator.

Remarks

The diameter of a cograph is at most two, so we only considered the problem of deciding

whether a given set is a separator (rather than computing the distance around this set). This will

be enough to introduce the more involved scheme for treewidth k graphs in the next section. We

may hope that we could arrange for the term tree to be of height O(log n); however this is not

possible using the algebra here – for a counterexample, take the cograph with nodes 1, . . . , n
where node i links to every node j < i if i is even, and is not linked to any node j < i if i
is odd. The cograph expression is unique and of height n, hence we would assign some nodes

labels of size Ω(n) bits.

4.6.4 Treewidth k graphs

A graph having treewidth k can be expressed as the nondisjoint union of graphs of size k + 1,

arranged as nodes in a tree such that the set of tree nodes containing some graph node forms a

connected subtree of the tree. Small treewidth graphs are an interesting class of graphs to study

for several reasons: firstly, they capture a common class of networks (those having a tree-like

structure, for example the Internet backbone) and secondly, the concept of treewidth is weaker

than cliquewidth – any graph with treewidth k has cliquewidth at most 2.2k − 1 [CR05]. For

this reason, we can use the result for bounded cliquewidth graphs to handle bounded treewidth

graphs, but if k is nonconstant then we immediately get a huge blowup in label size. Addition-

ally, if we can show how to construct distance separator labels for treewidth k graphs then it

might give us insight into how to handle cliquewidth k graphs.

We will show, as our main technical result, how to construct distance separator labels for

treewidth k graphs using O(k2 log2 n) bits (Theorem 4.6.10). For comparison, the best known

distance labeling scheme for these graphs uses labels of size O(k log2 n) bits, so we will have

paid an additional factor k to encode distances under node deletions. For graphs of small

treewidth, eg k = O(log n), this is a small penalty, which means that compact (i.e. O(n)-bit

labels) forbidden-set routing may be possible.

Background: distance labeling for small treewidth graphs

Before tackling distance separator labels, we shall review some distance labeling schemes for

treewidth k graphs. We will make use of the following definition. A graph G has a 1/3-balanced

separator of size r(n) if there is a set of r(n) vertices whose removal breaks the graph into two

connected components of size at least n/3. The graph G has a recursive 1/3-balanced separator
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L(u) = 〈(4, d(u, 4)), (5, d(u, 5)), (6, d(u, 6)), (1, (d(u, 1)), (2, d(u, 2)), (3, d(u, 3))〉

Figure 4.5: A decomposition tree for a graph with small recursive separators. Each node of

the tree is a separator in the graph, and the distance label for a node u stores its distance to

each of the nodes in its ancestor separator nodes. To find the distance from u to v, the decoder

returns the minimum value of d(u, w) + d(w, v) over all nodes w in the least common ancestor

node of u, v.

of size r(n) if it has a 1/3-balanced separator of size r(n), and both the components obtained

by removing the separator also have recursive 1/3-balanced separators. Therefore, the graph

can be recursively decomposed until we reach singletons, giving a binary decomposition tree

of height O(log n). It is known that treewidth k graphs have recursive 1/3-balanced (or simply

balanced) separators of size k.

Peleg et al. [GPPR04] showed how to easily extend a distance labeling scheme for trees

to one for graphs with small recursive separators. In a tree, the label for u stores the distance

d(u,w) to every ancestor w of u in the decomposition tree. One can extend this by storing the

distance d(u,w), for every node w that is in an ancestor node in the decomposition tree. Then to

compute the distance between u and v, it suffices to compute their least common ancestor S in

the decomposition tree and then to compute d(u, v) = minw∈S(d(u,w) + d(w, v)). This works

because every path between u, v must go through some node w ∈ S. Since each separator is of

size at most c and the tree is of height O(log n), each label stores at most O(c log n) distances

using O(c log2 n) bits. Figure 4.5 illustrates this technique for distance labeling. More precisely,

they showed the following result.

Theorem 4.6.6 ([GPPR04]) Let R(n) =
∑

i≤log3/2 n r
(
(2

3
)in
)
≤ r(n) log n. For a family of

graphs G having recursive balanced separators of size r(n), every graph in G has distance

labels of size at most O(R(n) log n + log2 n) bits. Moreover, the distance can be computed in

time O(log n) given two labels.

The above result immediately implies that treewidth k graphs have distance labels of size

O(k log2 n) bits. Peleg [Pel99] describes an alternative method for constructing approximate
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distance labels, based on a hierarchy of tree covers. A tree cover of a graph G is a family

F = {T1, . . . , Tk} of trees with the following two properties:

1. Each tree dilates distances, i.e. dTj
(u, v) ≥ dG(u, v) for all u, v.

2. For any pair of nodes u, v, there exists a tree Ti such that dTi
(u, v) = dG(u, v).

If a graph has a tree cover of size k then it has distance labels of size O(k log n) bits. This

follows since we can compute distance labels of size O(log n) bits for each tree, and then simply

pick the tree that minimizes the distance. In fact, we can use the tree cover for routing; we use

an extra log k bits in the packet header to specify the tree to route on, and each node maintains

information for routing on k trees. This can be seen as a natural extension of using a single

routing tree, which was the model we used to prove our negative results in Chapter 3.

It is easy to observe that all graphs have linear-sized tree covers, consisting of the n shortest

path trees ending at each node. In the worst-case, this is tight since the complete graph Kn does

not have a tree cover of size n/2−1: the union of the trees must cover all the edges of the graph,

otherwise the scheme would not be able to report that the endpoints of some edge are adjacent

(and at distance one). Since each tree has at most n− 1 edges and the undirected clique has
(

n
2

)

edges, any tree cover of it must use at least
(

n
2

)
/(n− 1) > n/2− 1 trees.

The scheme of Peleg uses a tree cover construction that exhibits a tradeoff between the

number of trees each node appears in (the overlap) and the depth of each tree. By constructing

trees with depth 2i for i = 1 . . . log n, each node appears in a small number of trees and for

every pair of nodes, there exists a tree that contains them both. Using o(log3 n) bit labels,

the scheme can provide distance estimates accurate up to a factor of
√

2 log n, for arbitrary

undirected unweighted graphs.

Now we consider graphs of treewidth at most k. As described above, the schemes described

by Peleg et al. [GPPR04] construct distance labels for these graphs by building a decomposition

tree using the property of small recursive separators. It is not clear if it is possible to use

decomposition trees to construct separator labels (since we need to encode all separators), nor is

it clear that the tree decomposition associated with treewidth graphs can also be used efficiently.

Therefore, we shall take a different approach and make use of an alternative representation of

small treewidth graphs, based on algebraic expressions.

Algebraic expressions for treewidth k graphs

Every graph of treewidth k can be represented by an algebraic expression (or term) over some

domain of sources {1, . . . , k + 1}. A j-source graph is a graph with at most j distinguished

nodes called sources, each tagged with one of j distinct labels. Courcelle [Cou07, ACPS93]

shows that a graph has treewidth k if and only if it is the value of some term tree whose leaves

are (k + 1)-source graphs and where every non-leaf node is labeled with one of the following

operations, illustrated in Figure 4.6.

• Parallel composition: The graph G // H is obtained from the disjoint union of graphs G
and H where sources having the same label are fused together into a single node.

• Erasure: Let a be a label. Then the unary operation fga(G) erases the label a and the

corresponding source in G is no longer a source in G.
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Figure 4.6: The parallel composition and erasure operations for constructing graphs of

treewidth k

The term tree can be constructed given a tree decomposition of the graph – Corollary 2.1.1 of

[Cou07] shows that given a tree decomposition of width k of a graph, it is possible to construct

in linear time a term tree using at most k + 1 source labels. The nodes of the term tree are the

bags of the tree decomposition; hence the height and degree are unchanged. We now give a

brief sketch of how to construct the term tree. Let us assume that we have a tree decomposition

(T,X) of width k of a graph G, i.e. every bag contains at most k + 1 nodes. Then it is possible

to colour the nodes of G using at most k + 1 colours so that no two nodes in the same bag of

the tree decomposition have the same colour. We can construct a term tree recursively: if T is

a single node, then the term tree is the graph with sources being the nodes in T . Otherwise, let

r be the root of T and let T1, . . . , Tp be its subtrees. For each subtree Ti, associate its source

graph Gi on at most k sources, where node x is the jth source iff x is assigned the colour j in

the colouring of G. Recursively compute the terms t1, . . . , tp. For every i, let Ai be the set of

sources that are in Gi but not the root of T . Then we can represent G by the term

fgA1
(t1) // . . . // fgAp

(tp) // X(r)

where fgAi
(ti) is the graph obtained from ti by forgetting the sources Ai and X(r) is the set of

edges between nodes of G in the bag r of T . The details of this construction are not important

for the presentation of our algorithm, since we shall simply assume that we are given some term

tree that evaluates to the graph G.

We shall assume that the term tree has height O(log n), since the following result of Bod-

laender shows that we can always convert a tree decomposition of some graph into a binary one

of logarithmic height with only a constant increase in the width.

Lemma 4.6.7 ([Bod89]) Given a tree decomposition of width k and a graph G with n nodes,

one can compute a binary tree decomposition of G of depth at most 2 log5/4(2n) and width at

most 3k + 2 in time O(n).

Therefore, we can always assume that if we are given a tree decomposition of width k of an n-

node graph then we can construct a balanced term tree for the graph on O(k) labels and having
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height O(log n). From now on, we shall use k′ = 3k + 3 = O(k) to denote the number of

distinct source labels in the (balanced) term tree.

We assume that there are no sources remaining after evaluating the term tree, i.e. all sources

have been erased below the root. Therefore the nodes of the graph can be put in bijection with

erasure operations; we shall use v to refer to both the node in G and its unique corresponding

erasure operation in the term tree. For a node u, we shall use G(u) to denote the graph that

results from evaluating the subtree of the term tree rooted at u.

Each node u shall have a state q(u) assigned to it. This is a k′ × k′ matrix describing the

reachability of sources in G(u) – in this matrix, the entry (p, q) is 1 iff the source labeled p
can reach the source labeled q in the graph G(u), and 0 otherwise. For convenience, we shall

use the equivalence relation p ∼ q to denote reachability of source p, q in some source graph.

By definition of parallel composition, if p ∼ q in G(u) and q ∼ r in G(v), then p ∼ r in

G(u) // G(v).
It can sometimes be confusing when there are several sources with the same label on an

access path (due to erasing then introducing a new source with the same label using // ). To

make things simpler, we shall add subscripts to the source labels to uniquely identify them; for

example, instead of p appearing several times on a path, we may have p1, p2, . . .. This does not

affect the correctness of the term tree; since we never have two sources with the same label in

the same graph G(u), we shall never have two sources pi, pj appearing at the same time. From

now on, we assume that our source labels are subscripted in this way. This assumption will be

helpful when we try to construct separator labels.

Finally, it will be easier to deal with binary term trees than ones having a mixture of

unary and binary operations, so we compress a parallel composition operation followed by

a sequence of erase operations into a single binary operation as in [CV03]; the sequence

fga(fgb(· · · (G // H))) becomes G // fga,fgb...
H . All nodes of the graph associated with an

erase node u are now associated with the compressed operation containing the erasure opera-

tion u. In particular, we shall associate u with the graph G(u) obtained by applying the parallel

composition operation but not the sequence of erasure operations. Therefore the source associ-

ated with u still exists in G(u). We write ‘the access path for u’ to denote the unique path from

the root to u in the term tree, excluding the node u, as this simplifies the exposition. As a result,

the set of nodes adjacent to the access path for u always contains u.

A connectivity labeling scheme

We begin by constructing a labeling scheme that allows us to determine if two nodes are con-

nected in G, and then extend it to compute connectivity when nodes are removed. As in [CV03],

we shall store in the label L(u) a string describing the access path for u and the state for every

node adjacent to the access path. In addition, the label contains the source label of the node u in

G(u) (recall that u is always a source node in G(u)). If u has the source label su then the string

is of the form

Q(u) = (f1, i1)q(s3−i1(u1)) (f2, i2)q(s3−i2(u2)) . . . (fh, ih)q(s3−ih(uh)) su

where h is the height of the term tree, f1 . . . fh are the operations on the path (e.g. // fga...),

i1 . . . ih ∈ {1, 2} indicate which child to take and s1(u) (respectively s2(u)) denote the left

(respectively right) child of u. The states q(s3−i1(u1))q(s3−i1(u2)) . . . q(s3−i1(uh)) are the states

of nodes adjacent to the access path for u. Since each set of at most k′ erasure operations can
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Figure 4.7: (a) A graph and (b) a term tree that evaluates to the graph. The two paths from v3

to v5 are drawn in red and blue (dashed). Deleting v1 removes the source node a2, so would

remove the red path.
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CONSTRUCT-LABELS(G)

1 (X, I)← a tree decomposition of G of width k
2 Convert (X, I) into a binary tree decomposition of width 3k + 2 and height O(log n)
3 Compute a binary balanced term tree T from (X, I) with k′ = 3k + 3 labels [Cou07]

4 for each node u ∈ T
5 do su ← the source label of u in G(u)
6 Q(u)← the access path for u and the states of nodes adjacent to the access path

7 L(u)← (su, Q(u))

Figure 4.8: An algorithm to construct connectivity labels L(u) for treewidth k graphs

be identified with k′ bits and the term tree has height O(log n), the access path can be described

using O(k′ log n) = O(k log n) bits. The reachability matrices adjacent to the path are stored

using (2 log n)k′2 = O(k2 log n) bits, so the labels have size O(k2 log n) bits. Figure 4.8 gives

an algorithm to construct these labels.

The decoder algorithm works as follows. Let the root of the tree be r, and let nodes u, v
have source labels su and sv in the graphs G(u), G(v). The following lemma shows how to use

the reachability matrices for nodes adjacent to the access paths for u, v to construct a path from

u, v in G, if one exists. The idea is to construct a set of paths involving only the source nodes

of the graphs G(w) for nodes w adjacent to the access paths for u, v. Sequences of non-source

nodes on each path (i.e. source nodes that have been erased below either u, v in the tree) are

contracted into a single edge in these paths. Joining these paths together will give a path in G.

Lemma 4.6.8 Let su, sv be the source labels of u, v in G(u), G(v). Then u, v are connected in

G iff we can find a source p ∈ G(x) for some ancestor x of LCA(u, v), and sequences of parallel

compositions establishing the following:

1. (su ∼ p) using the states of nodes adjacent to the access path for u;

2. (sv ∼ p) using the states of nodes adjacent to the access path for v;

Proof. First consider the ‘→’ direction. At each parallel composition G(u) // G(v), the con-

nectivity of the sources in the resulting graph is completely determined by the connectivity

of the sources in G(u) and the connectivity of the sources in G(v). In particular, p ∼ r in

G(u) // G(v) iff p ∼ q in G(u) and r ∼ q in G(v), for some q in both G(u), G(v). There-

fore, any sequence of parallel composition operations as in the claim corresponds to a path

connecting u, v in G(root) = G.

Now we consider the other direction. Recall our assumption that all sources are eventually

erased. If we cannot find sequences of parallel compositions as in the statement of the lemma,

then this implies that there is a node x in the term tree where x is an ancestor of LCA(u, v),

the graph G(x) has no sources, and su 6∼ sv in G(x). Since at each parallel composition, the

connectivity of the resulting graph is completely determined by the connectivity of the sources

of the child graphs, it is impossible to find a sequence that establishes su ∼ sv by any sequence

of compositions involving G(x). Therefore u, v remain unconnected in the graph corresponding

to any ancestor of x ∈ T ; in particular this holds for G(root) = G.
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CONNECTED(L(u), L(v), L(s1), . . . , L(sk))

✄ Let S = {s1, . . . , sk}
✄ Returns TRUE iff u, v are connected in G \ S

1 for each si ∈ S
2 do Recompute the state q(x) for every node x on the access path for si

using the source graph G(x) \ S
3 Let the sources for u, v be su, sv

4 Decide whether su, sv are connected, as in Lemma 4.6.8

Figure 4.9: A decoder algorithm for separator labels on treewidth k graphs

The proof of the above lemma implies that if u, v are connected in G, we can find a path by

examining only the connectivity of sources in the graphs G(u), G(v) and the graphs associated

with nodes that are adjacent to the access paths of u, v from the root. Replacing the entry i, j in

the reachability matrix for G(u) by the distance from si to sj in G(u) allows us to find the length

of every path from u to v. Just as the sources are the only nodes that determine connectivity

under parallel composition, they also completely determine the distance, i.e.

dG(u) // G(v)(p, r) = min
q

dG(u)(p, q) + dG(v)(q, r).

This modification gives distance labels of size O(k2 log2 n) bits for treewidth k graphs. How-

ever, it is already known that treewidth k graphs have O(k log2 n)-bit distance labels [GPPR04],

so this bound is larger by a factor of k. We now show that these larger labels capture more

structure of the graph, in particular they capture the structure of separators that will allow us to

construct distance separator labels using the same label size.

As an example, Figure 4.7 shows a term tree and the graph that it evaluates to. In the figure,

two paths between nodes v3 and v5 are drawn, and sources that fuse together are joined with

dashed lines (in the final graph, these are a single node). We can apply Lemma 4.6.8 by tracing

subpaths in the leaf graphs and joining them together using the parallel composition operations.

For example, we can take p to be the source labeled c2, then c1 ∼ c2 using the label L(v3) and

a1 ∼ c2 using the label L(v5).

Constructing separator labels

We now show how to decide if two nodes are connected in G \ S for some set S of nodes. We

first give a somewhat inefficient scheme, then we show how to reduce the space requirement

later. For each node u and each subset S of source labels (where S ⊆ {1, . . . , k′}), we store a

reachability matrix for sources in G(u) \ S (each node u ∈ G corresponds to a unique source

in G(u)). Then we use the reachability matrices for G(x) \ S for nodes x on the access paths

for s1, . . . , sk to compute new reachability matrices GS(x) for nodes in Q(u), Q(v) (where the

access paths for s1, . . . , sk become adjacent to the access paths for u, v).

We now proceed in a similar way to Lemma 4.6.8; we use the new information GS(x) for

x ∈ Q(u) ∪Q(v) to construct subpaths, then join them together using the parallel composition

operations in the term tree. However, we place a restriction on the sources that we are allowed
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CONSTRUCT-SOURCE-CONNECTIVITY-GRAPH(G)

1 while (G contains a non-source node)

2 do Let u be any non-source node in G
3 Add edges {x, y} between all neighbours x, y of u
4 Remove u from G

Figure 4.10: The procedure to construct the source connectivity graph

to use in our subpaths – if si is the source corresponding to a node s ∈ S (recall that we add

subscripts to make identification easier) then we are not allowed to use the source si in the

subpaths. More precisely, for each node x in the term tree we construct subpaths using GS(x).
Since there are at most 2k′

O(log n) reachability matrices adjacent to each access path, the labels

are of size O(2k′

k′2 log n) = O(23kk2 log n) bits. The decoder algorithm is shown in Figure 4.9.

We can now employ the same argument as before to turn our separator labels into distance

separator labels, with an additional O(log n) factor in the label size. We do this as before:

replace each of the 2k′

reachability matrices by a matrix storing the distance between sources

in the graph where some set S of sources have been removed. All the distances used involve

paths that avoid the sources representing nodes in the forbidden set S, and therefore the paths

that remain are exactly those that do not intersect S.

Reducing the space requirements using source connectivity graphs

For each node v and its graph G(v), we can avoid storing 2k′

matrices by constructing a graph

G′(v) on the k′ sources, which we call the source connectivity graph. This graph will have the

property that for any set S of source nodes, the reachability of sources in G′(v) \ S equals the

reachability of sources in G(v) \ S. Therefore, we can replace the 2k′

= O(23k) reachability

matrices by a single graph on k′ nodes.

Constructing the graph is easy – for any path between two sources, we contract all its sub-

paths containing only non-source nodes into a single edge. More precisely, we want to solve the

following problem. Given a graph G on n nodes and having k distinguished source nodes, con-

struct a graph G′ on the k source nodes so that the following holds: for any set S ⊆ {1, . . . , k}
of sources and two sources si, sj , we want that 1si and sj are connected in G \ S iff they are

connected in G′ \ S. We can construct G′ using the procedure shown in Figure 4.10.

For each non-source node u, the procedure turns the neighbourhood of u into a clique then

removes u; if u has only one neighbour then this does nothing. The graph remaining at the end

of the procedure is the desired graph G′. It is easy to check that the nodes of G′ are exactly

the source nodes in G (they are the only nodes never contracted). We now show that the graph

it computes has the property described above, i.e. it captures the connectivity of sources when

only sources are removed. An example is shown in Figure 4.11.

Lemma 4.6.9 The graph computed by the above procedure has the desired property, i.e for any

set S ⊆ {1, . . . , k} of source nodes and two sources si, sj 6∈ S, we have that si and sj are

connected in G \ S iff they are connected in G′ \ S.

Proof. We begin by making two claims about the graph computed by the procedure.
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Figure 4.11: A graph and its source connectivity graph. The source connectivity graph pre-

serves reachability between sources under deletion of sources. The source nodes are filled

and the non-source nodes are drawn unfilled.

Claim 1: The graph G′ contains no paths not in G. Every path in G′ corresponds to some

(possibly non-unique) path in G. Consider a path si1si2 . . . sir in G′. Then it is easy to see that

there must exist a path si1Pi1i2si2Pi2i3 . . . Pir−1irsir in G where the Pij are paths in G containing

only non-source nodes.

Claim 2: The source connectivity graph G′ contains all paths between sources in G. Since all

non-source paths Pij in G between si, sj are contracted into a single edge in G′, every path of

the form si1Pi1i2si2Pi2i3 . . . Pir−1irsir in G corresponds to the unique path si1si2 . . . sir in G′.

The lemma now follows from the claims. If two sources are connected in G \ S then there

exists a path between them that avoids the sources in S, and by claim 2 there also exists a path

in G′ that avoids S. If two sources are connected in G′ \ S then there exists a path between

them that avoids S, and by claim 1 there also exists a path between them in G that avoids the

sources in S, and possibly uses some non-source nodes. Since the set S only contains source

nodes, these paths Pij still exist in G \ S.

Using the above construction gives the following labeling scheme: construct the labels as

before, except that we store the ‘source connectivity graph’ for G(u) in place of the 2k′

reach-

ability matrices for sources in G(u). Note that for each node u and set of sources S, we can

take the source connectivity graph for G(u) and compute the reachability matrix for sources in

G(u)\S. Therefore, the decoder algorithm can simulate the decoder algorithm using the reach-

ability matrices. This reachability matrix can be computed in time O(k′2 log k′) = O(k2 log k)
by running an all-pairs shortest path algorithm on the source connectivity graph and ignoring

nodes in S.

For distance separator labels, we shall show how to assign weights to the edges of the source

connectivity graph such that the minimum weight path in the source connectivity graph between

si, sj equals the length of the shortest path between si, sj in G that only uses non-source nodes.

Furthermore, we show that this property is preserved under deletion of sources. We call this

graph the source distance graph, and the algorithm to construct it is given below (as before, the

input graph G has a distinguished set of k source nodes).

The graph G′ constructed by the above procedure has the following property: for any set S
of source nodes and two sources si, sj 6∈ S, dG′\S(si, sj) = dG\S(si, sj). The reason that we

only contract edges connected to non-source nodes is that otherwise there may be an edge in

G′ that represents a path containing a source node sj , and then setting sj ∈ S would give an

incorrect distance using this edge. An example of the construction is given in Figure 4.13.

For each graph G(u) in the term tree, we can use its source connectivity graph to reconstruct
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CONSTRUCT-SOURCE-DISTANCE-GRAPH(G)

1 Set w(u, v) = w(v, u) = 1 for all edges {u, v} of G, and∞ otherwise

2 while (G contains a non-source node)

3 do Let u be any non-source node in G
4 For each pair of neighbours x, y of u
5 Set w(x, y) = w(y, x) = min{w(x, u) + w(u, y), w(x, y)}
6 Remove u from G (also set w(v, u) = w(u, v) =∞ for all v)

Figure 4.12: The procedure to construct the source distance graph

2

s1 s3

s4

s2
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11

4s1 s3

s4
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Figure 4.13: An example of a graph and its source distance graph. The distances between

sources are preserved under deletion of source nodes. Note that deleting the source node s4

increases the distance between s1, s3.
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the distance matrix for sources in G(u) \ S for any set S of sources. This allows us to simulate

the scheme where we explicitly construct the 2k′

distance matrices, so we can use the argument

in that case to construct separator distance labels and to argue for its correctness. Since the edge

weights in the source connectivity graph may be in the range [1, n], the graph can be represented

using O(k′2 log n) bits. Therefore the distance separator labels are of size O(k2 log2 n) bits. We

have now proved the following result.

Theorem 4.6.10 The family of treewidth k graphs has separator labels of size O(k2 log n) bits,

and distance separator labels of size O(k2 log2 n) bits.

Remarks

Unfortunately, the problem of determining whether the treewidth of a given graph is at most

a given integer k is NP-complete [ACP87] (although, for constant k there exist linear-time

algorithms [Bod93a]). Our algorithm works even when the tree decomposition given to it is

not optimal – the only cost we pay is that the k in the label size becomes the treewidth of the

decomposition given to the algorithm. There exist polynomial-time approximation algorithms

that compute tree decompositions with treewidth a factor O(
√

log k) of optimal, where k is

the optimal treewidth of the graph [Ami02, FHL05]. Therefore for graphs having non-constant

treewidth k, we can use an O(ρ)-factor approximation algorithm to obtain distance separator

labels of size O(ρ2k2 log2 n) = O(k2 log2 k log2 n) bits in polynomial time.

4.7 A partial forbidden-set routing scheme for planar graphs

We now show how to utilise some of our results for small treewidth graphs to obtain results

for some special types of planar graphs. Eppstein [Epp00], improving on a previous result of

Baker [Bak94], showed the following connection between bounded-genus graphs and treewidth,

known as the ‘diameter-treewidth property’.

Lemma 4.7.1 (Eppstein [Epp00]) Let G be a graph with genus g and diameter D. Then G
has treewidth O(gD).

It follows immediately from Theorem 4.6.10 on treewidth k graphs that genus-g graphs with

diameter D have distance separator labels of size O(g2D2 log2 n) bits.

Eppstein [Epp95] considered the following problem on planar graphs: given a nonegative

integer l, construct a centralized data structure so that given two nodes, we can decide if their

distance is at most l, and if so, construct a path between them. We now show how to obtain

a similar result for the case of forbidden-set routing, but using a distributed data structure (the

labels). Fix some nonnegative integer l. We shall assign labels to nodes so that given the labels

for u, v and the nodes of S ⊆ V (G), we can either return the distance dG\S(u, v) or determine

that it is greater than l. Once we can do this, we can use the labels with the routing scheme of

Section 4.5 to route on a shortest path in G \ S if dG\S(u, v) ≤ l. Since these labels represent

a restricted version of distance separator labels, we shall call them ‘distance-l separator labels’.

We will make use of the following planar graph covering result of Eppstein.

Lemma 4.7.2 (Eppstein [Epp95]) Let G be a planar graph and l a nonnegative integer. Then

in time O(n) we can find a collection of subgraphs Gi with the following properties:
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1. For every node v of G, the l-neighbourhood2 of v is contained in one of the subgraphs

Gi;

2. Every node of G is included in at most two subgraphs Gi;

3. Every subgraph Gi has treewidth O(l).

By applying Theorem 4.6.10 separately to each subgraph Gi we can construct distance-l
separator labels of size O(l2 log2 n) bits. If dG(u, v) ≤ l for two nodes u, v then the only way

that dG\S(u, v) > dG(u, v) for some set S is if some nodes of S are within a distance l from

u in G. Therefore, if the distance in G \ S is at most l then it suffices to consider only those

elements of S that lie within a distance l of u. The above lemma guarantees that we shall only

have to consider a single subgraph to do this. Therefore, we have the following result.

Theorem 4.7.3 Let G be a planar graph and S(u) ⊆ V (G) the forbidden set of node u, with

k ≤ maxu |S(u)| for all u. Let l be a nonnegative integer such that dG(u, S(u)) ≤ l for all u.

Then we can construct a distributed forbidden-set routing scheme such that for any u, v, we can

route on the shortest path that avoids S(u), or declare that their distance in G \S(u) is greater

than l. The routing tables have O(k∆(G)l2 log2 n) bits and the labels O(kl2 log2 n) bits.

Remarks. Ideally, we would like to have a scheme that can route between all pairs of

nodes, still with the restriction that d(u, S(u)) ≤ l for all u. However, the problem is that even

if dG\S(u)(u, v) > l, we could still have that dG\S(u)(u, v) > dG(u, v). We would need to be

able to know which node x on the ‘fringe’ of the subgraph Gi containing u that we should

route to, in order to reach v on the shortest S(u)-avoiding path. We could then route to x using

the forbidden-set routing scheme in Gi, and then from x to v using any shortest-path routing

scheme.

4.7.1 Lower bounds for distance separator labels

We now prove an easy lower bound on the size of separator labels by a reduction from adjacency

labeling. We shall parametrise our lower bound by k, the maximum size of a separator that we

are interested in detecting. The motivation for this is that k would correspond to the maximum

size of any forbidden set in a forbidden-set routing scheme.

Proposition 4.7.4 Assume that we are only interested in detecting separators of size at most

k ≤ n. At least one node must be assigned a separator label of size Ω(k) bits on n-node graphs

in the worst case.

Proof. Let G = ((U, V ), E) be an undirected bipartite graph on the node sets U, V where

U = {u1, . . . , un}, V = {v1, . . . , vk}. Construct G′ by adding a node t connected to each node

of V as in Figure 4.14. Now consider two nodes u ∈ U and v ∈ V . It is clear that u is not

adjacent to v in G iff V \ {v} is a separator between u and t in G′ (we can use the separator

labels for the set V \{v} and u, v to decide whether this is the case). There are Ω(2nk/2) distinct

bipartite graphs G, and for any two such graphs G1, G2 there are two nodes u, v where u, v are

adjacent in G1 but not in G2. The corresponding graphs G′
1, G

′
2 must also have two nodes u, v

where V \ {v} does not separate u, t in G′
1 but does in G′

2. Therefore the sum of all the labels

2The l-neighbourhood of a node v is the set of nodes at distance at most l from v.
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Figure 4.14: Illustrating the lower bound for separator labels (Proposition 4.7.4). Nodes ui, vj

are not adjacent iff the set V \ {vj} is a separator of ui and t.

assigned to nodes must be at least Ω(log 2nk/2) = Ω(nk) bits, so some node must be assigned a

label of size Ω(k) bits.

Remarks. Even when k is unrestricted, the lower bound does not appear to be tight. By

storing the entire graph in each label, we can get a trivial O(n2) upper bound. Unfortunately,

nothing better is known for general graphs and so the Ω(n) lower bound leaves a large gap. It is

worth examining the lower bound to see that it is most likely far from tight. In particular, it does

not seem to make good use of the combinatorial nature of the problem since each node v is im-

plicitly associated with its witness set V \ {v}. For this reason, we expect that the lower bound

can be strengthened to Ω(n3/2) or even Ω(n2) but we have been unable to do so. Most likely,

the current construction will not suffice and some more insight into how the structure of the for-

bidden sets affects the connectivity of the graph will be needed. The interesting (but seemingly

difficult) case is when k is small, say O(log n). In this case, it would be very interesting to show

that we can construct sublinear-sized separator labels for general graphs.

For the case of distance separator labels, the situation is somewhat different – if the set S
is empty then it reduces to the problem of distance labeling in undirected graphs. It is known

that there are graphs on n nodes and m edges where some node must be assigned a label of size

Ω(m/n log(n2/m)) bits [CHKZ02]. Therefore, distance separator labels must be of size Ω(n),
regardless of the size of the set S allowed. This immediately gives the following lower bound.

Proposition 4.7.5 There are n-node graphs where some node must be assigned a distance sep-

arator label of size Ω(n) bits, regardless of the size of the set S.

Since distance separator labels are more general than separator labels, the remarks made

above for separator labels also apply here; in particular, we do not expect that Ω(n) is a tight

lower bound for distance separator labels in general graphs. Unfortunately, we have not been

able to prove anything stronger and improving this is a completely open problem.

4.8 Decremental graph connectivity

In this final section, we use some of the techniques for constructing separator labels, combined

with a novel reduction to orthogonal range searching, to show how to solve dynamic graph

connectivity with good worst-case query time. We then show how to use this technique to

construct efficient algorithms for solving the problem of k-edge witness.
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Definition 4.8.1 (k-vertex witness) Given a graph G, the k-vertex witness problem is to pre-

process G so that given k nodes S, we can quickly decide whether S is a separator of u, v in G,

i.e. whether S is a witness to the fact that u, v are not k-connected in G.

Separator labels can be seen as a distributed version of the k-vertex witness problem. The

k-edge witness problem is defined similarly but we want to know whether u and v are k-edge-

connected. These two problems are closely related to the well-studied problem of decremental

graph connectivity. Here, we wish to construct a data structure that efficiently supports the

following operations on a graph: DELETE(u, v), which deletes edge {u, v} from the current

graph, CONNECTED(u, v), which returns TRUE iff u, v are still connected. The node version

of the problem is similar, except that we instead support DELETE(u), which deletes a single

node and all its adjacent edges. It is easy to see that k-vertex witness can be solved using a

decremental connectivity algorithm – delete the set S of nodes, test connectivity of u, v and

then reinsert the nodes deleted. In fact, the best known bounds for k-vertex witness (and k-edge

witness) are obtained in this way.

We are interested in worst-case bounds because the problems we are trying to solve are

fundamental network problems and therefore are most likely to be used as subroutines in higher-

level applications. Without a good worst-case bound on the performance of the underlying

algorithms, it is difficult for algorithms that use them to provide good performance guarantees

of their own. Despite much work, the best known worst-case time for DELETE(u, v) is O(
√

n)
due to Eppstein et al. [EGIN97] who improved the result of Frederickson [Fre83] from O(

√
m)

to O(
√

n) per update using the sparsification technique.

All known algorithms that have better update time have amortized time bounds. The first

algorithm with polylogarithmic update time was given by Henzinger, King and Thorup [HK99,

HT97]. They gave a fully dynamic algorithm (supporting both insertions and deletions) such

that for a sequence of Ω(m0) update operations (where m0 is the number of edges in the initial

graph), an update takes expected amortized time O(log2 n) and a connectivity query takes time

O(log n/ log log n). This gives an algorithm for k-edge witness with update time O(log2 n)
and amortized expected query time O(k log2 n). This query time is amortized over the updates

made, so this is not a worst-case bound for a single k-edge witness query.

Holm et al. [HdLT01] obtained a deterministic version of the algorithm with O(log2 n)
amortized time per update. However, as before, this time bound is amortized over a large

sequence of edge insertions followed by deletions. Therefore, there is no guarantee that the cost

of a deletion will be small when taken over some isolated set of k edge deletions.

We improve the worst-case bound for k-edge witness in general graphs when the number of

deletions is fairly small, i.e. k = O(
√

n). Our algorithms are simple, and reduce the problem

of maintaining decremental connectivity to maintaining fully dynamic connectivity (supporting

both insertions and deletions) on some auxiliary graph H , which usually has size linear in

the number of deletions already performed. We can then use known algorithms to maintain

connectivity on H , and answer queries on G by quickly translating them to queries on H . An

artifact of our approach is that the time for a deletion depends on the number of nodes or edges

already deleted from the original graph, which explains why it only works for small numbers of

deletions. Our main results for this are the following:

• We give an algorithm for decremental connectivity that handles the kth edge deletion in

worst-case time O(k log n) and answers connectivity queries in time O(k2). The down-

side is that it may use space O(n∆(G)2).
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• Using the above algorithm, we solve k-edge witness in general graphs with worst-case

query time O(k2 log n) and space O(k2n2). This improves the O(k
√

n) bound of Eppstein

[EGIN97] for k = O(
√

n). Our algorithm uses a novel reduction from orthogonal range

searching.

• Let T be a spanning tree of G with degree ∆(T ). We give a decremental connec-

tivity algorithm using space O(n2 log n/ log log n), handling the kth deletion in time

O(∆(T )2 log n + k log n) and connectivity queries in O(k2). For Hamiltonian graphs,

graphs with bounded independence number, 1/O(1)-tough graphs and almost all r-regular

graphs (for fixed r ≥ 3), this gives O(k log n) time for deletions.

4.8.1 Preliminaries

We begin by describing the algorithm of Henzinger and King (HK) [HK99], since our algorithm

works in a conceptually similar way. They achieve both polylogarithmic update and query time

but this bound is expected and amortized over Ω(m0) updates, where m0 is the number of edges

in the initial graph. We remove this amortization but at the cost of additional space and an

update time that depends linearly on the the number of edges deleted thus far.

They maintain a spanning forest of the graph, starting with some arbitrary spanning tree T
(we assume that the graph is initially connected). When a tree edge e is removed from T it

breaks T into two subtrees T1, T2; and a replacement edge e′ for e needs to be found (if one

exists) to reconnect T1, T2 into another spanning tree T ′ = T1 ∪ T2 ∪ {e′}. To do this, they

maintain a partition of the edges into O(log n) levels; to find a replacement for e, the nontree

edges in a particular level are randomly sampled. If one of them connects T1 to T2, then the

trees are reconnected using this edge. Otherwise, all the nontree edges adjacent to nodes of T1

are searched exhaustively. By carefully managing this partitioning and sampling, they obtain

good amortized bounds on the update times.

They also employ a technique to efficiently represent the trees in a linear form, which allows

trees to be efficiently spliced or reconnected at a given edge. This data structure is known as the

Euler tour tree. Since we also make use of it, we shall now describe it.

Euler tours

An Euler tour of a graph is a path that traverses every edge exactly once in each direction.

Henzinger and King [HK99] use an Euler tour of a spanning tree T of G, constructed by calling

the following procedure with the root node.

ET(v)

✄ Constructs an Euler tour of the tree

1 visit v
2 for each child u of v
3 do ET(u)
4 visit u

Figure 4.15: Constructing an Euler tour of a tree



4.8. Decremental graph connectivity 73

Each edge is visited twice (traversed once in each direction) and every degree-d node d
times. Each time any node u is encountered in the tour, we call this an occurrence of u and

denote the set of occurrences of u by O(u). We shall refer to a particular occurrence by its

unique position in the tour. If the sequence ET (T ) is stored in a balanced binary search tree,

then one may insert an interval or splice out an interval (delete an edge of the tour) in time

O(log n), while maintaining the balance of the tree.

Some of our algorithms use an Euler tour ET (G) of the entire graph G instead of a spanning

tree. In this case, we can use the well-known theorem of Euler that states that a graph has an

Euler tour iff every node has even degree. Therefore a simple trick to ensure that G has an Euler

tour is to ‘double up’ each undirected edge so that it gets traversed once in each direction.

Sparse connectivity certificates

The concept of a sparse k-connectivity certificate is important for some of our algorithms. A

sparse k-connectivity certificate for a graph G is a subgraph G′ of G, containing at most kn
edges, such that any cut of value at most k in G has the same value in the certificate. The idea

of using such a certificate is that if we are only interested in detecting cuts (or separators, if we

are in the node case) of size at most k, then without any penalty we can work on the sparse

graph G′ instead of the (possibly dense) graph G.

Nagamochi and Ibaraki [NI92] show how to construct a sparse k-connectivity certificate

in linear-time. The problem is also known to be in NC [NH98] and can be solved using a

distributed algorithm [Thu95, JM96].

4.8.2 The algorithm

We now present our algorithm for solving k-edge witness for general graphs using a centralized

algorithm. As described earlier, Henzinger and King [HK99] use an Euler tour data structure to

represent a spanning tree of G. In contrast, we shall construct an Euler tour of the entire graph.

The algorithm can be explained as follows. We maintain an auxiliary undirected graph H
where we associate with each node of H a connected interval of ET (G) (i.e. a connected

subpath of the Euler tour) and the nodes of H form a disjoint partition of the subpaths of

the tour. There is an edge between two nodes of H iff there is some node u ∈ V (G) with

an occurrence in both intervals. We denote by h(u) a node of H whose interval in ET (G)
contains an occurrence of u (if there is more than one, choose one arbitrarily). For an integer

i corresponding to an occurrence of a node, we denote by h(i) the (unique) node of H whose

interval on the tour contains i (the version used will be clear from the context).

For a node u ∈ V (G), let Hu be the subgraph of H induced by the nodes whose intervals

contain an occurrence of u. Let h1, h2 be any two nodes of Hu, then there must be an edge

{h1, h2}. It follows that the subgraph Hu is a clique, for all u. We shall represent the graph H
by storing a balanced binary search tree (e.g. a 2-3 tree) on the intervals associated with nodes

of H . This allows us to find the node h(u) in worst-case time O(log |H|). The following lemma

states a simple property of H .

Lemma 4.8.2 Nodes u, v ∈ V (G) are connected in G iff h(u), h(v) are connected in H .

Proof. First, note that since Hu, Hv are cliques, we can choose to compute reachability between

any pair of nodes a ∈ Hu, b ∈ Hv. The lemma now follows from the definition of H – every
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Figure 4.16: The box (2, 4)× (3, 5) is empty iff there are no edges between the intervals [2 . . 3]

and [4 . . 5] on the graph

path from u to v in G corresponds to a set of paths from h(u) to h(v) in H , and every path from

h(u) to h(v) in H corresponds to a collection of paths from u to v in G.

Now we can describe our algorithm. H starts as a singleton representing the entire tour

ET (G). To delete an edge {u, v} ∈ E(G) the Euler tour is spliced at this edge in time O(log n).
This corresponds to splitting exactly one node h of H into two new nodes h1, h2 with N(h) =
N(h1) ∪ N(h2). Therefore to construct the new edges of h1 and h2, we do not need to test for

edges between all the nodes of H – it suffices to test only the old edges of h to see if they are

also edges of h1 or h2. By definition of H , there is an edge between two nodes of H iff their

corresponding intervals in the Euler tour both contain an occurrence of some node u ∈ V (G).
We shall show that this ‘edge test’ can be done in worst-case time O(log m) = O(log n) for

each edge by making use of orthogonal range trees.

To maintain connectivity on H under node insertions and both edge deletions and insertions

we can use any fully dynamic connectivity algorithm. A simple method is to store the adjacency

list representation of H; each edge insertion and deletion then takes time O(1), and connectiv-

ity queries can be answered by running a depth-first search in time O(|V (H)| + |E(H)|) =
O(|H|2). An alternative is to use the fully-dynamic algorithm of Eppstein et al. [EGIN97],

which handles edge insertions and deletions in time O(
√
|H|) and answers connectivity queries

in time O(1).

To answer connectivity queries, we use the fact that the subgraph Hu is a clique, so one node

of Hu can reach some node h of H iff all of Hu can reach h. A connectivity query for u, v is

then handled by finding h(u), h(v) and then calling CONNECTEDH(h(u), h(v)). To handle the

query CONNECTED we simply call CONNECTEDH , since G is connected iff H is connected.

Reduction from orthogonal range searching

The crucial part of our algorithm is the ability to test for an edge in the auxiliary graph H . We

do this by using a reduction to two-dimensional orthogonal range searching as follows. A range

tree is a data structure that supports two operations on a two-dimensional space: INSERT(x, y),
which inserts a point (x, y), and BOX-EMPTY((x1, y1), (x2, y2)), which returns true iff the

box with corners (x1, y1) and (x2, y2) does not contain any points (sometimes we shall use

BOX-NOT-EMPTY for the negation of this function).

Given an undirected graph G and a unique identifier I(u) ∈ [1 . . n] for each node u, each

undirected edge {u, v} of G is mapped to two points (I(u), I(v)) and (I(v), I(u)) on an n× n
grid. Then there is an edge in G with endpoints having identifiers in both the intervals [a . . b]
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and [c . . d] iff the box (a, c)× (b, d) is nonempty (for a ≤ b, c ≤ d) as illustrated in Figure 4.16.

Orthogonal range searching has been extensively studied during the last thirty years, with many

applications to databases and computational geometry. There are several dynamic algorithms

having efficient worst-case update and query times. This is the first time we know of that they

have been used for graph connectivity. The transformation described above may also be of

independent interest.

The transformation described above is used as follows, and illustrated in Figure 4.17. For

each ordered pair of occurrences ui, uj of node u, add a point (ui, uj) to the space and associate

with each node of H a unique interval [i . . j] (with i ≤ j) on the Euler tour. Then the two

nodes of H associated with the intervals [a . . b] and [c . . d] are adjacent in H iff there exists

some node u ∈ V (G) with occurrences in [a . . b] and [c . . d] in the tour, which occurs iff the

box (a, c) × (b, d) is nonempty. The algorithm of this section does not need to remove points

(splitting nodes of H keeps track of the deleted edges of G), so a static range tree algorithm will

suffice (in contrast, the algorithm of the next section requires a dynamic range tree). Chazelle

[Cha88] has given an algorithm for the static case that stores r points with space O(r) and

answers emptiness box queries in worst-case time O(log r).

The decremental connectivity algorithm is given in full in Figure 4.18, and the procedure

for k-edge witness in Figure 4.19.

Complexity

Let DELETE[k] denote the worst-case time taken by DELETE for any sequence of k edges.

Assume that k edges have been deleted from G. Then the graph H has at most 2k + 1 nodes,

since each edge of G appears twice in the Euler tour of G. Also, it takes time O(log n) to

splice out an interval of the Euler tour, and each range tree query takes time O(log n). If

we use the adjacency list representation of H , then the times for each line are as shown in

the code above. The loop at line 6 of DELETE is repeated O(∆(H)) = O(k) times and so

DELETE[k] = O(k log n). Therefore the procedure k-EDGE-WITNESS takes worst-case time

O(k2 log n).

Alternatively, using the fully-dynamic connectivity algorithm of Eppstein et al. makes lines

4,5,8,9 take time O(
√
|H|) and line 11 takes time O(∆(H)

√
|H|), so DELETE[k] = O(k3/2 +

k log n), but CONNECTED(u, v) and CONNECTED now take O(log k) time. This might be more

useful if the algorithm was being used for decremental connectivity. However, for solving k-

edge witness, using the adjacency representation of H gives the best time bound.

The space requirement is dominated by the cost of storing the points representing the node

occurrences in the range tree. Since each node v ∈ V (G) appears dG(v) times in the tour, there

are dG(v)2 points in the range tree corresponding to v. Using the range tree of Chazelle [Cha88]

gives a data structure using O(
∑

v∈G dG(v)2) = O(n∆(G)2) bits of space.

For k-edge witness we are only interested in cuts of size at most k, and so we can reduce

the space requirement by using sparse k-connectivity certificates. The modified algorithm is the

same except that we replace G with its sparse k-connectivity certificate G′ in INITIALISE. The

correctness follows from the connectivity properties of the connectivity certificate. The space

complexity is reduced to that needed to store the node occurrences in the range tree for the Euler

tour of the certificate, i.e. O(
∑

v∈V dG′(v)2) = O(n2k) bits in the worst case that we have a

complete bipartite graph on 2k nodes. The query time is unchanged, as it only depended on the

set of edges being deleted.
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(c,d) (e,a) (d,c)(a,e)

(a)  The graph G

(b) An Euler tour of G

(only edges corresponding to

occurrences of node c are drawn)

Deleting edges {a,e} and {c,d}

cut the tour at the points indicated

by the dashed vertical lines

The edges of H indicate regions of 

(c) The graph H corresponding

to deleting {a,e} and {c,d}.

the tour containing occurrences
of the same node

Figure 4.17: A graph G and an Euler tour of G with the edges between occurrences of the

same node marked. The dashed lines represent the splicing of the tour from deleting edges

{a, e} and {c, d}. The auxiliary graph H at this point is shown below. There is no path between

any nodes of H containing occurrences of e and b, therefore {a, e}, {c, d} is a cut between e, b

in G.
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INITIALISE(G)

1 Double up each edge of G
2 ET (G)← an Euler tour of G
3 for each node u
4 do O(u)← the set of occurrences of u in ET (G)
5 for each pair ui, uj ∈ O(u)
6 do RANGE-TREE-INSERT(ui, uj)
7 Let H be a graph with a single node [1 . . 2m].

DELETE({u, v})
1 for each appearance {i, i + 1} of edge {u, v} in ET (G)
2 do EULER-TOUR-DELETE({i, i + 1}) ✄ O(log n)

✄ Split h into two new nodes h1, h2

3 h← [a . . b] = h(i) ✄ O(log |H|)
4 h1 ← INSERT-NODEH([a . . i]) ✄ O(1)
5 h2 ← INSERT-NODEH([i + 1 . . b])

✄ Check for an edge between h1 and h2

6 if BOX-NOT-EMPTY((a, i + 1), (i, b)) ✄ O(log n)
7 then INSERT-EDGEH(h1, h2) ✄ O(1)

✄ Check for edges between N(h) and N(h1), N(h2)
8 for each neighbour h′ = [c . . d] of h in H
9 do if BOX-NOT-EMPTY((a, c), (i, d)) ✄ O(log n)

10 then INSERT-EDGEH(h1, h
′) ✄ O(1)

11 if BOX-NOT-EMPTY((i + 1, c), (b, d))
12 then INSERT-EDGEH(h2, h

′)
13 DELETE-NODEH(h) ✄ O(∆(H))

CONNECTED(u, v)

✄ Returns true iff u, v are connected in G
1 return CONNECTEDH(h(u), h(v)) ✄ O(|H|2)

CONNECTED

✄ Returns true iff G is connected

1 return CONNECTEDH ✄ O(|H|2)

Figure 4.18: The decremental connectivity algorithm
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k-EDGE-WITNESS(u, v, {x1, y1}, . . . , {xk, yk})
1 G′ ← a sparse k-connectivity certificate of G
2 INITIALISE(G′)
3 Let H contain a single node [1 . . 2m]
4 for each i ∈ {1, . . . , k}
5 do DELETE({xi, yi})
6 return CONNECTED(u, v)

Figure 4.19: The algorithm for k-edge witness

Note that this idea can be applied to any decremental connectivity algorithm when we are

only interested in cuts of small value. Since there are algorithms [Tho00] that use space O(m),
this would transform them to use space O(kn) for solving k-edge witness.

4.8.3 An more space-efficient algorithm for tree-like graphs

In this section we reduce the space requirement of the previous algorithm but increase the

query time for general graphs. For graphs having a spanning tree with small maximum degree,

however, we shall show how to maintain a small query time.

Let T be a spanning tree of G having degree ∆(T ). We give a decremental connec-

tivity algorithm that uses space O(n2 log n/ log log n) and handles the kth deletion in time

O(∆(T )2 log n + k log n). It answers connectivity queries in time O(k2) and therefore gives an

O(k∆(T )2 log n+k2 log n)-time algorithm for k-edge witness, which is O(k2 log n) for Hamil-

tonian graphs, graphs of bounded independence number, 1/O(1)-tough graphs and almost all

r-regular graphs (for fixed r ≥ 3). As before we can use a different algorithm to maintain con-

nectivity on the auxiliary graph, and this gives O(∆(T )2 log n + k3/2 log n) time for deletions

but with O(log k) query time.

The algorithm is more similar to that of Henzinger and King [HK99] than the one of the

previous section, in that we use a spanning forest rather than the Euler tour of the entire graph.

The main difference is that instead of maintaining a spanning forest of G, we do not bother to

replace tree edges when they are deleted. Instead we keep track of the fragmented parts of the

forest as tree edges are deleted, and use this to answer connectivity queries efficiently.

Initialisation

The algorithm works as follows. Consider an undirected connected graph G = (V,E) and

a spanning tree T = (V, F ) of G. We construct the Euler tour ET (T ) of T (note that in the

previous section we used the Euler tour of G), and maintain an undirected graph H whose nodes

represent intervals on the Euler tour of T . As before, we build a range tree with a point for each

pair of occurrences of the same node u, i.e. the set O(u)×O(u). Therefore there are at most

∑

v∈V

degT (v)2 ≤
(
∑

v∈V

degT (v)

)2

≤ (2n− 2)2

points since in any tree T we have
∑

v∈T degT (v) = (n− 1).
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We must also handle the nontree edges of G. Assume that there are m′ such nontree edges.

We do this by adding to the range tree for each nontree edge {u, v} ∈ G, a point (ui, vj) for

each pair of occurrences in O(u) × O(v). Since each node v appears in the Euler tour of T
degT (v) times, the number of nontree edge points is

∑

{u,v}∈E\F
degT (u)degT (v) ≤

∑

{u,v}∈E

degT (u)degT (v) =

(
∑

v∈V

degT (v)

)2

≤ 4n2

for any spanning tree T . If the number of nontree edges is small (e.g. G is tree-like) then it

makes sense to bound this by min (m′∆(T )2, 4n2) (by subtracting the sum containing the tree

edges). Combining the space requirements for tree and nontree edges, the algorithm uses at

most min (8n2, (m′ + n)∆(T )2) points in total.

Deleting an edge

Assume that we represent the auxiliary graph H with its adjacency list (so that edge operations

take O(1) time). Deleting a tree edge is handled as before: we delete the two appearances of

the edge from the Euler tour of T , each of which splits some node of H into two nodes. We

then test for edges adjacent to the new nodes of H using emptiness queries on the range tree.

This takes total time O(k log n) after k edges have been deleted (since the graph H will contain

at most O(k) nodes).

Deleting a nontree edge {u, v} has no effect on the Euler tour of T , but now we must delete

all the points (ui, vj) ∈ O(u)×O(v) from the range tree, corresponding to the edge {u, v} and

the occurrences of u and v in T . After deleting each point (ui, vj) we do a range query to check

that an edge still exists in H between the nodes whose intervals contain ui, vj . If this check

fails then we delete the corresponding edge from H . In total, this requires O(∆(T )2) emptiness

queries in the worst-case.

Answering connectivity queries

Connectivity queries are answered exactly as before: to answer CONNECTED(u, v), we find

h(u) and h(v) and check whether h(u) can reach h(v) in H . As before, the correctness of this

follows from Lemma 4.8.2 and that the subgraphs Hu are cliques in H .

Complexity

Mortensen [Mor03] has given a dynamic range tree data structure that handles emptiness queries

and deletions in worst-case time O(log r), and uses space O(r log r/ log log r) to store r points.

If we use this algorithm then we obtain a decremental connectivity algorithm that handles the

kth deletion in worst-case time O(∆(T )2 log n + k log n) and uses space O(r log r/ log log r),
where r = min(8n2, (m′ + n)∆(T )2).

It is clear that our algorithm relies on constructing a spanning tree of the graph having small

maximum degree. In fact, it actually requires a spanning tree such that if {u, v} is a nontree

edge of G, then the product degT (u)degT (v) should be small. There are several results known

about graphs with spanning trees of small degree. Let ∆∗(G, T ) be the smallest integer d such

that G has a spanning tree of maximum degree d. Determining ∆∗(G, T ) exactly is NP-hard,

since ∆∗(G, T ) = 2 iff G has a Hamiltonian path, which is NP-complete [GJ90]. On the
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other hand, Furer and Raghavachari [FR94] give a polynomial-time approximation algorithm

that outputs a spanning tree T with degree at most ∆∗(G, T ) + 1. A theorem of Dirac [Dir52]

says that if each node of G has degree at least n/2, then G contains a Hamiltonian cycle, and

therefore a spanning tree of degree 2. It is known that almost all r-regular graphs (for r ≥ 3)

have a Hamiltonian cycle.

An alternative characterisation of ∆∗(G, T ) is in terms of the toughness of the input graph.

A graph G = (V,E) is t-tough if the number of connected components of G\S is at most |S|/t
for every separator S ⊆ V . In 1989, Win proved the following theorem.

Theorem 4.8.3 ([Win89]) Let t be a positive integer. Every 1/t-tough graph G has a spanning

tree of degree t + 2, i.e. ∆∗(G, T ) = O(t).

Combining the above theorem with the algorithm of this section gives the following result.

Theorem 4.8.4 Let G be 1/t-tough. Then we can solve decremental connectivity on G, han-

dling the kth deletion in time O(t2 log n + k log n) and answering connectivity queries in time

O(k2). The algorithm uses space O(n2 log n/ log log n) bits. Furthermore, only polynomial

preprocessing time is required.

The above theorem immediately implies that we can also solve k-edge witness in worst-case

time O(kt2 log n + k2 log n) on 1/t-tough graphs.

Remarks. If the number of edges in G \ T is zero (i.e. G is a tree) then we can ignore the

analysis in the case of the nontree edges and so the kth deletion takes time O(k log n). Similarly,

if the number of nontree edges is small (for example, G is ‘tree-like’), it may be possible to do

better. For example, a good randomized bound may be possible by considering the probability

of deleting a nontree edge at each step. We leave it as an open problem to obtain such bounds.
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INITIALISE

1 T ← a minimum degree spanning tree of G
2 ET (T )← the Euler tour of T
3 for each node u ∈ T
4 do O(u)← the set of occurrences of u in ET (T )
5 for each pair of occurrences ui, uj ∈ O(u)×O(u)
6 do RANGE-TREE-INSERT(ui, uj)
7 for each nontree edge {u, v} ∈ G
8 do for each pair of occurrences ui, vj ∈ O(u)×O(v)
9 do RANGE-TREE-INSERT(ui, vj)

10 H ← a graph with a single node representing the interval [1 . . n].

DELETE({u, v})
✄ Assume v is the parent of u

1 if {u, v} is a tree edge

2 then for each appearance {i, i + 1} of edge {u, v} in ET (G)
3 do EULER-TOUR-DELETE({i, i + 1}) ✄ O(log n)

✄ Split h into two new nodes h1, h2

4 h← [a . . b] = h(i) ✄ O(log |H|)
5 h1 ← INSERT-NODEH([a . . i]) ✄ O(1)
6 h2 ← INSERT-NODEH([i + 1 . . b])

✄ Check for an edge between h1 and h2

7 if BOX-NOT-EMPTY((a, i + 1), (i, b)) ✄ O(log n)
8 then INSERT-EDGEH(h1, h2) ✄ O(1)

✄ Check for edges between N(h) and N(h1), N(h2)
9 for each neighbour h′ = [c . . d] of h in H

10 do if BOX-NOT-EMPTY((a, c), (i, d)) ✄ O(log n)
11 then INSERT-EDGEH(h1, h

′) ✄ O(1)
12 if BOX-NOT-EMPTY((i + 1, c), (b, d))
13 then INSERT-EDGEH(h2, h

′)
14 DELETE-NODEH(h) ✄ O(∆(H))
15 else ✄ {u, v} is not a tree edge

16 do for each pair of occurrences ui, vj ∈ O(u)×O(v)
17 do RANGE-TREE-DELETE(ui, vj)

✄ Check for an edge between h(ui) and h(vj)
18 h1 ← [a . . b] = h(ui) ✄ O(log |H|)
19 h2 ← [c . . d] = h(vj)
20 if BOX-EMPTY((a, c), (b, d)) ✄ O(log n)
21 then DELETE-EDGEH(h1, h2) ✄ O(1)

Figure 4.20: The decremental connectivity algorithm for graphs having a spanning tree with

low degree



CHAPTER 5

Handling Intermediate Nodes

The previous chapter considered the problem of routing from a source u to a destination v,

using the lowest-cost path to u. However, the routing process relies on intermediate nodes

forwarding packets towards the destination, possibly along paths that are of high cost to them.

If we assume that the nodes are autonomous, competing organisations (such as the autonomous

systems on the Internet), then these intermediate nodes may simply drop these packets. This

type of behaviour is can be seen in the BGP Internet routing algorithm – nodes may choose to

only advertise routes that are of low cost to them, so nodes can only discover routes where every

subpath is also of low cost to its source. This problem does not arise in shortest-path routing,

since every subpath of a shortest path is also a shortest subpath, and therefore the intermediate

nodes will always route on shortest subpaths.

In this chapter, we extend the routing model of the previous chapter to take into account the

costs incurred by intermediate nodes, when we use forbidden-set policies. We shall call a path

Puv a good path if all of it subpaths Pwv have zero cost, i.e. cw(Pwv) = 0. We shall also assume

that k is an upper bound on the size of a forbidden set, i.e. k ≤ maxv |S(u)|. Our main results

are the following.

• Taking into account intermediate nodes is hard. Consider any routing scheme that can

decide if there exists a good path before sending the packet. We show that such a scheme

must assign labels to nodes (not just routing tables) of size Ω(
√

n + k log n/k) bits. This

lower bound holds even for trees, and stands in contrast to the O(k log n) bound shown in

the previous chapter for distance labels in trees. Since the labels are placed in the packet

header, this makes routing on ‘good’ paths infeasible.

• We show that the lower bound is almost tight by giving a scheme that can decide if there

is a good path in trees. Our scheme uses labels of size Ω̃(
√

kn) bits and makes routing

decisions in time O(log kn). We also show how to extend the scheme to compute a 2-

approximation to the sum of costs along the path using Õ(
√

kn) bits per label.

• We show that it is possible to avoid the lower bound by not checking if there is a good

path before sending the packet, and instead letting the packet return if it cannot be routed

on a good path. In this case, we show a simple routing scheme that works in general

82
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graphs, and uses Õ(k)-bit labels. The price is that the packet headers may become large,

and a packet may travel the diameter of the graph before being returned.

• Finally, we show how to construct centralized algorithms for the problem, with various

time-space tradeoffs.

Recall that each node assigns a non-negative cost to every other node cu(v) = 1 iff v ∈ S(u)
and 0 otherwise. Define the cost to u of a path Puv as cu(Puv) =

∑
w∈Puv

cu(w), and the full

cost (or simply cost) of Puv as

c(Puv) =
∑

w∈Puv

cw(Pwv) (5.1)

where Pwv is the subpath of Puv from w to v. A good path is then a path with zero cost, and

a ‘forbidden-set-avoiding’ (fs-avoiding) path is a path with cost zero to the source node. If

there exists a good path from u to v then we say that u can reach v, and we call the problem of

deciding if there is a good path fs-reachability for short.

5.1 An Ω(
√

n) lower bound

Section 4.6.1 showed that trees enjoy O(log n)-bit separator labels. Let us now consider the

problem of deciding if there is a good path from u to v. The most obvious idea might be for

L(u) to store the separator labels for the forbidden sets of each of its ancestors w, and then to

use these to check that none of them is a uv-separator. Unfortunately this scheme would require

Ω(n) bit labels in the case of a line. We now show that labels of size Ω(
√

n) bits are required to

decide if the path is good in a tree.

Theorem 5.1.1 Any labeling scheme for fs-reachability on n-node trees with forbidden sets of

size k must assign to some node a label of size at least
√

n + Ω(k log n/k) bits.

Proof. Consider the tree as in Figure 5.1 with a set U of
√

n leaves u1, ..., u√
n each linked to

the root node w by node-disjoint paths of length
√

n. The forbidden sets are either empty or

contain a single element from the set U of leaves. Now, ui can reach uj (for i 6= j) iff there is

no node on the path ui to w whose forbidden set contains uj . By assigning forbidden sets in

this way to the nodes on the paths, the nodes on each path from ui to w can collectively select

one of
∑√

n
j=0

(√
n

j

)
= 2

√
n subsets of U , and for each distinct choice, a distinct labeling of the

set U ∪ {ui} = U is required.

Since the paths from the {ui} to the children of w are node-disjoint, the labelings required

are independent for each path (since the forbidden sets chosen on node-disjoint paths will not

interfere with the output of the decoder) and so we can apply the above argument independently

to each path – for each of the 2
√

n distinct choices of nodes on the path from u1 to w, there are

2
√

n distinct choices of nodes on the path from u2 to w (and each of these requires a distinct

labeling) and so on. Hence there are at least 2
√

n2
√

n . . . 2
√

n
︸ ︷︷ ︸√

n

= 2n distinct labelings of the

nodes of U . As |U | = √n, it follows that at least one node in U must be assigned a label of size
1√
n

log 2n =
√

n bits.

This bound holds for k = 1 and we have been unable to extend it to depend on k. However,

we can combine it with the lower bound of Theorem 4.5.3 to obtain an Ω(
√

n + k log n/k)
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√
n

u1 u2 · · · u√
n

√
n

w

Figure 5.1: The
√

n lower bound of Theorem 5.1.1

bound, i.e. when k is approximately greater than
√

n the lower bound grows linearly with

k.

This lower bound rules out the possibility of extending the separator label scheme of the

previous chapter with only a small (polylogarithmic) increase in size. For the tree in Figure 5.1,

it is quite easy to achieve a matching upper bound: for each node u ∈ U , the label L(u) stores

(using O(
√

n) bits) for every other node v ∈ U , whether u has a good path to v. Unfortunately,

this strategy is doomed to fail for the complete binary tree, where u would end up storing

reachability separately for Ω(n) leaves.

5.2 A Õ(
√

kn) upper bound

In this section we show an almost optimal upper bound on the label size for trees. Define

fT (u, v) = 1 iff there is a good path from u to v in T . First we look at two simple cases from

which we derive the scheme for general trees.

Line scheme. On the line, labels of size 3⌈log n⌉ bits suffice: number the nodes from left to

right, then store in L(v) the position of v and the positions of the two closest nodes left(v) and

right(v) that cannot reach v, from each side of v. Given L(u) and L(v), the decoder declares

that u can reach v iff u lies between left(v) and right(v). Notice that the label size is independent

of k, the size of the forbidden sets.

Tree scheme. Next, consider a complete binary tree on n nodes – each of the n/2 leaves

may be independently unreachable from u so listing these regions as for the line will use Ω(n)
bits. However, O(kh log n) bit labels suffice for a tree of height h: the label for u stores, for

every ancestor w of u, 〈f(u,w), f(w, u), LSEP (S(w))〉, where LSEP (S(w)) are the separator

labels for S(w) in the tree. Given L(u) and L(v), the decoder finds the least common ancestor

w of u and v and checks that f(u,w) = 1, f(w, v) = 1 and that none of the forbidden sets on

the path u to w are uv-separators in the tree. This scheme is clearly inefficient for a long path.

The above discussion shows that, while lines and complete trees have efficient schemes,

each fails on the other case. We now show how to tradeoff between the two schemes to obtain

a scheme with labels of size at most Õ(
√

kn) bits. We first need some preliminary definitions.

A separator of a rooted tree T is a node w whose removal partitions the tree into connected

components, each with at most n/2 nodes. In 1869, Jordan proved that such a node always
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Figure 5.2: An example of a separator tree.

exists and can be obtained in the following way. Pick an arbitrary node u from the tree. If v
partitions the tree into components of size at most n/2 then we are done. Otherwise, there exists

a component with more than n/2 nodes – let u be the node adjacent to v in that component,

change v to u and repeat the process. Since there are a finite number of nodes in the tree, and

each node is visited at most once, this process terminates in linear time and finds a separator w.

The separators can be used to build a separator tree T ′ for T as follows. First, find a

separator w of T and make it the root of T ′. Then, recursively construct the separator trees of

the components of T \ {w} and make the roots of these trees the children of w in T ′. It is clear

that the separator tree has depth O(log n) and can be constructed in time O(n log n) since we

can find the separator nodes in time linear in the size of the subtrees. An example of a separator

tree is illustrated in Figure 5.2. We also need the notion of a painting. A painting χ of a tree

T partitions the nodes of T into disjoint subsets Shallow(χ) and Deep(χ). An α-painting is a

painting with the following properties:

1. The shallow nodes induce a connected subtree of T with at most n/α leaves;

2. For every node v ∈ T , there are at most α deep nodes on the path from v to the root.

The following ‘painting lemma’ is key to the labeling scheme and shows how we can tradeoff

the space required between the deep and shallow nodes.

Lemma 5.2.1 For any n-node tree T and any integer 1 ≤ α ≤ n, there exists an α-painting of

T , computable in linear time.

Proof. Assume that the tree is rooted; if not then choose a root node arbitrarily. We claim that

the following procedure is suitable: for all subtrees of T having depth exactly α, paint all their

nodes deep1. All remaining nodes (above these subtrees) of T are painted shallow.

Condition (1) of the definition of a painting implies that all the shallow nodes must be above

all the deep nodes. Now we just have to look for the frontier between the shallow nodes (above)

1The depth of a subtree is the length of its longest path from the root to a leaf.
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and the deep nodes (below). Consider all the nodes whose subtrees have depth exactly α. Each

such subtree has at least α nodes in it, so there may be at most n/α such subtrees in the tree. If

we paint all these subtrees deep and everything above them shallow, then (1) is clearly satisfied

and the subtree induced by the shallow nodes contains at most n/α leaves.

It is easy to see how to do the painting in time O(n): do a depth-first search from the root

of the tree, keeping track of the height of nodes on the current path. On the way back up, if the

height of a node is at most α, then paint it deep, otherwise paint it shallow2. This takes time

O(|V |+ |E|) = O(n).

For some set X ⊆ V of nodes, we define X∗ ⊆ X as the ancestor-free subset of X . X∗

is the unique maximal subset of X where no distinct pair of nodes in X∗ are ancestors of each

other. We can define it as X∗ = {x ∈ X|∄y ∈ X : y 6= x and y is an ancestor of x}. For

example, if X is a set of leaves then X∗ = X , and if X is a path then X∗ is the node of X
closest to the root.

In the remainder, we shall use the following notation: T [w] is the tree T rerooted at w,

idT (w) is the identifier of node w in a depth-first search of a rooted tree T , and AT (X) is the

set of ancestor labels for a set X ⊆ V in a tree T .

The labeling scheme

We now describe the labeling scheme for trees. The idea is to first compute the separator tree

for T . Then for every ancestor w of u in the separator tree, we reroot T at w and do the

following to T [w]: for all the deep ancestors of u, we apply the strategy for the binary tree (i.e.

L(u) contains the separator labels for their forbidden sets); for the remaining shallow nodes, we

apply the strategy for the line to each path of shallow nodes from the root to a shallow leaf.

The marker algorithm. The marker algorithm works as follows. Consider some tree T
rooted at w, a painting χ of T , and a node u with w an ancestor in the separator tree T ′. The

deep nodes on the path Puw are stored in L(u), and the ancestor-free subset of shallow nodes

below w that cannot reach v (have no fs-avoiding path to v) is stored in L(v). This is done for

each ancestor w of u in the separator tree. The marker algorithm is given in Figure 5.3 and

uses a recursive procedure, initially called with the entire tree T . It is clear that the marking

is done in polynomial time. Note that each tree is rerooted at its separator before painting it.

The reason for this is that if we used the painting of T rather than T [w], then the shallow/deep

tradeoff given by the painting lemma would not carry through to the size of the labels. This is

because the path from u to v must be ‘split’ at the same node used as the root in the painting,

i.e. the separator w.

The decoder algorithm. The decoder algorithm is given in Figure 5.4. Given L(u), L(v),
its first computes the least common ancestor w of u, v in the separator tree for T , and then checks

(1) u can reach w (using L(u)), (2) w can reach v (using L(v)) and (3) S(Puw)∩Pvw = ∅, where

S(Puw) is the union of forbidden sets of the nodes on Puw. The third check is conducted in two

parts. In the first part, the decoder uses the label L(u) to examine the forbidden sets of deep

nodes on Puw. In the second part, it uses L(v) to examine the subtrees of T [w] containing nodes

not having a good path to v.

2The height of a node is the minimum distance from it to a leaf.



5.2. A Õ(
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MARKER(T ):
Let n = |V (T )| and k = maxv∈T |S(v)|.

1. If T contains a single node w, set L(w)← (1, {}, {}, fT (w,w), fT (w,w), 0) and return.

2. Find and remove a separator w of T , breaking T into subtrees {Ti} of size ≤ |T |/2.

3. Recursively call M(Ti); let each node v ∈ Ti be given the label Li(v).

4. Let χ be a
√

n/k-painting of T [w] i.e. paint the nodes of T as if it were rooted at w.

5. For each node v ∈ Ti do the following:

(a) Let Deep(v) = S(Deep(χ) ∩ Pvw) be the forbidden nodes of the deep nodes on the

path from v to w.

(b) Let S = {u ∈ (Shallow(χ) \ Ti) | fT (u, v) = 0} be the shallow nodes that cannot

reach v and let Shallow(v) = S∗ ⊆ S be its ancestor-free subset, using the ancestor

relation from T [w].

(c) Construct the sublabel J (v) for node v as follows:

J (v)← (idT (v),AT [w](Deep(v)),AT [w](Shallow(v)), fT (v, w), fT (w, v), i)

(d) Append this to v’s label in the component Ti by doing L(v)← J (v) ◦ Li(v)

Figure 5.3: The marker algorithm
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DECODER(L(u), L(v)):
Assume that L(u), L(v) are of the form

L(u) = J1(u) ◦ . . . ◦ Jp(u)

L(v) = J1(v) ◦ . . . ◦ Jq(v)

1. If q = 1 then v is the separator of T , so return the value of f(u, v) ∈ J1(u). If p = 1 then

return the value of f(u, v) ∈ J1(v). For p, q > 1 let

J1(u) = (id(u), Deep(u), Shallow(u), f(u,w), f(w, u), i)

J1(v) = (id(v), Deep(v), Shallow(v), f(v, w), f(w, v), j)

2. If i 6= j then u, v are in different subtrees and w is the least common ancestor of u, v in

the separator tree. Do the following:

(a) Check that u can reach w and that w can reach v via forbidden-set avoiding paths

(by checking f(u,w) ∧ f(w, v)) It remains to decide whether any of the forbidden

sets of nodes on the path Puw appear on the path Pwv.

(b) Using L(u), check that none of the forbidden nodes in Deep(u) are ancestors of v
in T [w], by checking that id(v) 6∈ [i, j] for all [i, j] ∈ Deep(u).

(c) Using L(v), check that none of the unreachable nodes in Shallow(v) are ancestors

of u in T [w], by checking that id(u) 6∈ [i, j] for all [i, j] ∈ Shallow(v).

Return that f(u, v) = 1 iff all the above are satisfied.

3. If i = j then u, v are in the same subtree. In this case, discard the sublabels J1(u) and

J1(v) and invoke the decoder recursively on the labels

L′(u) = J2(u) ◦ . . . ◦ Jp(u)

L′(v) = J2(v) ◦ . . . ◦ Jq(v),

returning the value of D(L′(u), L′(v)).

Figure 5.4: The decoder algorithm
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5.2.1 Proof of correctness

Lemma 5.2.2 The labeling scheme 〈M,D〉 is correct, i.e. D(L(u), L(v)) = fT (u, v).

Proof. For L(u), L(v), let w = LCA(u, v) and consider T [w]. We know that u can reach v iff

(1) u can reach w, (2) w can reach v and (3) none of the forbidden sets of nodes on the path Puw

appear on the path Pwv. Conditions (1) and (2) are handled by just looking at L(u) and L(v)
independently.

To see that the decoder correctly decides (3), note that every node on the path Puw is either

painted deep or shallow. The forbidden sets of the deep nodes on this path are stored in L(u),
and only those that are in the same subtree of T [w] are stored in the label. Hence if one of them

is an ancestor of v, then it must be on the path Pwv. It remains to check that none of the shallow

nodes on the path Puw have forbidden sets on the path Pwv.

Imagine that there is some shallow node y on the path Puw where an element of S(y) is on

the path Pwv, so that v is unreachable from y. Some ancestor of y in T [w] must be in the set

of unreachable shallow nodes stored in L(v). Finally, if no shallow node on the path Puw has a

forbidden set that intersects the path Pwv, then no unreachable shallow node stored in L(v) is

an ancestor of u.

5.2.2 Complexity

The efficiency of the labeling scheme relies on the observation that it is possible to paint the

nodes of the tree so that there are not too many deep nodes on each path (and hence L(u) does

not need to store too many forbidden sets), and so that the subtrees containing shallow nodes

that cannot reach u can be described with a small amount of space.

Our initial idea was to use the painting as described in the LCA labeling scheme of [Pel00]:

a node is painted light if its subtree contains at most half the nodes of the subtree of its parent.

This guarantees that each node has at most one heavy child and that every node has at most

O(log n) light ancestors. However, this is not what we need as we can construct instances

where the forest induced by the heavy nodes would have Ω(n) leaves and therefore require lots

of space. The following lemma gives the main result of this section.

Theorem 5.2.3 The labeling computed by M(T ) has labels of size Õ(
√

kn) bits and the de-

coder algorithm answers queries in time O(log kn) on this labeling.

Proof. Assume that the painting χ used by the marker algorithm on each subtree is an α-

painting, for some integer 1 ≤ α ≤ n. Lemma 5.2.1 implies that in a subtree with n nodes and

forbidden sets of size at most k, the set Shallow(v) will contain at most n/α nodes and the set

Deep(v) will contain at most kα nodes.

Since each ancestor label requires 2 log n bits to store the interval of identifiers of its de-

scendants, the sublabels J (v) are each of size at most (kα + n/α)(2 log n) + 3 log n + 2 ≤
3(kα + n/α) log n bits (for large enough n such that kα + n/α ≥ 3). Since the separator tree

has depth at most log n, the recursion has ≤ log n levels, so each label is composed of at most

this number of sublabels.

It follows that there is a scheme with labels of at most 3(kα + n/α) log2 n bits for any

choice 1 ≤ α ≤ n. Minimizing the quantity kα + n/α gives α =
√

n/k, and using this

choice of α for each subtree of size n and with forbidden sets of size at most k (note that the
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value of α is recomputed for each subtree) gives a labeling scheme using labels of size at most

3(k
√

n/k + n/
√

n/k) log2 n = 6
√

kn log2 n bits.

The time complexity of the decoder is dominated by step (2), which is executed exactly

once per query. Step (2a) takes time O(1). For steps (2b) and (2c), consider the following

related problem: there is a set S of intervals {[li, ri]} (where li, ri ∈ {1, . . . , n}) and we want to

decide if some integer x ∈ [1, n] is contained in any of the intervals. This can be done in worst-

case time O(log n) using an interval tree, as described in [PS85]. The tree uses space O(|S|),
where |S| is the number of intervals stored. Using this method to store the ancestor labels of

the forbidden sets, step (2b) takes time O(log |Deep(v)|) = O(log kα) and step (2c) takes time

O(log |Shallow(v)|) = O(log n/α). The decoder may iterate h times before executing step (2),

where h is the height of the separator tree. Since the separator tree has depth log n, the decoder

takes total time O(log n + log(kα) + log(n/α)) = O(log kn).
Remarks. Note that the constant factors involved are small— for k = 1 the lower bound is√

n and the upper bound is 6
√

n log2 n.

5.2.3 An example

Figure 5.5 shows a tree T that we will use to illustrate the labeling scheme. The same tree is

drawn in Figure 5.2.3 with the shallow nodes filled and the deep nodes unfilled. Each node

is drawn with its identifier from a depth-first search of the tree (note that the identifiers are

recomputed for each subtree in the recursion). The forbidden sets are indicated by the dashed

edges in the figure:

S(c) = {j, o}, S(d) = {f}, S(e) = {g}, S(f) = {p}, S(m) = {b}

We first root T at its separator w. To compute the sublabel for node i we first find the union

of the forbidden sets of its deep ancestors. The forbidden set of the node f contains p, whose

ancestor label in T is [16, 18]. Next we find the set of shallow nodes in T \ T1 that i cannot

be reached from (nodes in the tree T1 containing i are not considered as this part of the label is

only used for nodes in different subtrees). This is the set {a,m, n}, whose ancestor-free subset

is a. The ancestor label for a is [10, 18]. Finally, we check if i can reach the root of T and if

the root can reach i (which it cannot, due to the forbidden set of e). This gives the sublabel

(9, {[16, 18]}, {10, 18}, 1, 0, 1).
The next sublabel for i is computed by repeating this process on the subtree T1, as shown in

the figure. Note that at each level the subtrees are repainted and the identifiers are recomputed,

hence a node has an identifier for each subtree. The final labels are shown in the figure. As an

example of the non-symmetry of the fs-reachability relation, it can be seen that f(c, q) = 1 but

f(q, c) = 0.

5.3 A 2-approximate scheme

For general graphs, our aim is to efficiently route on good paths. Since the path is unique in a

tree, this reduces to deciding if the path is good or not. However, it may be acceptable to use

paths of low cost (recall that cost of a path is c(Puv) =
∑

w∈Puv
|S(w) ∩ Pwv|)). We have been

unable to construct an efficient labeling scheme to compute the exact cost of a path, but we can

give a 2-approximate scheme with a logarithmic increase in label size. Let k be the maximum

size of a forbidden set.
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Figure 5.5: The tree used for the example and the first two levels of its recursive partitioning.

Theorem 5.3.1 There exists a 2-approximate labeling scheme for trees for the cost c(Puv) using

labels of size Õ(
√

kn) bits and answering queries in time O(log kn).

Proof. We augment the labeling scheme of Section 5.2 with a technique for approximately

counting the number of forbidden elements intersected. First consider a line as in the top of

Figure 5.7, where a dashed directed edge (u, v) means that v ∈ S(u). The key observation

is that for i ≤ j, the cost c(Pij) equals the number of crossing edges going from left to right

that have both endpoints in [i, j], and for fixed i this number is monotone increasing with j.

Therefore the label for the root node in the figure stores the positions of the ⌈lg kn⌉ = O(log kn)
intervals to the right of it, which have cost 1, 2, 4, . . . , kn. It is easy to see that this indeed gives

a 2-approximation to the actual cost.

This extends naturally to a 2-approximate scheme for trees – we apply the scheme for the

line down every path of the tree. A region is now a subtree, identified by the root of the subtree,

i.e. its ancestor label. The tree at the bottom of Figure 5.7 illustrates this. We do this for the

subtree induced by the shallow nodes. There are at most n nodes and hence at most ⌈lg kn⌉
intervals on each path. By Lemma 5.2.1, the subtree induced by the shallow nodes has at most

n/α leaves. Therefore, the marker algorithm can be modified so that each sublabel J (u) stores

at most (n/α)O(log kn) intervals of shallow nodes, so this gives only a logarithmic increase in

the label size.

The forbidden sets of the deep ancestors of u can be handled in a similar way. Instead of

storing only the ancestor labels of forbidden sets of deep ancestors of u, we store ancestor labels

denoting each of the log kn intervals. We construct (for each ancestor w of u in the separator

tree) O(log kn) intervals (representing subtrees), where the identifier of v is contained in r
intervals iff the path from w to v intersects between 2r and 2r+1 elements of the forbidden sets

of u’s deep ancestors . In addition, L(u) can store the number of forbidden nodes intersected
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L(c) = (3, {}, {[10, 18]}, 1, 1, 1) ◦ (6, {}, {}, 1, 1, 2) ◦ (1, {}, {}, 1, 1, 0)

L(i) = (9, {[16, 18]}, {[10, 18]}, 1, 0, 1) ◦ (4, {}, {[5, 8]}, 1, 1, 2) ◦
◦(3, {}, {}, 1, 1, 2) ◦ (1, {}, {}, 1, 1, 0)

L(q) = (17, {}, {}, 1, 1, 2) ◦ (8, {}, {}, 1, 1, 3) ◦ (1, {}, {}, 1, 1, 0)

Figure 5.6: Illustrating the marker algorithm. Shallow nodes are filled and deep nodes are

unfilled, and a dashed edge (i, j) means that j ∈ S(i)
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root

r = 1r = 0 r = 2 r = 3 · · ·
r = lg kn

Figure 5.7: Illustrating the 2-approximation of c(Pij). The cost of a path from the root to a node

j is the number of crossing edges with both endpoints on the path. For a node j in region r,

the algorithm returns 2r.

on the paths to and from w in place of the boolean value f(u,w). This increases the label size

by a constant factor (since we already pay O(log n) to store the separator labels).

For the time complexity, the intervals in the ancestor labels can be stored in an interval tree

[PS85] such that in worst-case time O(k + lg n) we can list all k intervals that contain a given

integer. Since there are at most O(log kn) intervals that contain an identifier (by construction

in both the shallow and deep cases), we can compute the number of intervals r containing an

identifier in time O(log kn), hence a 2-approximation 2r to the cost in each case. This is the

same time complexity as in the original decoder. Since we have a 2-approximation to the cost of

intersecting the forbidden sets of the deep ancestors of u and the cost of intersecting the shallow

nodes of T [w] (in addition to the exact cost of the paths Puw and Pwv), adding them together

gives a 2-approximation to the cost of Puv.

5.4 Bounded-distance forbidden sets

One of the difficulties that the algorithm must handle is that the forbidden set S(u) may contain

nodes that are far away from u, as large as the diameter of G. In practical scenarios, we expect

that the forbidden set of u will contain nodes that are ‘near’ to u, perhaps within its own cluster.

Another factor is the following: in graphs with good connectivity, it is likely that the minimum

size of a uv-separator will increase with the distance from d(u, v), and therefore the forbidden

sets will only interfere with routing to nodes far away, if the forbidden set contains a large

number of nodes.
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Based on this observation, we consider a restricted policy where the set S(u) may only

contain nodes within some bounded distance δ of u. As before, assume that the forbidden sets

are of size at most k. Define the δ-fs-reachability problem to be fs-reachability except that for

every node u, every node of S(u) lies within a distance δ of u, i.e. d(u, S(u)) ≤ δ. We shall

give a lower bound on label size for the problem of δ-fs-reachability.

Note that 1-fs-reachability is no harder than routing with next-hop preferences (where the

cost cu(Puv) depends only on the next hop). In this case, we can make use of the fact that

the cost c(Puv) is equal to the cost of the same path in the directed graph G′ where the edge

(u, v) has weight cu(v) (we assume that cu(v) is finite). We can therefore make direct use of

the distance labeling schemes from e.g. Gavoille et al. [GPPR04]. Note that only the weights

are directed in G′, i.e. there is an edge (i, j) iff there is an edge (j, i). Hence reachability

is undirected and can be done with O(log n)-bit labels, but the distances are not symmetric.

Together with the distance labeling schemes of Gavoille et al. [GPPR04], this gives a next-hop

cost labeling scheme using O(log2 n)-bit labels for trees. It can most likely be extended to other

classes of graphs supporting an efficient distance labeling scheme (with directed edge weights).

5.4.1 Lower bound for trees

We start by extending the lower bound of Theorem 5.1.1 to δ-fs-reachability. The idea is simple

– for small δ we flatten the tree, creating a large number of short paths.

Lemma 5.4.1 Any δ-fs-reachability labeling scheme with δ ≤ 2
√

n must assign some node a

label of size Ω(δ log n/δ2) bits on n-node trees.

Proof. The argument is similar to the lower bound of Theorem 5.1.1. Consider the tree having

2n/δ node-disjoint paths each of length δ/2. Each path to the root can independently choose a

set of leaves of size at least
(
2n/δ
δ/2

)
and by a similar argument to Theorem 5.1.1 the label size is

bounded below by

1

2n/δ
log

(
2n/δ

δ/2

)2n/δ

≈ (δ/2) log(2n/δ − δ/2)− (δ/2) log(δ/2)

= (δ/2) log(4n/δ2 − 1)

and this holds for δ/2 ≤ 2n/δ, i.e. δ ≤ 2
√

n.

5.4.2 Lower bound for general graphs

When the forbidden set S(u) contains only neighbours of u, we can prove an Ω(n) lower bound

on the label size for general graphs.

Lemma 5.4.2 Any 1-fs-reachability labeling scheme for k = 1 must use labels of size Ω(
√

n)
bits.

Proof. The proof is by reduction from reachability on directed graphs. Given a directed graph

G on n nodes v1 . . . vn, construct the undirected bipartite graph H on node sets V1 and V2 as

follows. In V1 there are n nodes v1 . . . vn and the set V2 contains a node (i, j) for each edge

(vi, vj) of G. Now for each directed edge (vi, vj) of G, add the undirected edges (vi, (i, j)) and

(vj, (i, j)) to H . Finally assign the nodes in V2 the forbidden sets S((i, j)) = {vi} (the nodes in

V1 all have empty forbidden sets). Figure 5.4.2 illustrates this construction.
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v1 // v2

v4 // v3
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⇒

v1
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C (1, 2) S((1, 2)) = {v1}
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C (3, 1) S((3, 1)) = {v3}
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C (3, 2) S((3, 2)) = {v3}

v4 (4, 3) S((4, 3)) = {v4}
G H

Figure 5.8: The reduction in Lemma 5.4.2

We claim that vi can reach vj in G iff there exists a good path from vi to vj in H . The “⇒”

direction is clear – if there is a path P = vi1 , vi2 , . . . , vik with no repeated nodes in G, then

the path P ′ = vi1 , (i1, i2), vi2 , . . . , (ik−1, ik), vik is a good path in H . For the other direction,

assume that P ′ is a good path in H from vi1 to vik . We claim that the path P corresponds to a

path in G. Each node in V2 has degree exactly two, and the forbidden sets ensure that in any

good path of H containing . . . , vi, (i, j), vj, . . ., the edge (vi, vj) exists in G.

Given a 1-fs-reachability scheme for H using r bits per label we can construct a directed

reachability labeling scheme for G using r bits per label by setting lG(vi) = lH(vi). Since there

exist n-node directed graphs that require reachability labels of size Ω(n) bits [CHKZ02], the

construction gives a family of O(n2)-node graphs requiring Ω(n) bits per label.

For the case where the size of the forbidden sets is unbounded, we can show an Ω(n) lower

bound, which is clearly optimal in the worst-case.

Lemma 5.4.3 Any 1-fs-reachability labeling scheme must use labels of size Ω(n) bits when the

forbidden sets are unbounded in size.

Proof. We can prove the lemma by reduction from adjacency in directed bipartite graphs.

Given a bipartite graph ((V1, V2), E) on node sets V1, V2 with edges directed from V1 to V2,

we construct the same graph ((V1, V2), E
′) but with undirected edges, and for v ∈ V1, S(v) =

V2 \N(v) (N(v) is the set of neighbours of v). It is clear that there is a good path from v1 ∈ V1

to v2 ∈ V2 iff (v1, v2) ∈ E. It follows (by a similar argument to [CHKZ02]) that there are 2Ω(n2)

distinct labelings of O(n) nodes, and so at least one node must be assigned a label of size Ω(n)
bits.

5.5 Compact routing on good paths

The lower bound of Theorem 5.1.1 implies that any scheme that decides if there exists a good

path between u, v by consulting only L(u), L(v) must use labels of size Ω(
√

n) bits. This is

much too large to place in the headers of packets. In this section we show that it is possible to re-

duce this space by using a compact routing scheme. We describe a scheme that uses O(k log n)
bits of storage at each node and uses labels of size O(log n) bits in each packet header. How-
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ever, this comes at a price – a packet may travel over Ω(n) edges before the algorithm realises

that there does not exist a good path.

5.5.1 Overview of compact routing on trees

Our scheme makes use of any compact routing scheme for trees, so we begin by giving an

overview of compact routing on trees. The standard ‘interval routing’ technique due to Santoro

and Khatib [SK85] is as follows. We root the tree arbitrarily and do a depth-first traversal,

labeling each node with its identifier in the depth-first traversal. This is known as the ancestor

label for the node. For each node w, let fw be the descendant of w with the largest identifier.

By the property of the ancestor labels, a node v is a descendant of w iff v ∈ [w, fw]. A packet

destined for v that arrives to w is routed as follows: if w = v then the packet has reached its

destination. If v 6∈ [w, fw], the packet is sent to the parent of w, using the parent pointer of

w. Otherwise, a search among the children w1, . . . , wd of w is performed and the packet is

forwarded to the last child wi whose identifier is smaller than or equal to v’s.

The packet headers are only of size O(log n) bits, but the routing table at a node w is of

size O(deg(w) log n) bits, making this inefficient for large degree nodes. Furthermore, routing

decisions at these large degree nodes take time O(deg(w)). This scheme has been improved; the

most space-efficient scheme for trees is due to Thorup and Zwick [TZ01b] (and independently

in [FG01]). Their scheme uses routing tables and labels of size (1 + o(1)) lg n bits, and each

routing decision takes constant time.

Interestingly, it is known that an address space larger than lg n bits is needed for efficient

routing on trees – if the address space is {1, . . . , n} and the packet header only contains the

destination address then [EGP03] implies that no loop-free routing strategy can guarantee a

local memory space better than O(
√

n) bits on every family of graphs, including trees.

5.5.2 A scheme for routing on good paths

Our scheme is simple and makes use of any compact routing scheme for trees such as that of

Thorup and Zwick (TZ) [TZ01b] (or the scheme in [FG01]). The routing table for a node u
stores the separator labels for u and the nodes in S(u) in addition to the requirements of the TZ

routing scheme. To send a packet from u to v, the label L(v) that is placed in the packet header

by the TZ routing scheme is augmented with the separator label for v. Therefore the packets

have headers of size O(log n) + (1 + o(1)) lg n = O(log n) bits, and the routing tables are of

size O(k log n) bits.

Now consider a packet that originated at u and arrives at w, destined for v. Using the

separator labels, w checks whether the set S(w) is a wv-separator in T . If so, the packet is

returned to u (using the routing scheme in place). Otherwise it is forwarded to the next node

using the TZ routing scheme. Since each TZ routing decision takes constant time and deciding

if a set of size k a uv-separator takes time O(k), each routing decision takes time O(k).

The reason that this scheme breaks the Ω(
√

n) space lower bound is that reachability is

not decided locally at u; in the worst-case, the packet may traverse Ω(n) links before being

returned, and so the worst-case time complexity of this scheme can be Ω(n). In many cases,

such a delay is not acceptable and moreover, u cannot know that it cannot reach v until it tries

sending the packet. On the other hand, if u is to be able to decide reachability with only local

information, then it must use space Ω(
√

n) and receive a label of size Ω(
√

n) from v.
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Algorithm Space Time Space × Time

Table method O(n2) O(1) O(n2)

Theorem 5.2.3 Õ(
√

kn3/2) O(log kn) Õ(
√

kn3/2)

Theorem 5.6.1 Õ(n2/α + kn) O(kα + log n
α
) Õ(n2

α
log n

α
+ kn2 + αk2n)

(1 ≤ α ≤ n)

Figure 5.9: Summarising the space-time tradeoffs for deciding whether there exists a good

path in forbidden-set routing.

Instead of returning the packet if there is no path of zero cost, we can consider the following

operation: route a packet from u to v iff there is a path Puv with c(Puv) ≤ r. Given the separator

labels for u, v, S, we can determine the size of the intersection |Puv∩S| by counting the number

of nodes of S that are a uv-separator. By using an extra field of lg r ≤ lg n bits into the packet

header, the nodes can keep track of the cost of the path so far and return the packet if the cost

exceeds r at any point. The routing table and header sizes are still O(k log n) and O(log n) bits.

5.6 Nondistributed data structures

Any labeling scheme using s bits per label on some family F of graphs can be converted into

a non-distributed data structure on F using O(ns) bits of space and supporting queries with

the same time complexity as the decoder. Therefore, Theorem 5.2.3 implies a non-distributed

data structure for fs-reachability using Õ(
√

kn3/2) bits space and having query time complexity

O(log kn).
There are of course many non-distributed data structures for fs-reachability. One could build

a table that lists for each pair of nodes u, v whether there is a good path from u to v, using O(n2)
space and having O(1) time complexity (and of course this would work for general graphs).

For trees, we can achieve a tradeoff between query time and space. For 1 ≤ α ≤ n the

scheme of Section 5.2.2 has labels of size ŝ = Õ(n/α + kα) and time t = O(log kn), so the

label size is minimized by choosing α =
√

n/k. This gives a non-distributed data structure

that may use space nŝ = Õ(
√

kn3/2) in the worst case. We now show how to construct data

structures using space between Õ(kn) and Õ(n2) but at the expense of increased query time.

Theorem 5.6.1 For every 1 ≤ α ≤ n, there is a non-distributed data structure for forbidden-

set reachability on n-node trees using space Õ(n2/α + kn) and answering queries in time

O(kα + log(n/α)).

Proof. We will show how with a small modification we can reduce the space required to Õ(kn)
but at the expense of an increased query time. Instead of storing the set of deep ancestors (and

their forbidden sets) of each node using Õ(knα) space as in the distributed labeling scheme of

Section 5.2, in a centralized data structure all this can be stored once using Õ(kn) space. This

gives a data structure having space s = Õ(n2/α + kn) instead of Õ(n2/α + knα). Note that

the strategy for shallow nodes is unchanged.

However, the search tree method used in Theorem 5.2.3 to store the ancestor label intervals

cannot be used, since it constructs a different binary search tree for every node. The best

alternative we can find is the following: by the painting lemma (Lemma 5.2.1), the deep nodes
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induce a forest of height3 at most α below the shallow subtree. Hence for any node u, its

deep ancestors can be found in time α and the ancestor intervals for their forbidden sets can be

checked to see if they contain the destination v in time O(|Deep(u)|) = O(kα). The shallow

nodes are handled as before (using a balanced binary search tree) in time O(log(n/α)). This

gives total time O(kα + log(n/α)).
Table 5.9 gives a summary of the space-time tradeoffs obtained in this section. For α = n/k,

Theorem 5.6.1 gives a data structure with space Õ(kn) yet having query time O(n + log k) =
O(n). These results show that, even on a simple family of graphs (trees), the problem still

allows for some non-trivial algorithms.

5.7 Dynamic labeling schemes

So far we have considered only static labeling schemes, where the network and the forbidden

sets are fixed in advance. These schemes rely on a centralized marker algorithm that is given an

entire description of the network and uses this to output the entire set of labels. Therefore while

the labels allow the problem to be solved using local information, the process of generating the

labels has been centralized. In a dynamic network where nodes may join or leave and policies

are updated, it is desirable to update the distributed representation offered by the labels in an

efficient and distributed fashion. A centralized marker algorithm clearly limits the applicability

of such labeling schemes in real dynamic networks.

Korman et al. [KPR02] describe a general method for converting a static labeling scheme

on n-node trees to a fully dynamic one with only a log n factor increase in the label size. Since

the new marker algorithm is now a distributed algorithm, its communication complexity (to

recompute the labels after a change) is an important property. Korman et al. show that if the

static scheme has a distributed marker algorithm that computes the labels in the static setting

and sendsMC messages (of size O(log n)) then it can be converted into a distributed marker

algorithm for updating the labels in the dynamic setting with amortized message complexity

O((log n)MC).4
We shall show that (assuming we use the notion of shallow sets) we can do no better asymp-

totically than to recompute from scratch when there is a change. To transform our static scheme

into a dynamic scheme we need to convert the sequential marker algorithm into an efficient

distributed one. Let us consider a distributed marker algorithm having three distinct phases:

1. Painting. As in the proof of Lemma 5.2.1, nodes of depth at most α are painted deep,

and the rest are painted shallow. This can be done efficiently by a distributed depth-first

search of the tree T .

2. Deep nodes. For each node v, the algorithm computes the part of the label that con-

tains the forbidden sets of the deep ancestors of v. This can be done by propagating the

forbidden sets of the deep nodes down to each of their deep descendants. Since all de-

scendants of a deep node are also deep, each path is no longer than α and there may be

O(n) deep leaves. Therefore, the total number of forbidden elements sent over edges is

O(nkα) = O(
√

kn3/2) (by setting α =
√

n/k).

3The height of a forest is the maximum height of any tree in the forest
4In fact, the value of n depends on the size of the network at a particular time, but we assume for simplicity

that it never grows by more than a polynomial factor.
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Figure 5.10: The tree used in the proof of Lemma 5.7.1. The forbidden sets of nodes h1 . . . hn

choose a permutation of {v1 . . . vn}. The nodes h1 . . . hn are all painted shallow.

3. Shallow nodes. The final step is to inform each node v about its set Shallow(v), i.e.

the shallow nodes that cannot reach v. However, this step appears to be costly – the

following lemma shows that any distributed algorithm that computes these sets must have

high communication complexity.

Lemma 5.7.1 Any distributed algorithm that terminates with every node v knowing Shallow(v)
must communicate Ω(n log n) bits over Ω(n) edges in an n-node tree, even for k = 1.

Proof. Assume that the parameter 1 ≤ α ≤ n is given. Now construct the following tree, as in

Figure 5.7 – there is a root r, a path of (n + α) nodes h1, . . . , hn+α hanging from r and n nodes

v1, . . . , vn, each being a child of r. Consider some permutation σ of {1, . . . , n} where σ(i) is

the ith element of the permutation. For i = 1, . . . , n, set S(hi) = {vσ(i)} as hi’s forbidden set.

The set {S(h1) . . . S(hn)} is a permutation over the nodes {v1, . . . , vn}.
Now we show how to reduce from the two-party communication problem of deciding set-

disjointness. Partition the nodes between the two players Alice and Bob as follows: give Alice

the long path (and implicitly σ) and Bob the nodes v1, . . . , vn and r. By construction, all the

nodes h1, . . . , hn will be painted shallow and therefore Shallow(vj) = {hi} iff σ(i) = j. There-

fore, given the sets {Shallow(vi)}, Bob can know the permutation σ.

Define the unique rank encoding of a permutation by replacing each symbol in the permu-

tation by its rank among the remaining symbols. For example, the rank encoding of 341562

is 331221. The rank encoding of a permutation can be expressed as a binary string by re-

placing each symbol by its unique binary expansion. There are (n − i) possible values for

the ith symbol in the rank encoding of a permutation of {1 . . . n} and so every binary string of∑n−1
i=0 log i = lg(n!) bits corresponds to a unique rank encoding and hence a unique permutation

of {1, . . . , n}.
Now for the reduction – given sets P,Q ⊆ {1, . . . , n}, Alice receives P and Bob receives

Q. Alice computes the unique permutation σ corresponding to P and uses this to construct the

forbidden sets in her side of the tree. Then they run the protocol to compute the shallow sets.

From this, Bob can determine σ and thus also P . He can then locally decide if P,Q are disjoint.

Since the randomized communication complexity of disjointness on sets of size r is Ω(r)
bits, at least Ω(lg(n!)) = Ω(n log n) bits must cross the cut between Alice and Bob, which

consists of a single edge. We can replace this edge by a path of n edges. It is known [Die97]

that asymptotically, these nodes can no better than to act as relays, and so each must have

Ω(n log n) bits communicated across it.

The lemma implies that for k = O(1) the following algorithm is asymptotically optimal for
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computing the shallow sets: broadcast the entire tree (including the forbidden sets) to all nodes

using Õ(kn2) bits then let each node locally compute its label using the centralized marker

algorithm.

It is worth noting that this lower bound does not exclude the possibility of a labeling scheme

with both O(
√

n)-bit labels and low communication complexity, but such a scheme would have

to avoid using the shallow sets as defined here.

5.8 Discussion

The most interesting open issue here is to investigate fs-reachability on other families of graphs

such as those of small treewidth (although we have been unable to show good bounds for these

families). Knowing the complexity of fs-reachability on more general graphs would be inter-

esting as reachability is a fundamental problem for any routing scheme.

We have been unable to prove a stronger lower bound for general graphs than in Section 5.1.

In fact, we conjecture that it does not get any harder than for trees:

Conjecture 5.8.1 For any graph family F , there is a labeling scheme for fs-reachability on F
(with k = O(1)) having Θ̃(

√
n)-bit labels.

Roughly, the intuition behind the conjecture is that to obtain a good lower bound, one should

find a large set A of nodes where, for each distinct pair of nodes u, v ∈ A, there is a path Puv

that contains a ‘large’ number c of nodes disjoint from any other path Pwx where at least one

of w, x is not u, v. The tree construction in Section 5.1 has this property with c = Ω(
√

n) and

attempting to increase this forces the paths to be non-disjoint. However, it is not clear how to

efficiently encode the reachability information for a large number of paths between any pair of

nodes.

Classical reachability on undirected graphs has a scheme with lg n-bit labels: label each

node with the identity of its connected component. On the other hand, it is known that directed

reachability requires labels of total size Ω(m log n2/m) bits on some n-node m-edge graph

[CHKZ02]. Forbidden-set reachability is at least as hard as undirected reachability: just set

all the forbidden sets to be the empty set. Below is a simple reduction showing that it is no

harder than directed reachability. Hence for forbidden sets of size O(1), the label size for fs-

reachability lies somewhere between undirected and directed reachability.

Lemma 5.8.2 Forbidden-set reachability on undirected graphs is no harder than directed-

graph reachability.

Proof. Given an undirected graph G on n nodes v1 . . . vn and a forbidden set S(v) for each

node v, construct the bipartite graph H on 2n nodes x1 . . . xn and y1 . . . yn where there is an

edge (xi, yj) iff there is a good path from vi to vj in G. It is easy to see that in H , xi can reach yj

iff they are neighbours, and so the adjacency relation in H represents the fs-reachability relation

in G.



CHAPTER 6

Approximating Forbidden-set Routing

In Chapter 4 we showed that there is an Ω(k log n/k) lower bound on the space requirements

(per node) for any forbidden-set routing scheme, where k is an upper bound on the size of

a forbidden set (Theorem 4.5.3). For small k, this means that good routing schemes may be

possible. However, we believe that for general graphs there is a lower bound of Ω(n) bits. To

avoid this bound, it is natural to think about ways of relaxing the problem, for example are

we happy with an approximate solution? The difficulty with such an idea is that the problem

of deciding if there exists a path of zero cost between two nodes is a decision problem not an

optimization problem, so there is no natural notion of approximation.

In this chapter we consider one such approach to approximating the forbidden-set routing

problem. We partition the network into connected clusters and instead of choosing arbitrary

subsets of nodes, the forbidden sets must choose a subset of these clusters. This has the effect

of grouping nodes together and treating them as the same node for the purposes of forbidden-set

routing. We define the problem of obtaining a cluster graph that has good graph-theoretic prop-

erties, and motivate the problem of obtaining a cluster graph with bounded treewidth (deciding

if there is a cluster graph with treewidth at most k may be an NP-complete problem, even though

deciding if a given graph has treewidth at most k can be done in linear time). We show that if

we can construct a cluster graph having small treewidth, then we can apply our forbidden-set

routing schemes from Chapter 4 to it.

We begin, however, by considering an approach inspired by the work of Feigenbaum et al.

[FKMS05] – they considered a relaxed version of shortest-path routing where each link has a

number of objective values associated with it, for example delay, packet loss, bandwidth and

so on. All nodes agree on these values, in the same way that all nodes agree on the weights of

edges for shortest-path routing. Each node has an individual cost function, which is a convex

combination of the objective values assigned to edges (for example, one node may be interested

in paths minimizing the sum of delays, while another may be interested in paths minimizing

another metric). They showed that a small number of routing trees (instead of a single routing

tree) is sufficient for all nodes to route on almost-optimal paths. Their scheme does not imme-

diately imply a space-efficient routing scheme, since each node would store a small number of

trees for each destination, giving super-linear ω(n) routing table sizes.. We shall show how to

use their construction to build a space-efficient compact routing scheme with a small increase

101
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in the approximation factor. We can then observe that this multiple objective cost problem can

be seen as a special case of clustering the network and assigning costs to clusters. Since we are

interested in forbidden-set routing, it is natural to ask if we can cluster the graph so as to obtain

efficient forbidden-set routing algorithms for it.

6.1 Compact routing with a small number of objective costs

In this section we consider a variation on the forbidden-set routing model introduced by Feigen-

baum et al. [FKMS05]. They considered a restricted model where each node w is assigned d
objective costs 〈l1(w), . . . , ld(w)〉, which are assumed to be integers bounded by a polynomial,

i.e. less than nc for some constant c. Then the policy of a node u is a probability distribution

over d local variables 0 ≤ λi(u) ≤ 1 for i = 1, . . . , d such that
∑d

i=1 λi(u) = 1. The policy

can be interpreted as defining the cost to u of routing through w as a convex combination of the

objective costs assigned to w, i.e.

cu(w) =
d∑

i=1

λi(u)li(w).

The motivation for this cost model is that the costs may represent objective measurements such

as latency and packet loss, but nodes may assign different opinions to their relative importance.

They showed that for the case of d = 2, a small number of routing trees suffices to route on

approximately-optimal paths. This is a promising result, since Feigenbaum et al. showed that

finding a single minimal-cost tree in the case of 2 metrics is APX-hard.

Theorem 6.1.1 ([FKMS05]) Assume that the costs l1(·), . . . , ld(·) are at most nc. Fix some

destination node v. Given any ǫ > 0, there is a set of routing trees T1, . . . , Tr with r =
O(1

ǫ
(log n + log 1

ǫ
)) such that the following holds – for each node u, there exists a tree Ttu

such that cu(Ttu) ≤ (1 + ǫ)cu(P
∗
uv), where P ∗

uv is the path from u to v minimizing cu(·) (i.e. of

minimum cost to u).

Proof. Let α = (1 + ǫ). Each tree Tt in the collection is the shortest-path tree for a specific

convex combination of the two metrics l1(·), l2(·). We name the trees after the metrics they

optimize:

T∞ : l1(·), with ties broken by minimum l2(·).
T−∞ : l2(·), with ties broken by minimum l1(·).
Tt : lt(·) = αt

1+αt l1(·) + 1
1+αt l2(·) for t ∈ {−k,−(k − 1), . . . ,−1, 0, 1, . . . , k} where k =

⌈logα (2ǫ−1nc+1)⌉.
Thus, there are a total of r = 2k + 3 = O(log n) trees. These trees can be constructed

with r shortest-path computations on node-weighted graphs (using e.g. Dijkstra’s algorithm)

and hence can be done in polynomial time. The proof goes on to show that the collection of

trees do indeed achieve the desired approximation factor.

They also showed that for general d > 2, approximately O(4d logd n) routing trees are

sufficient (depending on the parameters ǫ and the size nc of the costs li(·)). Using their result we

can construct a routing scheme by applying the theorem separately to each node as a destination:

construct a function t(u, v) = arg mini dTi
(u, v) where t(u, v) = k means that the tree Tk

contains the lowest cost path from u to v out of all the trees constructed. Each node also stores
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the port number for the edge to its parent in each tree. Then u can route to v by sending a

packet to its parent in Tt(u,v)), writing t(u, v) in the packet header to indicate which tree the

packet should be sent on. The problem with using this as a routing scheme is that each node

stores a routing table of size O(n log r) bits to identify the tree used for each destination.

Before presenting the scheme, we need to deal with the fact that the above result is for

node-weighted graphs, but the compact shortest-path routing schemes we will use require edge-

weighted graphs. We therefore apply a simple transformation as follows. Given an undirected

node-weighted graph G = (V,E) on n nodes where v has weight l(v), we compute the edge-

weighted dual G′ = (V ′, E ′) on w with 2n nodes as follows (the construction is shown in

Figure 6.1). The node set V ′ = V ∪ {v′|v ∈ V } contains the nodes of V and a node v′ for

every node v of V . The edge set E ′ = E ∪ {{v, v′}|v ∈ V } contains the edges of E and an

edge {v, v′} for every node v of V . For an edge {u, v} where u, v ∈ V , assign it the weight

l(u, v) = l(v, u) = l(u) + l(v). For an edge {v, v′}, assign it the weight l(v). It is easy to

see that 2dG(u, v) = dG′(u′, v′) for u, v ∈ V (G), and that if Pu′v′ is a path from u′ to v′ in G′

then the subpath Puv obtained by removing the first and last edges of Pu′v′ is a path in G. The

following simple lemma shows that the edge-weighted graph has the same lowest cost paths as

in the original graph, so we can apply any routing scheme to G by using the corresponding node

v ∈ G′.

Lemma 6.1.2 If Puv is the lowest-cost uv-path (lcp) in the dual graph G′ then Puv is also the

lcp in G.

Proof. Assume for the sake of contradiction that Puv is the lcp in G′ and some other path P ′
uv

is the lcp in G. Let cG(P ) denote the cost in G of the path P and cG(v) denote the weight of

a node v (similarly, cG′({u, v}) denotes the cost of an edge {u, v} in the dual G′). Therefore,

cG(Puv) > cG(P ′
uv). Now consider the cost of the path P ′

uv in G′. We will show that cG′(Puv) >
cG′(P ′

uv), contradicting the assumption that Puv is the lcp in G′. We know that for a path Puv

from u to v, cG(Puv) = 1
2
(cG′(Puv) + cG(u) + cG(v)). It follows that

cG′(Puv) = 2cG(Puv)− cG(u)− cG(v)

> 2cG(P ′
uv)− cG(u)− cG(v)

= cG′(P ′
uv),

so Puv cannot be the lcp in G′.
We now show how to construct a routing scheme based on Theorem 6.1.1 by combining

it with a compact approximate shortest-path routing scheme R such as Thorup-Zwick (TZ)

[TZ01b]. We also assume that we have access to distance labels giving the lengths of the

paths used by the routing scheme. Our modification is quite simple – let G = (V,E) be an

undirected unweighted graph, and denote by Gt = (V,E) the node-weighted graph with node

weights given by lt(·). For each t = 1, . . . , r we compute the edge-weighted dual G′
t of Gt and

then run the routing scheme R on G′
t. This gives for each node a sequence of labels L(v) =

L1(v), . . . , Lr(v) and routing tables RT (v) = RT1(v), . . . , RTr(v) where Lt(v), RTt(v) are

the label and routing table given to v in G′
t by R (we assume that the labels Lt(v) also contain

information for the distance labeling scheme).

Routing from u to v in G is done as follows. Node u is given the labels L(v), L(v′) for

the destination v ∈ G and runs the distance decoder on Li(u
′) and Li(v

′) in G′ to compute

the approximate distances d̂G′

i
(u′, v′) for i = 1, . . . , r. Let tu be the value of i for which the
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Figure 6.1: Constructing the edge-weighted dual G′ from the node-weighted graph G.

reported distance d̂G′

i
(u′, v′) is smallest. Node u then uses the routing table RTtu(u) and label

Ltu(v) ∈ L(v) to compute the port number of the outgoing edge for the next hop w on the

path in G. It uses the routing scheme R to construct the packet P to be sent to w and adds the

identifier tu and the label Ltu(v) to the header of P .

When a packet containing Ltu(v) and tu is received by an intermediate node w, it uses

the routing table RTtu(v) and Ltu(v) to compute the port number for its next outgoing edge,

computes the next packet (keeping Ltu(v) and tu in the header) and forwards it (we assume that

the routing scheme R is able to decide when the packet has reached its destination).

Lemma 6.1.3 If the routing scheme R routes on paths of stretch s using routing tables of size

RT and distance labels of size L, then the routing scheme described above uses routing tables

of size r.RT , labels of size r.L and routes from u to v on a path Puv where cu(Puv) ≤ s(1 +
ǫ)cu(P

∗
uv), where P ∗

uv is the path from u to v minimizing cu(·).
Proof. The main observation is the following: for any destination v, since each of the trees Ti

is a shortest-path routing tree in the graph Gi, any stretch-s shortest-path routing scheme for Gi

will produce a path Puv from u to v of length within a factor s of dGi
(u, v). Since the path in Ti

is within a factor (1 + ǫ) of optimal with respect to the costs ci in G, it follows that the path Puv

in Gi is also within a factor s(1 + ǫ) of optimal with respect to the costs ci in G.

The compact routing scheme TZ [TZ01b] has stretch 3, uses routing tables and distance

labels of size Õ(n1/2). This gives the following result.

Theorem 6.1.4 Assume that d = 2. Given any ǫ > 0, there is a compact routing scheme that

routes packets from u to v on a path Puv satisfying cu(Puv) ≤ 3(1+ ǫ)cu(P
∗
uv). The scheme uses

routing tables and labels of size Õ(n1/2

ǫ
(log n + log 1

ǫ
)).

6.2 Approximate separator labels

We now show that the model described in the previous section leads to a natural notion of

approximation for constructing separator labels. If we set all the costs li(v) to be binary values

we can consider the clusters Vi = {v | li(v) = 1}, and can require that they form a disjoint
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partition of G into connected components. If we also require that the nonzero λi all take the

same value, then we have a simple structure where each node chooses a set of clusters.

Define the quotient graph corresponding to the partition Π = {V1, . . . , Vd} as the undirected

graph G|Π = (V ′, E ′) where V ′ = {V1, . . . , Vd} (i.e. each cluster of the partition is contracted

into a single node) and E ′ = {{Vi, Vj} | ∃x ∈ Vi, y ∈ Vj where {x, y} ∈ E(G)} (i.e. if

there is an edge between two nodes in different clusters then there is an edge in the quotient

graph between the nodes representing the clusters). The set {Vi | λi 6= 0} then corresponds to

choosing a set of nodes in the quotient graph to avoid, which corresponds to a set of nodes in

G.

For forbidden-set routing (where the sets are arbitrary subsets of nodes), we would need to

have n objective costs per node (dimensions), so Theorem 6.1.1 would construct Ω((log n)n)
routing trees. However, it is clear that n trees suffice to allow choosing the exact lowest-cost

path for every node, regardless of the policies. Therefore, it would be good if we could make use

of the simple structure described above to improve these bounds. We now show that if we can

construct quotient graphs with good properties then we can efficiently approximate forbidden-

set routing. It is an approximation in the sense that forbidden sets are now arbitrary subsets of

the set of clusters in the partition rather than arbitrary subsets of nodes, so nodes are grouped

together in the forbidden sets by the partition chosen.

We will apply the compact forbidden-set routing scheme developed in Chapter 4 directly on

the quotient graph. Given any labeling L for the quotient graph G|Π, we construct a labeling

L′ for G by assigning to all the nodes in a cluster Vi the label L(Vi) for Vi in G|Π. Given a set

of labels for nodes in G, the decoder for L′ simply runs the decoder for L on the labels. If the

partition is chosen so that G|Π has good properties (e.g. bounded cliquewidth) then the labeling

L′ will be as if G has the same good properties but the price we pay is that the scheme treats all

nodes of G in the same cluster as being the same node. Note that this is an approximation since

if there is a fs-avoiding path in the quotient graph then there is also a fs-avoiding path in the

original graph (if the query set now contains all the nodes contained in the forbidden clusters).

Routing is done as follows on G - for each edge {X,Y } in the quotient graph, we store two

nodes x ∈ X, y ∈ Y where {x, y} ∈ G. Then we route on the quotient graph using the compact

forbidden-set routing scheme, and route in connected components between the corresponding

nodes in G using a separate shortest-path routing scheme (eg Thorup-Zwick). We now define

the problem of constructing a quotient graph with small cliquewidth since we have separator

labels with O(log n) bits on bounded cliquewidth graphs.

Problem CLIQUEWIDTH-k QUOTIENT GRAPH

Input: A connected graph G.

Output: A partition Π of V (G) into connected components,

such that G|Π has cliquewidth at most k.

Objective: Maximize the size of the quotient graph, i.e. |Π|

Remarks. Note that the parameter k is not part of the input. Also note that the problem

of asking for a quotient graph with minimum cliquewidth is trivial, since taking the partition

Π = {{V (G)}} always gives a solution with cliquewidth 1 (since G|Π is the graph having one

node). If k is part of the input then the problem is NP-complete, since Fellows et al. [FRRS06]

have recently shown that given a graph G and an integer k, deciding whether the cliquewidth of

G is at most k is NP-complete, by asking whether |Π| = n. However, the recognition problem
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(for fixed k, is the cliquewidth of G at most k?) is still open, and since our problem is closely-

related to (and at least as hard as) the recognition problem, we leave it as an intriguing open

problem.

We can also consider the similar problem TREEWIDTH-k QUOTIENT GRAPH. Since

there is a linear-time algorithm for deciding if the treewidth of a graph is at most k [Bod93a],

this may be a more tractable problem (if k is part of the input then it is NP-complete [ACP87]).

For the case k = 1, the problem is asking for the largest integer s such that there is a partition

of the nodes of G whose quotient graph is a tree of s nodes. This can can be solved in linear

time by contracting all cycles of G using the linear-time biconnected components algorithm of

Tarjan [TV84]. One idea for solving this in practice may be to use similar heuristics to those

for treewidth, such as the minimum-degree heuristic [Bod05], as shown below. This procedure

TREEWIDTH-k QUOTIENT GRAPH

1 G′ ← G
2 repeat

3 if treewidth(G′) ≤ k ✄ O(n) time [Bod93a]

4 then return G′

5 else choose a node v ∈ G of minimum degree

6 contract v with all its neighbours

Figure 6.2: Illustrating the minimum-degree heuristic for TREEWIDTH-k QUOTIENT GRAPH

is guaranteed to terminate since G is connected and we eventually reach the singleton graph,

which has treewidth 0. We leave it as an open problem to construct efficient solutions for larger

values of k.
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Discussion

In this thesis, we have studied the problem of routing in large distributed networks where nodes

are free to define their own routing policies. In particular, we focused on the case where each

node is free to specify a set of nodes that it wishes to avoid – this gives rise to the forbidden-

set routing problem. Although we have succeeded in answering some basic questions about

the complexity of forbidden-set routing – some in the negative (such as can we efficiently use

routing trees), and some in the positive (for example, our forbidden-set routing algorithms for

small treewidth and bounded cliquewidth graphs), we feel that our work represents a small step

toward understanding how to deal with the additional complexity of policy-based routing. From

a practical point of view, we believe that developing efficient and reliable algorithms for policy

routing is important – as the number of nodes using policy routing increases, the intractability

and space problems associated with routing-tree based schemes such as BGP will only become

amplified. We propose the model of compact routing as the way forward for policy routing

algorithms, but at the moment very little is known about the problem, even for the simple case

of forbidden-set policies. From a theoretical point of view, the forbidden-set routing problem

has fundamental open questions related to graph theory and other areas that are likely to be of

independent interest (for example, how to construct an efficient distributed representation of

all the separators in a graph). In this final chapter we try to suggest interesting directions and

summarise some of the open questions arising from our work.

7.1 SPPs and routing trees

In Chapter 3 we presented some negative results about using routing trees for forbidden-set (and

more generally, policy-based) routing. We used this as an argument against the use of routing

trees. Although the NP-completeness results rule out even the simple case of forbidden-set

preferences, it may be that there is a class of policies that are tractable yet more expressive than

next-hop preferences. It would be very interesting to understand how the algebraic properties of

a routing algebra relate to the complexity of solving the SPP instances that it generates – for ex-

ample, what makes deciding solvability of SPPs with two-hop preferences NP-complete, while

those with next-hop preferences are always solvable? The discussion in Section 3.6 contains

107
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more details about these open problems.

Another interesting problem (perhaps of independent interest) is to consider the k-SAT com-

munication complexity conjecture – Lemma 3.4.7 proves it for k = O(1) and only holds in the

deterministic case. It would be interesting to prove or disprove the conjecture for larger values

of k. We have only been able to prove a weaker randomized lower bound – whether we can do

better with randomization is open.

7.2 Compact routing schemes

Since this is the first time that the problem of forbidden-set routing (and in general, compact

algorithms for policy routing) have been studied, there are naturally many fundamental open

problems remaining. Here we list what we consider to be some of the most important problems

associated with the work in this chapter.

Open problem 1: Construct distance separator labels for other graph families.

One direction is to attempt to construct distance separator labels for cliquewidth graphs

using labels of size polynomial, or even linear, in the cliquewidth cw(G). Alternatively, it would

be interesting to prove a lower bound for the label size involving the cliquewidth. One difficulty

in extending the treewidth scheme to handle small cliquewidth graphs may be in constructing

a binary term tree of small height that represents the graph. For treewidth k graphs, we relied

on a result that enables us to convert any tree decomposition of width k into a balanced one

with height O(log n) and width O(k). For cliquewidth graphs, no such result is known; if we

want a balanced term tree (having height O(log n)), it is not known if we can avoid suffering

an exponential increase in the cliquewidth. In the case of treewidth, we made use of the fact

that there is only a linear increase in treewidth. It is an open problem to reduce this cliquewidth

blowup to even a polynomial factor increase [CV03].

Open problem 2: Tighten the gap between the upper and lower bounds for the size of

distance separator labels for general graphs.

We showed an Ω(n) bits lower bound, but there is nothing better than the trivial O(n2)
bound for general graphs (store at each node a copy of the entire graph). Can this be improved

to O(n3/2) or O(n1+ǫ) bits, or is it optimal? One way of attacking this may be to try to prove

that treewidth k graphs have separator labels of size Õ(k) bits. If this were true, then since n
is an upper bound of the treewidth of any graph with n nodes (construct a tree decomposition

having a single bag), a Õ(n) upper bound for general graphs would follow. We believe that this

problem has deep connections with many other areas of graph theory.

Open problem 3: Construct a more efficient routing scheme by removing the dependency

on the degree of G.

We showed how to construct forbidden-set routing schemes by using distance separator

labels and a simple routing scheme using these distances. However, the simple routing scheme

involves storing the neighbours for each node, so we pay a factor O(∆(G)) in addition to the

size of the distance separator labels and the size of the forbidden sets. We believe that it is

possible to apply similar ideas to those of Cowen [Cow99] and Thorup and Zwick [TZ01b] by

using carefully-selected ‘landmarks’ in the graph to reduce the space requirements. This would

immediately improve many of our results in Chapter 4.

Open problem 4: Investigate randomization and approximation as a means of reducing the

complexity.
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The motivation for approximate shortest-path routing is primarily due to the Ω(n) lower

bound in the case of exact shortest-path routing in general graphs. Since we also have a high

Ω(n) lower bound for the problem of deciding if a given set of nodes is a separator of two nodes,

we would like to investigate if we can circumvent this, but obviously at the cost of something

else. One interesting idea, pioneered by Karger [Kar94] in his work on network cuts, is to use

randomization. Is it possible to construct smaller separator labels that give a correct answer with

high probability? If, in addition we are interested in distance separator labels then it might be

possible to consider approximate distance separator labels – given labels for u, v, S, we would

like to compute an approximation to the distance dG\S(u, v). If we can achieve sublinear label

sizes in this case then that would be a good result.
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